PDA

Просмотр полной версии : Новая теория рака. 2-ая редакция


albert52
02.01.2020, 17:54
Что такое рак?

Рак или злокачественное заболевание вообще имеет причину в геноме клетки, иначе он не был бы так распостранен в природе, даже в растительном мире. Раку (или саркоме) также подвержены все возраста и все ткани организма. Так что вопрос в том, какой дефект генома позволяет развиться этому страшному заболеванию.

Мой подход к теории рака заключается в том, что реально никакого дефекта генома нет, а мы платим такую цену за существующий механизм возникновения многоклеточных живых существ, так сказать его побочный эффект.Напомню, что жизнь возникла около 3,5 млд. лет назад в виде простейших клеток, использующих для получения энергии углекислый газ, а его в атмосфере тогда (к ужасу нынешних зеленых экологов) было много, а кислорода мало. Сейчас такие клетки называют анаэробными микробами.Получаемой таким образом энергии хватало только самой клетке и многоклеточных организмов быть в принципе не могло.

В последующем в результате жизнедеятельности таких клеток кислорода в атмосфере становилось все больше и около 1 млд. лет назад появились клетки, использующие для получения энергии сам кислород (их называют сейчас аэробными микробами). Этот способ получения энергии на порядок эффективнее и такие клетки во-первых получали значительно больше энергетической свободы, а во-вторых могли по площади быть намного меньше анаэробных клеток.В результате около 900 млн. лет назад произошло историческое событие, а именно, аэробные клетки вторглись вглубь более крупных анаэробных клеток (помашу ручкой сторонникам паразитарной теории), со временем упростились донельзя и занялись только выработкой энергии. У животных дальние потомки этих клеток называют митохондриями, в у растений хлоропластами.

В результате появилась энергетическая возможность появления многоклеточных живых существ, геном клеток-хозяев развернулся в хромосомы, а геном квартирантов значительно упростился, но сохранил присущую одноклеточным организмам кольцевидную форму. Кстати, я сторонник митохондриальной теории старения, но это не тема моей публикации.

Геном у всех клеток одинаков, но активность генов у разных клеток разная, т.е. клетки разных типов имеют свой генный профиль. Только две панели генов могут быть активными у всех клеток организма, из них постоянно активны только гены инфраструктуры и гены "домашнего хозяйства", отвечающие за жизненно важные функции клетки. Эти гены образуют своего рода базовую подсистему в геноме клетки, причем гены инфраструктуры являются потомками генов клетки-хозяина при слиянии клеток около 1 млд. лет назад. Генов "домашнего хозяйства" по разным оценкам у человека 10-15 тыс. Это гистоновые гены, гены тРНК, мРНК и т.п.
Все другие гены являются надстройкой или генами "роскоши" и они отвечают за специализацию клетки и ее функционирование в целом организме.

Гены инфраструктуры - это единственные, кто для своего функционирования могут использовать энергию, получаемую в цитоплазме клетки, то есть без использования кислорода (память генов). В здоровых клетках работа этих генов целиком подчинена общей задаче клетки и не предусматривает никакой самостоятельности. Но так бывает не всегда. Когда клетка перегружена работой, то у генов инфраструктуры возникает шанс проявить самостоятельность и работать только на самосохранение.
Обычно клетка справляется с таким сепаратизмом, иначе существование многоклеточных организмов было бы невозможно. Но бывают ситуации, когда защита не срабатывает, например, когда нарушается координация работы ДНК ядра и митохондрий.

Обычно, когда клетке предстоит работа, из ядра к митохондриям направляются вещества-медиаторы, стимулирующие ДНК митохондрий и клетка получает необходимую энергию. Есть химические вещества, вызывающие сигнальный хаос и нарушающие такое взаимодействие. При их длительном воздействии клетка постоянно испытывает энергетический голод, что открывает дорогу сепаратизму генов инфраструктуры, действующих в данной ситуации по принципу "не до жиру, быть бы живу". Такие вещества называют химическими канцерогенами. Подобно действует и ионизирующее излучение в несмертельных для клеток дозах.

Суть моей концепции рака заключается в том, что о злокачественном перерождении клеток можно говорить тогда, когда у генов инфраструктуры появляется возможность действовать самостоятельно, то есть клетка из строго централизованно управляемой структуры превращается, образно говоря, в акционерное общество с блокирующим пакетом акций у генов инфраструктуры.

albert52
02.01.2020, 18:00
Продолжаю. Из предыдущего моего текста вытекает, что опухолевые клетки определенное время (для разных типов опухолей разное) находятся в состоянии своего рода двоевластия. На начальной стадии развития рака тон задают конечно гены надстройки. Здесь развитие рака можно затормозить, например, насыщением ткани опухоли кислородом или снижением нагрузки на пораженный орган.
Первую возможность показал немецкий ученый Варбург в своих опытах (кстати, Варбург первым выдвинул митохондриальную теорию происхождения злокачественных опухолей). Второй возможностью активно пользуются онкологи, снижая нагрузку на пораженный опухолью орган. Особенно эффективно это в отношении гормонально зависимых органов, прежде всего половой сферы, когда они назначают гормоны - ингибиторы.

Постоянное вмешательство(чем дальше, тем больше) генов инфраструктуры в нормальное функционирование клеток приводит к тому, что органеллы клеток, отвечающие за их специфические функции, все чаще получаются дефектными, как бы недоделанными. Это приводит к тому, что клетки функционально слабеют и организм усиливает их стимуляцию, что усугу***ет их энергетический голод. Возникает так называемый порочный круг. Особенно к тяжелым последствиям приводит повреждение митохондрий, до 85% белков которых имеет хромосомное происхождение. Такое повреждение клеточных органелл в опухолях называют клеточным атипизмом.

Все вышеописанное может происходить в опухолях, не выходящих за пределы пораженной ткани (рак in situ). Все меняется, когда опухолевые клетки начинают размножаться. Отметим, что не всегда размножение клеток опухоли во зло. Размножение клеток на начальной стадии развития опухоли может привести к их нормализации, так как происходит перезагрузка генома. Такой эффект торможения развития опухоли например наблюдается, когда в пораженной опухолью ткани развивается воспалительный процесс.

Размножение клеток это сложный процесс, регулируемый особой панелью генов, не совсем правомочно называемых онкогенами. Эта панель генов периодически активируется во всех типах клеток. Онкогены образуют своего рода штаб, контролирующий процесс деления клеток. Необходимость такого штаба очевидна, если только посмотреть, как сложно устроены клетки и насколько сложен процесс их деления. Это у микробов процесс деления намного проще, поэтому и размножаются они намного быстрее.

По окончании деления клеток штаб распускается за счет подавления активности онкогенов. Если же этого не происходит, то клетки размножаются вновь и вновь и естественно не успевают созревать, то есть остаются молодыми. Такое наблюдается в доброкачественных опухолях.В злокачественных клетках на продвинутой стадии деление происходит с многочисленными нарушениями. Особенно пагубно нарушение деления хромосом, так как больше страдают гены надстройки. Во-первых, их просто больше, во-вторых, гены инфраструктуры располагаются компактнее и их повреждение обычно приводит к гибели клетки.
Все это приводит как к усилению клеточного атипизма, так и к нарушению строения пораженной опухолью ткани (тканевой атипизм).

Размножение клеток злокачественной опухоли имеет несколько аспектов, касающихся не только самой опухоли, но и как пораженного органа так и организма в целом.
Вначале опухолевые клетки не отделяются друг от друга. Если рассматривать опухоли из эпитериальной ткани (рак), то в норме клетки образуют один или несколько рядов за счет специфического расположения мест сцепления (состоят из особых белковых комплексов). В процессе опухолевой прогрессии эти комплексы повреждаются или меняют свою локализацию. В результате ряды клеток смешиваются, часто образуя беспорядочное скопление клеток. Функционально это наиболее сказывается на опухолях из железистого эпителия.

В дальнейшем сцепление клеток слабеет настолько, что отдельные клетки мигрируют вглубь интактной ткани или попадают в кровь, а в случае рака сначала в лимфу. Такие клетки могут образовывать метастазы, если попадают в места с хорошим кровоснабжением. Там они восстанавливают или синтезируют заново белковые комплексы сцепления, что позволяет им имитировать с разной степенью успеха ткань, из которой они вышли.

Метастазы это плохо. Но клетки метастазов сохраняют остатки совести (двоевластие сохраняется, хотя и заметко сдвигается в сторону генов инфраструктуры, так как клетки метастазов в этом отношении по понятной причине в своей массе более продвинуты, чем в материнской опухоли). Их активность через гены надстройки может тормозить организм, сами клетки может поражать иммунная система, так как они расположены в неположенном месте. Кстати, удаление материнской опухоли может привести к ослаблению противодействия со стороны организма в целом и спровоцировать усиление роста метастазов.

Медицина не без успеха ищет способы воздействия как на материнскую опухоль, так и на метастазы, в результате чего даже наличие метастазов не всегда означает летальный исход. Но мы сейчас поговорим о значительно более опасном чем метастазы противнике, появляющемся в терминальной стадии заболевания, которую он кстати и вызывает. В научной, да и в научно-популярной литератере об этом противнике почему-то почти не говорится. Только с точки зрения моей теории этот противник может получить достаточное освещение.

В опухолях, начиная с третьей стадии болезни, можно встретить мелкие недифференцированные клетки. Если в материале биопсии ты увидешь эти клетки, то это КОНЕЦ, можно писать некролог. Такие клетки появляются, когда в результате многократных, с каждым разом все хуже проходящих делений клетки остатки генов надстройки, издав последний предсмертный вопль, навсегда замолкают и остаются только гены инфраструктуры. Впрочем, какие это теперь гены инфраструктуры, если кроме них больше никаких активных генов нет, двоевластие закончилось!
Такие клетки быстро возращаются к той форме, которая была почти миллиард лет назад, до того как в них внедрились аэробные клетки (см. выше). Такие клетки принципиально не могут использовать для получения энергии кислород, да и зачем это им, когда вокруг столько еды. Они могут только жрать и размножаться, размножаться и жрать. Никакими обязательствами они не отягощены. За такое поведение я называю их лангольерами в честь героев романа Стивена Кинга и созданного на его основе телевизионного фильма. Кто не помнит, в фильме самолет через щель в пространстве попадает в прошлое и в конце его пассажиры сталкиваются с мохнатыми зубастыми летаюшими шарами, которые все быстро поедают. Хорошая иллюстрация моей теории, в которой все может заканчиться такими вот лангольерами. Но если в романе и фильме все заканчивается благополучно и самолет с пассажирами, хотя и не без потерь, возвращается в настоящее, то в случае рака через такую щель проникают лангольеры и тогда начинается настоящая трагедия. Эти клетки не образуют метастазов а стаями разносятся по организму и нападают на органы, буквально изрешечивая их и вызывая недостаточность органов. Каждую такую клетку можно сравнить с кометой, сама клетка является головкой кометы, а длинный хвост образуют токсичные недоокисленный продукты обмена.

Организм этим клеткам не может ничего противопоставить, для иммунной системы это тени, так как их оболочка состоит из протобелков и никаких антигенных детерминант не содержит. Антибиотики для подобных паразитов тоже не подберешь, так как это не полноценные микробы, а только донельзя дегенерировшие клетки организма. Возникшая в результате их деятельности сильнейшая интоксикация в совокупности с системной органной полинедостаточностью быстро приводят к смерти больного.

albert52
02.01.2020, 18:02
Сейчас я хочу коснуться тех теорий рака, которые представляют интерес для меня с точки зрения моей теории. Эпиграфом к этому экскурсу я хочу поставить высказывание немецкого ученого Вирхова: " никто, даже под пыткой, не смог бы сказать, что же такое на самом деле раковая клетка».

Томас Сейфрид с коллегами также замечает, что «невозможность ясно определить происхождение рака во многом предопределяет невозможность значительно уменьшить количество смертей от болезни». Данные ВОЗ и американской CDC подтверждают этот тренд цифр: распространенность заболевания в целом растёт, смертность незначительно падает.

Прямым предшественником моей теории я считаю митохондриальную теорию рака Отто Варбурга.
В 1924 г. Отто Варбург, исследуя образование молочной кислоты в здоровых и злокачественных (опухолевых) клетках обнаружил, что раковые клетки расщепляют глюкозу до молочной кислоты легче и быстрее, чем это делают нормальные клетки. По данным Варбурга, опухолевая ткань продуцирует молочную кислоту со скоростью в восемь (!) раз больше, чем работающая мышца. Производство лактата с такой скоростью полностью обеспечивает опухолевую ткань энергией (хотя на две молекулы лактата приходится всего две молекулы АТФ). На основе этих данных Варбург предположил существование так называемого «ракового обмена». В настоящее время гликолитический фенотип раковых клеток — это, по сути, универсальный маркер заболевания.

В отличие от них, «здоровые» клетки генерируют энергию за счёт окисления пировиноградной кислоты. Пировиноградная кислота является конечным продуктом гликолиза и окисляется в митохондриях. Следовательно, по мнению Варбурга, раковые клетки возникают вследствие снижения митохондриального дыхания. Варбург наблюдал у нормальных и раковых клеток принципиальное различие в соотношение использования бескислородного и кислородного гликолиза. Это наблюдение стало известно как эффект Варбурга.

Варбург: «Подобно тому как заболевание чумой обусловлено совокупностью, казалось бы, не связанных друг с другом факторов (жарой, наличием насекомых и крыс), но вызывается одной лишь причиной — бациллой чумы, возникновение рака связано с целым рядом факторов. Этот процесс вызывают каменноугольная смола и облучение, мышьяк и низкое парциальное давление кислорода в клетках, уретан и песок. Но непосредственной причиной, к которой ведут все прочие перечисленные факторы, является необратимое нарушение дыхания клеток». Грубо говоря, "первопричина рака — это замена дыхания с использованием кислорода в теле нормальной клетки на другой тип энергетики — ферментацию глюкозы» — цитата из лекции Отто Варбурга.

Идея Варбурга была настолько захватывающая, что в 1926 году наш герой стал главным кандидатом в «шорт-листе» потенциальных нобелиатов. Однако Нобелевский комитет все же решил дать премию Йоханнесу Фибигеру, который якобы открыл вызывающих рак червей (в 1931 году Отто Варбург получил Нобелевскую премию за открытие природы и функций дыхательных энзимов, ныне известных как цитохромоксидаза).

В 1950—1970-е годы эта гипотеза имела большую популярность, однако последующие исследования показали, что раковые клетки могут иметь любой тип энергообеспече -ния, в том числе и свойственный нормальным клеткам.
В онкологии под эффектом Варбурга понимают тенденцию большинства раковых клеток производить энергию преимущественно с помощью очень активного гликолиза с последующим образованием молочной кислоты, а не посредством медленного гликолиза и окисления пирувата в митохондриях с использованием кислорода как в большинстве нормальных клеток. В клетках быстро растущей злокачественной опухоли уровень гликолиза почти в 200 раз выше, чем в нормальных тканях. При этом гликолиз остаётся предпочтительным даже в условиях, когда кислород в избытке.

Мой комментарий: Для меня в его теории самым важным пунктом является то, что раковые клетки продолжают активно использовать гликолиз для получения энергии даже тогда, когда кислород присутствует в тканях в достаточном количестве. Это недвусмысленно указывает на то, что в раковых клетках на постоянной основе существуют два центра управления клеткой с присущими им способами получения энергии, что составляет суть моей теории.

Отмечу еще, что сейчас ученые стали задаваться вопросом: может ли метаболизм раковых клеток стать долгожданной ахиллесовой пятой рака? Даже Джеймс Уотсон, один из отцов молекулярной биологии, убежден, что ориентированность на метаболизм – более перспективный подход для современных исследований рака, нежели генно-ориентированные методы.

albert52
02.01.2020, 18:04
Молекулярно-генетические исследования раковых клеток переживают в последние десятилетия настоящий бум и можно уже гордиться их результатами. Мутационно-онкогенная теория рака осветила многие вопросы патогенеза рака, на основании которых созданы и еще создаются достаточно эффективные лекарства, и как я уже подчеркивал, диагноз рака далеко не всегда сейчас является приговором.

Поэтому я хочу дать очень краткую сводку достигнутых результатов(кого интересуют подробности, могут легко найти их в Интернете). Около 1% генов человека(всего их до 100 000 в клетке, из них активных 20-25 тыс.) так или иначе связаны с канцерогенезом. Мутации в этих генах могут служить предпосылкой для развития неопластического процесса, и они часто обнаруживаются в опухолевых тканях больных и в многочисленных культивируемых раковых линиях клеток. Эти гены делятся на два класса, как по характеру своего действия, так и по типам кодируемых белков. Первый класс - это протоонкогены или доминантные онкогены. Их продукты, как правило, участвуют в позитивном(стимулирующем) контроле клеточного деления и роста. Второй класс составляют супрессоры опухолей или рецессивные онкогены, называемые также антионкогенами. Кодируемые этими генами белки часто являются негативными регуляторами клеточного деления и роста и в норме обладают противоопухолевым эффектом.

В настоящее время, можно с уверенностью утверждать, что генетические нарушения в работе онкогенов и антионкогенов, участвующих в контроле клеточного цикла и в репарации ДНК, являются фундаментальными в патогенезе подавляющего большинства злокачественных опухолей человека.

Для возникновения трансформированного клеточного клона необходимо как минимум 5-9 мутаций в разных онкогенах и антионкогенах. Если учесть скорость мутационных процессов, подобное накопление мутаций в одной и той же клетке представляется событием маловероятным. Очевидно, что на каком-то из промежуточных этапов трансформации опухолевый клон приобретает способность к ускоренному мутагенезу, то есть свойство «геномной нестабильности».
Вывод: суть молекулярно-генетических изменений в опухолях сводится к трём компонентам: 1) активирующие мутации в онкогенах; 2) инактивирующие мутации в антионкогенах; 3) геномная нестабильность.

В результате клетки трансформированного клеточного клона приобретают способность автономно делиться неограниченное количество раз, избегая при этом апоптоза, то есть запрограмированной гибели клеток.

Хочу отметить, что все вышеперечисленное, за исключением в определенной степени геномной нестабильности, характерно и для развития доброкачественных опухолей. Можно конечно возразить, что многие онкогены принимают участие и в дифференцировке клеток. Однако, известно, что частота спонтанных мутаций отдельных генов человека в расчете на один ген крайне низка и составляет одну мутацию на 100 тысяч генов. То есть,с точки зрения мутационно-онкогенной теории для запуска клеточного онкогенеза необходимо или внешнее воздействие, приводящее к мутации генов, или, как я уже упоминал, ускоренный внутренний мутагенез.

Таким образом, с моей точки зрения, современная молекулярная онкология пока не может ответить на два важных вопроса:
- во-первых, когда генные мутации приводят к развитию доброкачественной, а когда к злокачественной опухоли? Описано не так много случаев, когда доброкачественная опухоль переходит в злокачественную, обычно при наследственных формах рака.
- во-вторых, злокачественная трансформация клетки обычно начинается с клеточного атипизма (рак in situ), и только много позже такие клетки начинают интенсивно размножаться. С развитием современных методов диагностики установлено, что случаев таких латентных форм рака намного больше, чем клинически выявленных. Так какую же роль при этом играют мутации онкогенов?

Моя теория дает ответы на эти вопросы. Для начала обратимся к вопросу появления сепаратизма генов инфраструктуры. С чего все начинается?
Наглядный пример: при попадании пищи в рот в крови повышается уровень инсулина и больше глюкозы попадает в эпителиальные клетки желудка. В норме при этом геном ядра посылает медиаторы к митохондриям, они усиливают свою работу и глюкоза даже при медленном гликолизе успевает переработаться. Если, как я уже упоминал, этот механизм не срабатывает, то глюкоза и промежуточные продукты гликолиза накапливаются в клетке. Лактат при этом образуется, но слишком медленно.
Конечно, если бы на месте эпителия оказались анаэробные клетки, то проблемы бы не было. Они бы мигом сожрали эту глюкозу и попросили бы добавки. Но эпителий так не может, поэтому клетка вспоминает, что предки генов инфраструктуры что-то такое могли и просит эти гены помочь. Послушные гены инфраструктуры встряхивают стариной и кое-как(еще нет навыка) справляются с задачей. Второй раз у них получается лучше, а в третий раз даже просить уже не надо. Так клетка своими руками создает генный сепаратизм, а справиться с ним нелегко, спросите у политиков. Даже если взаимодействие между ядром и митохондриями восстанавливается, то часть поступающей в клетки глюкозы проходит по пути быстрого гликолиза и превращается в ненужный клетки лактат. Образующейся при этом в клетке энергии не хватает для качественного строительства внутриклеточных мембран и появляется внутриклеточный атипизм. Он выражен умеренно, а тканевой атипизм еще слабее, поэтому такой латентный рак остается в основном проблемой опухолевых клеток, а не организма в целом.

Другой пример - это начальный этап развития сахарного диабета 2 типа, когда поджелудочная железа компенсаторно начинает вырабатывать больше инсулина. При этом в секреторные клетки около островков Лангерганса, где находятся эндокринные клетки, поступает значительно больше глюкозы. Результат такой же, как в предыдущем примере, только там был относительный избыток глюкозы, а здесь абсолютный.

Все меняется, когда начинается индуцированная канцерогенами мутация протоонкогенов. В первую очередь образующиеся онкогены влияют на клеточный цикл и клетки начинают быстро размножаться. Мутация других протоонкогенов в отсутствие размножения клеток микшируется защитными системами клетки. Постоянно делящиеся клетки испытывают большие нагрузки, кроме того, клеткам в процессе деления нужен строительный материал, и в качестве него они могут использовать образующийся в большом количестве лактат. Таким образом, мутации играют на руку генам инфраструктуры, усиливая их сепаратизм. Клетка идет вразнос, возникают мутации протоонкогенов метаболического характера(геномная нестабильность) и защитные системы клеток не успевают нейтрализовывать последствия их действия. Все это приводит к усилению клеточного и развитию тканевого атипизма, т.е. появлению полноценной раковой опухоли.

Кстати, Отто Варбург дожил до 70-го года и когда к нему в лабораторию приходили скептики, он приводил их к электронному микроскопу, показывал полуразрушенные митохондрии и вопрошал: "скажите, пожалуйста, на что способны эти бренные останки?". Он был неправ, так как во-первых, на этой стадии уже действовали онкогены, а во-вторых, митохондрии еще что-то могли, правда все меньше и меньше.

Таким образом, на первый поставленный мной вопрос ответ простой: если клетка не имеет сепаратизма генов инфраструктуры, то активация онкогенов обычно ограничивается только клеточным циклом, то есть развиваются доброкачественные опухоли. Если же сепаратизм в наличии, то мутации генов идут вширь и вглубь, что приводит к развитию клинической формы рака.

albert52
02.01.2020, 18:17
Среди онкологов сейчас модна теория опухолевых стволовых клеток. Она опирается на 2 факта:

во-первых, клетки большинства органов живут меньше, чем требуется для развития полноценной опухоли. Так твердо установлено пожизненное существование только для нервных клеток и предполагается для клеток миокарда. Клетки скелетных мышц, а также глубокого слоя эпителия желудка и эпителия крипт толстой кишки живут до 15 лет, клетки долек печени - от 300 до 500 дней, костей - до 10 лет, эпидермис кожи - 2 недели. Правда, как предупреждает профессор Гладышев, не стоит обольщаться, что ваша печень полностью обновляется каждый год, а вся кожа легко меняется раз в месяц.

— Часто все упрощают, но в жизни многое происходит по-другому: скажем, некоторые клетки биологически способны обновляться, но по факту такая клетка живет в своем органе и, если убрать ее, то заместится другой клеткой хоть в течение дня, а если не трогать — может сидеть 10 лет и не меняться. Еще бывает, что один и тот же тип клеток в одном месте организма за какое-то время полностью поменялся, а в другом месте живет как ни в чем не бывало. Какие факторы на это влияют, пока во многом остается загадкой внутренней саморегуляции организма.
Как бы это ни было, но стволовые клетки существуют не только в костном мозге, где их впервые обнаружили, но и во внутренних органах. А если есть стволовые клетки, то есть и ниши, в которых они существуют. Специальные клетки ниш следят за их состоянием и при необходимости стимулируют их размножение, причем одна из образующихся клеток остается в нише, а другая выходит наружу и продолжает размножаться дальше.

во-вторых, было установлено, что как в доброкачественных, так и в злокачественных опухолях, например, при лейкозах, раке молочной и предстательной железы, интенсивно размножается только небольшая часть опухолевых клеток, которые имеют маркеры стволовых клеток. Впрочем, в злокачественных опухолях размножающихся клеток намного больше, и даже неразмножающиеся условно дифференцированные клетки сохраняют отчетливый атипизм и могут снова дедифференцироваться.

Мой комментарий: срок жизни нормальных клеток не имеет такого большого значения (если они живут, конечно, больше месяца), так как как только клетки опухоли начинают размножаться, то у них начинается свой отчет времени. А как я уже указывал, для нарушения клеточного цикла бывает достаточно мутации одного или двух протоонкогенов, это тебе не метаболические протоонкогены. А когда клетки выходят из стволовой ниши, то риск мутаций для них резко повышается. Впрочем, сепаратизм генов может развиться и у стволовых клеток, эту возможность я тоже не исключаю.

Кстати, установлен интересный факт: опухолевые клетки на ранних стадиях рака часто имеют больше генных мутаций, чем на более поздних стадиях. Я полагаю, что есть мутации, более сильно сдвигающие равновесие между генами инфраструктуры и надстройки, то есть влияющие на раковую прогрессию, в результате чего клетки с такими мутациями быстрее размножаются и вытесняют другие опухолевые клетки. Так возникают многократно описанные клоны опухолевых клеток.

Добавлено через 3 минуты
Наш дальнейший рассказ начнем с описания одного конкретного случая рака, а именно развитию аденокарциномы при пищеводе Барретта(ПБ).

Пищевод Барретта представляет собой заболевание, при котором метапластический цилиндрический эпителий замещает многослойный плоский эпителий, в норме выстилающий дистальный отдел пищевода. Название это скорее ироническое, поскольку дано по имени английского хирурга Нормана Барретта (Norman Barrett), который в своей работе (1950) утверждал, что пищевод не может быть выстлан цилиндрическим эпителием. Пищевод Барретта имеет большое клиническое значение, т. к. тесно связан с двумя заболеваниями: (1) желудочно-пищеводным рефлюксом и (2) аденокарциномой пищевода и пищеводно-желудочного перехода.

Метаплазия клеток нижней части пищевода рассматривается, как состояние, вызванное хроническим кислотным повреждением, эзофагит, и не является очерченным заболеванием. У 80-90% пациентов с ПБ преобладает смешанный кислотно-билиарный рефлюкс и основным фактором, определяющим развитие ПБ является многолетний анамнез ГЭРБ: при длительном воздействии кислоты и компонентов желчи на слизистую оболочку пищевода стволовые эпителиальные клетки, расположенные по ходу базальной мембраны плоского эпителия и протоков эзофагеальных желез, могут дифференцироваться не в характерный для пищевода многослойный плоский эпителий, а в более устойчивый к воздействию кислоты и желчных кислот цилиндрический эпителий.

Отметим морфологическую гетерогенность сегмента ПБ: в его пределах могут одновременно обнаруживаться различные варианты метаплазированного цилиндрического эпителия - кардиального отдела и дна желудка, и кишечный эпителий. Дисплазия и развитие рака у пациентов с пищеводом Барретта напрямую связаны в основном с кишечной метаплазией. Правда существуют два вида кишечной метаплазии(КМ) – полная (тонкокишечная), содержащая интестинальные эпителиоциты и клетки Панета и неполная (толстокишечная), содержащая только бокаловидные клетки. Неполная толстокишечная метаплазия обладает наибольшим злокачественным потенциалом.
У пациентов с эндоскопически выявляемым пищеводом Барретта желудочно-пищеводный рефлюкс чаще осложняется изъязвлением, образованием стриктур пищевода и кровотечением.

Дисплазия у больных с пищеводом Барретта описывается как неопластическое повреждение цилиндриндрического эпителия, ограниченное базальной мембраной желез. В последние годы на смену понятию "дисплазия" приходит новое - интраэпителиальная неоплазия. По гистологическим признакам различают дисплазию высокой и низкой степени, в зависимости от уровня нарушения архитектоники желез, полиморфизма и полярности ядер. Так, при дисплазии III степени – клеточная атипия представлена различной величиной и формой клеток и их ядер, гиперхромией ядер, увеличением числа фигур митоза, наблюдаются нарушение архитектоники желез. В среднем, в течение 20-23 лет дисплазия высокой степени развивается у 20-25% больных с КМ и степень риска коррелирует с длиной сегмента ПБ. Дисплазия высокой степени (тяжелая) в трети случаев ассоциирована с уже существующей аденокарциномой.

При наличии дисплазии эпителия ПБ риск малигнизации варьирует в зависимости от степени дисплазии и ее распространенности (количества ее очагов)
- при низкой степени дисплазии – 0,8-1,9% в год;
- при высокой степени дисплазии – 6-12,2% в год;
- при наличии мультифокальной дисплазии эпителия ПБ риск развития аденокарциномы оказывается в 3 раза выше, чем при унифокальной.

У части больных заболевание может длительное время не прогрессировать и лишь у небольшого процента (6% - 25%) пациентов с ПБ с дисплазией эпителия низкой степени развивается дисплазия высокой степени и рак. Описаны случаи, когда у пациентов с пищеводом Барретта и высокой степенью дисплазии в течение многих лет не выявлялось никаких признаков злокачественной трансформации. Однако быстрое развитие инвазивного рака встречается довольно часто. Рак пищевода имеет тенденцию к метастазированию и нередко является инкурабельным.

Влияние ожирения на развитие ПБ при ГЭРБ опосредовано двумя независимыми факторами: повышением внутрибрюшного давления с учащением гастроэзофагеальных рефлюксов кислоты и желчи в просвет пищевода и синтезом клетками жировой ткани провоспалительных цитокинов, таких как лептин и другие адиполептины.

Существуют данные, что лептин усиливает воздействие кислоты на эпителий при ПБ и индуцирует дозозависимое усиление его пролиферации (до 65% от исходной). При ожирении происходит значительное увеличение содержания периэзофагеальной жировой ткани, из которой освобождаются вышеперечисленные цитокины, которые способствует развитию воспалительных и пролиферативных изменений в слизистой оболочке пищевода.

Известно, что повышение концентрации лептина, синтезируемого в чрезмерных количествах при абдоминальном ожирении у мужчин, коррелирует с ростом частоты ПБ и АКП у мужчин. Данный факт объясняет многократное преобладание мужчин среди заболевших аденокарциномой: при индексе массы тела (ИМТ) более 30 у мужчин риск развития АКП пищевода возрастает в 16 раз по сравнению с мужчинами, имеющими ИМТ менее 22.

У некоторых пациентов, получавших лечение мощными антирефлюксными препаратами (блокаторы протонной помпы) или перенесших антирефлюксное хирургическое вмешательство, в пищеводе появляются пятнистые зоны, где плоский эпителий растет поверх цилиндрического. У пациентов с эндоскопически выявляемым пищеводом Барретта частота злокачественной трансформации составляет 0,8 % (1 случай на 125 больных в год), что в 40 раз выше, чем в остальной популяции.

albert52
02.01.2020, 19:34
Из вышесказанного следует, что злокачественная трансформация эпителия в ПБ складывается из последовательных этапов, включающих рефлюкс-эзофагит, цилиндрическую метаплазию эпителия, интерэпителиальную неоплазию(ИН) низкой и высокой степени и развитие АК на фоне ПБ.

Стволовые клетки, расположенные на базальной мембране эпителия, являясь частично комиттированными, под воздействием кислоты и компонентов желчи могут дифференцироваться не в плоский, а в более устойчивый цилиндрический эпителий. Промежуточной стадией, вероятно, является формирование полиморфного эпителия, имеющего ультраструктурные и цитохимические черты как плоского, так и цилиндрического эпителия.

В ассоциированном с Барреттом онкогенезе окислительное фосфорилирование(ОФ) и гликолиз перепрограммируются на ранней стадии последовательности заболевания, причем ОФ положительно связано с экспрессией р53, а гликолиз отрицательно. р53 подавляет активность ключевых компонентов гликолиза, шунтируя промежуточные продукты высокой энергии в пентозофосфатный путь.

ТлКМ (толстокишечная метаплазия) является фоном для развития ИН и характеризуется экспрессией мутантного р53(окислительно-индуцированное повреждение приводит к укорочению теломер и мутациям в гене р53, аннулирующим роль р53 как контрольной точки пролиферации и апоптоза), что делает ее прогностически менее благоприятной. Также на стадии ИН член семейства NF-κB RelA( (или p65) транспортируется в митохондрии и рекрутируется в митохондриальный геном, где он может подавлять экспрессию митохондриальных генов, снижать потр***ение кислорода и клеточные уровни АТФ, тем самым способствуя переключению на гликолиз.

Переход от ИН к аденокарциноме(АК) в ПБ сопровождается усилением пролиферации и относительным снижением апоптоза. Такие изменения в балансе между пролиферацией и апоптозом приводят к накоплению мутаций в опухолевых клетках и к прогрессии опухоли.
Потеря способности аккумулировать клаудины(белки адгезии) в области плотных контактов(ПК) в аденокарциноме на фоне ПБ приводит к исчезновению плотных контактов и способствует прогрессии опухоли (пролиферации, инвазии и метастазированию). Синтез данного белка в цитоплазме происходит, но из-за дисфункции цитоскелета нарушается его транспортировка в зону ПК.

Вообще, в канцерогенезе ПБ принимают участие множество генов супрессоров опухолевого роста (р53, р16, FHIT, Rb, АРС), регуляторов клеточного цикла (Cyclin D1, MDM2), факторов роста (EGF-R, TGF-A, с-егЬВ2) и молекул клеточной адгезии (E-cadherin, P-cadherin, a-catenin, p-catenin), а также протеаз (UPA). Все это отражает сложность и противоречивость как канцерогенеза вообще, так и при ПБ в частности.
Маркеры апоптоза, пролиферации, клеточной дифференцировки и плотных межклеточных контактов - Apodetec test, Ki-67, р53, СК 10/13, СК 8 и клаудины 1,2,3,4,5,7 могут быть рекомендованы для определения злокачественного потенциала интраэпителиальной неоплазии в пищеводе Барретта.

Добавлено через 7 минут
Все вышеизложенное по пищеводу Барретта подтверждает мою двухстадийную концепцию канцерогенеза. Дисплазии на фоне КМ соответствуют первой стадии, когда часть генов перестраивает свою деятельность с целью на фоне хронического воспалительного стресса минимизировать функции клетки. Другая, преобладающая часть генов с помощью мощных защитных систем позволяет, так сказать, сохранять клетке лицо.

Когда начинаются мутации этой части генома, особенно среди генов - супрессоров, то в защитных рядах возникают пробоины и клетка начинает деградировать. Среди первой части генома, я называю их генами инфраструктуры, тоже могут возникать мутации, но тогда клетка обычно быстро погибает. Чем сильнее выражены мутации, тем агрессивнее поведение уже раковой клетки, вплоть до стадии лангольеров (см. выше).

Я не придерживаюсь взгляда, что раковые клетки развиваются непосредственно из стволовых клеток. Уже по поводу ПБ я указывал, что зрелый эпителий возникает из частично комиттированных клеток, то есть уже не совсем стволовых. В стрессовых ситуациях, обычно предшествующих дисплазии или, как сейчас правильнее говорить, интраэпителиальной неоплазии(ИП), перед этими клетками стоит та же дилемма, как перед товарищем Суховым, помереть сразу или помучиться. Если клетка выбирает "помучиться", то она должна как-то дифференцироваться. Что она и как то делает, хотя на высоких стадиях ИП морфологически она уже почти ничем не отличается от раковой. Только молекулярные онкомаркеры позволяют их кое-как различить.

По поводу терминологии. В специальной литературе употребительны термины гены домашнего хозяйства и гены роскоши. Гены домашнего хощяйства кодируют белки-ферменты, которые принимают участие в жизненно важных для клетки метаболических процессах. К ним относятся обеспечение процессов: репликации (удвоения) ДНК, транскрипции, трансляции, а также анаболизма и катаболизма (гликолиз, цикл Кребса, глюконеогенез, расщепление белков, жиров и углеводов, биосинтез аминокислот и нуклеотидов и др.). В целом это почти соответствует моему понятию генов инфраструктуры; это гены, просто позволяющие клетке как таковой существовать.
Что же касается генов роскоши, то мне чудится в этом названии какой-то идеологический подтекст. Так можно оправдать даже канцерогенез, когда гены инфраструктуры, в трудных условиях борющиеся за выживание клетки, могут испывать нечто вроде классовой ненависти к генам, расточительно с их точки зрения тратящих драгоценные ресурсы. Мое название "гены надстройки" более нейтрально и филогенетически правильнее, а то классовая борьба, как показывают история и онкология, к ничему хорошому не приводит.

Добавлено через 3 минуты
Прежде чем рассмотреть главную тему, а именно раковый метаболизм, коснемся вкратце метаболизма в нормальных клетках, и начнем с гликолиза.

Гликолиз - это последовательность 10 реакций превращения глюкозы в пируват. Это линейная последовательность, а не цикл (нет обратной связи), однако можно отметить три этапа регуляции гликолиза:
Во-первых, на уровне гексокиназной реакции, продукт которой Гл-6-Ф аллостерически подавляет активность фермента гексокиназы.
Во-вторых, регулирование связано с фосфофроктокиназой, активность которой возрастает при повышении содержания АДФ и Фн, но подавляется повышенными концентрациями АТФ.
В-третьих, этап регуляции осуществляется на уровне фермента пируваткиназы, активность которой угнетается ее продуктом АТФ в высоких концентрациях, а также ацетил-СоА.

В том случае, если гликолиз не предполагает продолжения в виде кислородного дыхания, к нему добавляется еще одна реакция, а именно восстановление пировиноградной кислоты (пирувата) до молочной кислоты (лактата). Ее истинный главный продукт – это кофактор НАД+.

Дело в том, что запасы кофакторов в клетках обычно очень малы - их молекулы оборачиваются в одних и тех же реакциях несчетное число раз. Но если молекулы НАД+ уже загружены водородом (то есть перешли в состояние НАДH), то использовать их для новых актов гликолиза невозможно. Чтобы продолжить переработку поступающей в клетку глюкозы, нужно сначала окислить НАДH до НАД+, вернув кофактор в рабочее состояние. На ученом языке это называют регенерацией НАД+. Вот именно для этого реакция образования лактата и нужна. Сам лактат является тут только побочным продуктом. А гликолиз вместе с реакцией образования лактата складывается в процесс, который называется молочнокислым брожением.

Человек, конечно, не способен полностью перейти на брожение, но тем не менее наши клетки могут на него временно переключаться в случаях, когда дыхательные ферменты не успевают до конца окислять глюкозу – например, при очень сильных мышечных нагрузках. Это та самая ситуация, когда молочная кислота накапливается в мышцах. После прекращения нагрузки накопившуюся молочную кислоту приходится все‑таки метаболизировать: с кровью она поступает в печень и там вновь превращается в пируват, который уже можно использовать в кислородном дыхании. Там в митохондриях именно кислород забирает у восстановленного НАДH атомы водорода, которыми тот нагружен.

Вот зачем, собственно, и нужен кислород при дыхании: чтобы послужить окислителем, отбирающим электроны у НАДH.

albert52
02.01.2020, 19:39
Вообще, само дыхание – это окислительно‑восстановительная реакция. В процессах гликолиза и цикла Кребса, происходящих соответственно в цитоплазме клетки и матриксе митохондрий, окислителем являются молекулы НАД+: НАД+ + 2H ⇌ HAДH + H+

Молекула НАД+ присоединяет один атом водорода целиком (электрон и протон), а от второго – только электрон. Оставшийся от второго атома протон уходит в окружающий раствор.

В дыхательной цепи, наоборот, НАДН является восстановителем, отдавая протон и электроны водорода. В конце цепи на одну молекулу кислорода (O2) тратится четыре электрона (e–) и четыре протона (H+), давая в результате две молекулы воды (H2O). Электроны приходят по мембранной цепи, их переносящей, а протоны захватываются из водного раствора.

Белки дыхательной цепи энергию потока электронов используют не для синтеза АТФ, а для транспорта протонов. Это типичный активный транспорт: протоны принудительно переносятся из матрикса (где их и так меньше) в межмембранное пространство (где их и так больше - «протонный резервуар»). Причем такие встроенные системы сопряженного транспорта есть подряд в нескольких белках дыхательной цепи, через которые последовательно проходят переносимые электроны. В результате изнутри наружу суммарно выбрасывается 64 протона на каждую исходную молекулу глюкозы. И таким образом, снаружи от внутренней мембраны становится не просто больше, а намного больше протонов, чем внутри.

Согласно законам биоэнергетики, энергию протонного потенциала всегда можно конвертировать в энергию АТФ: ∆μH > АТФ. Именно это и делает встроенная во внутреннюю мембрану митохондрии протонная АТФ‑синтаза. С белками дыхательной цепи она не связана. Она просто пропускает накопившиеся протоны снаружи (где их больше) внутрь (где их меньше), а за счет высвобожденной при этом энергии синтезирует АТФ. Тот самый АТФ, благодаря которому мы живем.

Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов Н+ в день, образуя протонный потенциал. За это же время Н+-АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а процессы, использующие АТФ, гидролизуют всю эту массу АТФ назад в АДФ и фосфат.

Добавлено через 1 минуту
В клетке образующийся из глюкозы глюкозо-6-фосфат распределяется между гликолизом и пентозофосфатным путем, причем чем интенсивнее клетки размножаются, тем больше удельный вес последнего пути (но в норме не больше 20-30% поступающей в клетку глюкозы). Этот путь состоит из 2-х этапов.

На окислительном этапе образуются пентозофосфаты и НАДФH.
Быстроделящиеся клетки, такие как клетки костного мозга, кожи и слизистой кишечника, используют пентозы для синтеза РНК, ДНК и таких коферментов, как АТР, НАДН, ФАДН2 и кофермент А. В других тканях важным продуктом пентозофосфатного пути являются не пентозы, а донор электронов НАДФН, необходимый для восстановительного биосинтеза и защиты от повреждающего действия радикалов кислорода, например, для восстановление глутатиона. Наибольшую потребность в НАДФН испытывают те ткани, в которых происходит активный синтез жирных кислот (печень, жировая ткань, молочные железы) или холестерина и стероидных гормонов (печень, надпочечники, половые железы).

Неокислительный этап – это совокупность большого количества обратимых реакций, но в конце этапа пентозофосфаты превращаются в глюкозо-6-фосфат, то есть получается цикл, правда с потерей одной молекулы глюкозо-6-фосфата. Он является источником моносахаридов с разным числом углеродных атомов. Это строительный материал для разных синтезов, в том числе для синтезов различных олигосахаридов, которые входят в состав клеточных рецепторов.

Все ферменты, принимающие участие в пентозофосфатном пути, как и при гликолизе, локализованы в цитоплазме.

Опухолевые клетки в нуждаются в интенсификации этого пути потр***ения глюкозы. При этом между ферментами глюколиза и пентозофосфатного пути существуют конкуренция за субстрат и только быстрый гликолиз за счет увеличения количества субстрата (см. ниже)спасает ситуацию. В клетках опухолей часто наблюдается недостаток кислорода (гипоксия), что тормозит пентозофосфатный путь. В результате страдает синтез нуклеотидов и других важных для деления клеток веществ.

albert52
03.01.2020, 00:19
Вставка 1.

Длина всей ДНК в клетке человека примерно 1,5 метра, ДНК всех генов в ней занимает всего 3 - 10 % . Некоторые авторы сравнивают гены с островками в безбрежном океане ДНК. Нас интересуют гены инфраструктуры, выделение которых является нетривиальной задачей.
Начать надо с рассмотрения гликолиза. Его ферменты находятся в цитоплазме клеток, но это не значит, что они свободно плавают в ней. Кстати, цитоплазма представляет из себя довольно густой гель, в котором свободно не поплаваешь. По современном представлении ферменты гликолиза образуют своего рода суперкомплекс, правда довольно динамичный, так как полноценная фиксация ферментов может быть только на поверхности или, еще лучше, внутри мембран. Подходящий пример - фиксация ферментов дыхательной цепи внутри мембраны митохондрий.

Для фиксации ферментов гликолиза наиболее подходят элементы цитоскелета. Напоминаю, что в цитроскелете клеток различают актиновые филаменты (микро - филаменты), промежуточные филаменты и микротрубочки. Актиновые филаменты в основном сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт. Все это говорит за то, что для фиксации ферментов гликолиза они не очень подходят.

Микротрубочки — крайне динамичные структуры. Они играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы — кинезин и динеин), образуют основу аксонемы ундулиподий и веретено деления при митозе и мейозе. Все это также говорит против них.

Промежуточные филаменты состоят из разного рода субъединиц и являются наименее динамичной частью цитоскелета. В отличие от микрофиламентов и микротрубочек свободные мономеры промежуточных волокон едва ли встречаются в цитоплазме. Их полимеризация ведёт к образованию устойчивых неполярных полимерных молекул.

Промежуточные филаменты достаточно специализированы в зависимости от типа клеток, в которых встречаются. В большинстве животных клеток ПФ образуют «корзинку» вокруг ядра, откуда направлены к периферии клеток. Это самые долгоживущие компоненты цитоскелета, они участвуют в фиксации органелл и наиболее подходят на роль динамичной фиксации ферментов гликолиза. Кстати, ПФ - наиболее древние элементы цитоскелета, с возрастом и при онкогенезе их доля в цитоскелете увеличивается.

Среди клеточных органелл ПФ больше всего вокруг митохондрий. Ферменты гликолиза, оседая на ПФ, образуют функциональные блоки, часть ферментов можно обнаружить даже на наружной мембране митохондрий. В клетках опухолей они смещаются к митохондриям и даже могут полностью лежать на них, что можно рассматривать как компенсаторную реакцию клетки.

Добавлено через 1 минуту
Вставка 2.

Гликолиз важен не только в онкологии, но и при нормальном функционировании клетки. Экспериментально установлено, что аэробный гликолиз наблюдается во многих физиологических процессах, которые связаны с высокой мембранной активностью, такими как пролиферация лимфоцитов и секреция антител, миграция макрофагов, эмбриональный цитокинез, деление и миграция клеток. Во всех этих процессах большая нагрузка приходится на многочисленные мембранные каналы, а также на рецепторные сигнальные комплексы внутри и около поверхностных мембран, например, аденилатциклазная система и ей подобные.

Установлено, что ингибирование или активация насосов на клеточной мембране приводят соответственно к снижению или увеличению гликолиза, в то время как окислительное фосфорилирование остается неизменным. Эти результаты согласуются с новой моделью нормального физиологического клеточного метаболизма, в которой эффективное митохондриальное окислительное фосфорилирование обеспечивает постоянную потребность в энергии, прежде всего для синтеза макромолекул, а гликолиз необходим для обеспечения быстрых потребностей в энергии, прежде всего для поддержки мембранных насосов.

Эта модель метаболизма глюкозы напоминает экономическую модель оптимизации энергосистемы, в которой максимальная эффективность достигается путем деления спроса на электроэнергию на компоненты базовой нагрузки и пиковой нагрузки. Базовая нагрузка - это постоянная потребность в энергии системы. Пиковые нагрузки - это флуктуирующая составляющая спроса на энергию, наложенная на спрос базовой нагрузки. Первое удовлетворяется угольными или атомными электростанциями, которые эффективны, но реагируют медленно, тогда как вторые обычно встречаются с менее эффективными, но быстро реагирующими газовыми турбинами.

Как и в энергосистемах, активность каждого метаболического пути определяется величиной потребности в энергии, которую он удовлетворяет. Митохондриальное дыхание требует около 12-13 секунд для своей реакции и для быстрого реагирования на изменяющуюся внешнюю ситуацию не годится, в отличие от гликолиза, включающегося за миллисекунды. А, например, отсутствие эффективного и быстрого ответа через клеточную мембрану на локальные изменения осмотического баланса может привести к нерегулируемому выпячиванию мембраны или нарушению ее целостности, и потенциально вызывает летальное повреждение клеток.

Повышенный аэробный гликолиз раковых клетках может возникать вначале как ответ на повышенные кол****ия потребности в энергии из-за злокачественных фенотипических свойств, включая пролиферацию, рост, миграцию и инвазию. Затем подключаются повреждение цитоскелета и концентрация вследствие этого митохондрий в околоядерной зоне, что пространственно разделяет гликолиз и окислительное фосфорилирование.

albert52
03.01.2020, 01:21
Остановимся теперь подробней на метаболизме раковых клеток.

Среди различных метаболических активностей, которые наблюдались в опухолях или опухолевых клеточных линиях, три с наиболее убедительными доказательствами необходимой роли в росте опухоли - это аэробный гликолиз (эффект Варбурга), синтез жирных кислот / липидов и митохондриальный метаболизм глютамина. Современные данные свидетельствуют о том, что эти три пути взаимодействуют в метаболической платформе, которая поддерживает рост клеток и, в конечном итоге, пролиферацию. Высокая скорость гликолиза, в дополнение к продуцированию АТФ, генерирует глицерин и цитрат, которые используются для синтеза мембранных липидов. Между тем, митохондриальный метаболизм глютамина снабжает цикл TCA (трикарбоновыз кислот) промежуточными продуктами, чтобы заменить те, которые экспортируются для синтеза липидов и других анаболических процессов.

Cледует подчеркнуть три момента, касающихся роли эффекта Варбурга в метаболизме опухолевых клеток.
Во-первых, учитывая, что эффект Варбурга также наблюдается во время быстрой пролиферации клеток, он более точно рассматривается как общая характеристика пролиферации клеток, а не как признак трансформации, и поэтому можно предположить, что он способствует анаболическому метаболизму.
Во-вторых, быстрый метаболизм глюкозы также поставляет промежуточные продукты для биосинтетических путей, которые возникают из гликолиза проксимально к пирувату, включая рибозо-5-фосфат и глицин для биосинтеза нуклеотидов и глицерин для синтеза липидов. Было высказано предположение, что одной из функций эффекта Варбурга является поддержание адекватных размеров этих пулов предшественников для максимального роста клеток.
В- третьих, клетки, участвующие в аэробном гликолизе, не превращают 100% своего пирувата в лактат. Достаточно солидная фракция пирувата метаболизируется в ТСА, обеспечивая энергию и предшественников для путей биосинтеза, которые потр***яют промежуточные продукты цикла ТСА. Следовательно, эффект Варбурга выполняет как биоэнергетическую, так и биосинтетическую роль в пролиферирующих клетках.

Возможно, что эффект Варбурга по форме и сути является следствием дисбаланса между максимальными скоростями гликолиза и окисления пирувата. Проще говоря, гликолиз превосходит максимальную скорость окисления пирувата, поэтому клетки должны вместо этого устранять пируват с использованием высокопоточных механизмов. Окисление пирувата требует импорта в митохондриальный матрикс с последующей активностью высокорегулируемых ферментов, таких как комплекс пируватдегидрогеназы (PDH), на активность которого влияют фосфорилирование, уровни свободного CoA и соотношение NAD + / NADH, которые могут ограничивать его активность относительно гликолитического потока.

Этот поток может превышать V max (максимальную скорость) PDH более чем на порядок во время пролиферации клеток, что подразумевает необходимость в системе с высокой пропускной способностью, чтобы избежать накопления пирувата. В пролиферирующих клетках экспрессия лактатдегидрогеназы A (LDH-A) решает эту проблему, быстро потр***яя пируват, регенерируя NAD + перед лицом неустанного гликолитического потока, в то же время получая продукт (лактат), который может легко секретироваться. Кстати, LDH-A индуцируется онкогенами (c- myc , HER2 / neu и др.).

Еще одно преимущество высокой гликолитической скорости состоит в том, что она позволяет клеткам тонко настраивать контроль биосинтетических путей, которые используют промежуточные продукты, полученные из метаболизма глюкозы. Когда метаболический путь с высоким потоком разветвляется на пути с более низким потоком, способность поддерживать активность последних максимальна, когда поток через первый поток также максимален. В пролиферирующих клетках это было предложено как способ разрешить очевидный парадокс между потребностью в углероде, производном от глюкозы, для макромолекулярного синтеза и высокой скоростью образования лактата. Пути с низким потоком в этой модели включают те, которые используют гликолитические промежуточные соединения в качестве предшественников биосинтеза. Очень высокая скорость гликолиза позволяет клеткам поддерживать биосинтетические потоки во время быстрой пролиферации, но также приводит к высокой скорости продуцирования лактата.

Для синтеза липидов, белков и нуклеиновых кислот клетки используют предшественники, полученные из интермедиатов цикла TCA. Следовательно, ключевая роль цикла TCA в пролиферирующих клетках заключается в том, чтобы выступать в роли центра для биосинтеза. Это является важным отличием от метаболизма непролиферирующих, окислительных тканей, таких как сердце, где традиционное представление о цикле TCA состоит в том, что он служит для получения максимальной продукции АТФ из окисляемых субстратов, генерируя две молекулы CO2 за ход, и является также поствщиком субсиратов для дыхательной цепи. Однако во время пролиферации клеток большая часть углерода, который входит в цикл TCA, используется в биосинтетических путях, которые потр***яют, а не производят АТФ. Это приводит к непрерывному оттоку промежуточных продуктов (катаплероз).
Так, митохондриальный цитрат перемещается в цитозоль для превращения в липогенный ацетил-КоА. Вообще, цитозольный ацетил-КоА является центральным биосинтетическим предшественником для синтеза жирных кислот и холестерина. Другие промежуточные продукты цикла ТСА также используются для биосинтеза различных макромолекул. OAA и α-кетоглутарат (α-KG) питают внутриклеточные пулы заменимых аминокислот, которые используются для синтеза белков и нуклеотидов.

Чтобы поддерживать функцию цикла TCA перед лицом катаплероза, клетки должны иметь соответствующий приток промежуточных продуктов для пополнения запаса интермедиатов ТСА. Так, при деградации большинства аминокислот образуется пируват, который затем превращается в оксалоацетат (обычно в цикле ТСА через ацетил-СоА в цитрат). Такой процесс называется анаплерозом. Эта реакция поддерживает необходимую высокую концентрацию окса*лоацетата в митохондриях и обеспечивает субстратом первую цитратсинтазную реакцию цикла. Нарушение образования оксалоацетата (при голодании, диабете) ведет к взаимной конденсации молекул ацетил-КоА друг с другом и вызывает об*разование кетоновых тел, главным образом - ацетоацетата.

Экспорт цитрата для синтеза жирных кислот демонстрирует эту необходимость: для образования другой молекулы цитрата необходим ОАА, полученный из пирувата гликолиза или аминокислот. Анаплероз является критической характеристикой метаболизма роста, потому что он дает клеткам возможность использовать цикл TCA в качестве источника биосинтетических предшественников. Высокий анаплеротический поток является более специфическим индикатором роста клеток, чем высокий гликолитический поток, потому что последний может быть вызван гипоксией и другими стрессами независимо от макромолекулярного синтеза.

albert52
03.01.2020, 02:17
Продолжим.

Существует несколько механизмов, которые клетки могут использовать для анаплеротической активности. Самый простой использует пируваткарбоксилазу (ПК), которая генерирует ОАА непосредственно из пирувата. При этом митогены усиливают активность ПК. Альтернативным источником анаплероза является метаболизм аминокислот, в частности глютамина, самой распространенной аминокислоты у млекопитающих. Этот путь («глутаминолиз») еще увеличивает клеточную продукцию NADPH и лактата, при этом глутаминолиз использует несколько этапов цикла TCA. В дополнение к своей роли в качестве источника углерода, глютамин также жертвует азотом на синтез нуклеотидов и аминокислот.
Данные из различных типов клеток подтверждают этот вывод. Стимуляция эстрогенами вызывает глутаминолиз в клетках рака молочной железы, в то время как стимуляция митогеном вызывает анаплероз в лимфоцитах.

Чтобы генерировать рибозо-5-фосфат (R5P) для биосинтеза нуклеотидов, клетки отводят углерод от гликолиза в окислительное или неокислительное звено пентозофосфатного пути. Онкогены и опухолевые супрессоры влияют на оба пути. Так, мишень р53 белок TIGAR тормозит гликолиз, увеличивая доставку субстрата к окислительному звену. Предполагается, что экспрессия TIGAR во время генотоксического стресса увеличивает производство NADPH и R5P для восстановления повреждений ДНК. Опухолевые клетки без р53 теряют эти эффекты на пентозофосфатный путь, вызывая относительное увеличение гликолитического потока.

Для одноклеточных организмов, таких как микробы, существует эволюционное давление, чтобы размножаться как можно быстрее, когда есть питательные вещества. Их системы метаболического контроля эволюционировали, чтобы ощущать достаточный запас питательных веществ и направлять необходимый углерод, азот и свободную энергию в генерацию строительных блоков, необходимых для производства новой клетки. Когда питательных веществ мало, клетки прекращают производство биомассы и адаптируют обмен веществ для извлечения максимальной свободной энергии из имеющихся ресурсов, чтобы пережить период голодания.

В многоклеточных организмах большинство клеток подвергаются постоянному поступлению питательных веществ. Выживание организма требует систем контроля, которые предотвращают аберрантную пролиферацию отдельных клеток, когда доступность питательных веществ превышает уровни, необходимые для поддержки деления клеток. Неконтролируемая пролиферация предотвращается, потому что клетки млекопитающих обычно не поглощают питательные вещества из окружающей среды, если их не стимулируют факторы роста. Раковые клетки преодолевают эту зависимость от факторов роста, приобретая генетические мутации, которые функционально изменяют сигнальные пути, инициируемые рецептором. Это может приводить к поглощению питательных веществ, особенно глюкозы, которые удовлетворяют или превышают биоэнергетические потребности роста и пролиферации клеток.

Нормальные пролиферирующие клетки могут подвергаться аресту клеточного цикла и реактивировать катаболический метаболизм, когда их способность продуцировать АТФ из глюкозы нарушается. Клетки с дефицитом АТФ также часто подвергаются апоптозу. Для опухолевых клеток вдали от кровеносных сосудов эти феномены также наблюдаются (см. выше).

albert52
03.01.2020, 11:25
Поток метаболитов через метаболические сети лучше всего характеризует отношения между клеточной биологией и биохимией. В то время как основные метаболические потоки в клетках остаются одинаковыми, метаболические потребности каждого типа клеток определяются их тканевой функцией и окружающей средой. Например, иммунные клетки остаются спокойными в течение длительных периодов, но затем быстро размножаются при стимуляции. Для этого клетки переходят из состояния низкого потр***ения питательных веществ, которое поддерживает базальные функции, в состояние повышенного потр***ения питательных веществ с активацией анаболических путей, которые способствуют быстрому росту и делению.

С другой стороны, дифференцированные сердечные миоциты не размножаются, но имеют высокую потребность в АТФ. В результате эти клетки сильно зависят от окислительного фосфорилирования для эффективного генерирования АТФ. Задачей гепатоцитов является контроль химического состава крови, и поэтому им необходима гибкость для выполнения энергоемких процессов, таких как синтез глюкозы, аминокислот и макромолекул, а также рециркуляция побочных продуктов метаболизма из других тканей в полезные метаболиты и выделение ненужного или токсичного материала в виде отходов. Каждая из этих физиологий тканей требует различных соотношений метаболитов и использует уникальные регуляторные схемы.

Организмы и клетки развили системы, чтобы модулировать метаболический поток в коротких и длинных временных масштабах. Гормоны и другие внеклеточные факторы передают сигналы между тканями для регуляции метаболической функции. На клеточном уровне гены, кодирующие изоформы ферментов и регуляторные факторы, позволяют тканеспецифические и контекстно-специфические реакции.
Так, пируваткиназа (ПК) представляет собой гликолитический фермент, который катализирует реакцию, генерирующую пируват и АТФ из фосфоенолпирувата (PEP) и AДФ. Четыре изоформы PK (L, R, M1 и M2) присутствуют у млекопитающих. Изотипы L и R кодируются геном PKLR . Экспрессия изотопов L и R является тканеспецифичной и регулируется различными промоторами. Изотип L экспрессируется в печени, почках и кишечнике, а изотип R экспрессируется в эритроцитах.
PKM1 и PKM2 кодируются геном PKM: M1 экспрессируется в большинстве взрослых дифференцированных тканей, таких как мозг и мышцы, тогда как M2 экспрессируется в эмбриональных клетках, взрослых стволовых клетках и раковых клетках.

Другим важным средством регуляции функции ферментов являются посттрансляционные модификации (PTM), которые обеспечивают механизм обратной связи для метаболитов, которые действуют как субстраты для реакций PTM. Наконец, малые молекулы могут влиять на метаболический поток за счет аллостерического воздействия на ферменты. Целью этих процессов является прохождение метаболитов через пути в пропорциях, необходимых для соответствия требованиям отдельных клеток.

АТФ, например, быстро метаболизируется, и в сердце пул АТФ может обновляться более 6 раз в минуту; при таких скоростях, если потр***ение остается постоянным, снижение производства АТФ на 10% приведет к снижению уровня АТФ в два раза менее чем за одну минуту. При этом образуется АДФ, который в свою очередь при необходимости с помощью фермента аденилатциклазы превращается в АТФ и АМФ. Это способствует высокому соотношению АТФ / АМФ и отражает заряд энергии клетки. AMP затем аллостерически регулирует ключевые метаболические ферменты, которые контролируют поток в гликолизе и окислительном фосфорилировании для увеличения продукции АТФ.

патолог
03.01.2020, 12:00
Прочитал от корки до корки. Смею предположить, что Вы достигли дна, погрузившись в микромир этой темы? Судя по теоретическому раскладу, практический выхлоп не за горами, коль так пошагово раскрыт механизм тканевоклеточной малигнизации? С уважением, Патолог.

albert52
06.01.2020, 03:01
Вставка 3

Одним из наиболее важных метаболических признаков раковых клеток является повышенный синтез липидов de novo. Пути синтеза липидов могут включать путь синтеза жирных кислот, а также путь мевалоната, который приводит к синтезу холестерина и изопреноидов.

Различные типы опухолей демонстрируют усиленный биосинтез эндогенных жирных кислот независимо от уровня внеклеточных липидов. Некоторые нормальные ткани также имеют очень активный путь синтеза жирных кислот, такие как адипоциты, гепатоциты, гормоночувствительные клетки и легочная ткань плода; однако в целом синтез жирных кислот de novo подавляется. Усиленный синтез жирных кислот в раковых клетках способствует мембранному биогенезу в быстро пролиферирующих раковых клетках и делает мембранные липиды более насыщенным, тем самым влияя на фундаментальные клеточные процессы, включая передачу сигнала, экспрессию генов, цилиогенез и ответ на терапию. Мембраны раковых клеток также более устойчивы к ПОЛ (перекисному окислению липидов).

АТФ-цитрат-лиаза (ACLY) является цитозольным ферментом, который превращает цитрат, полученный из митохондрий, в ацетил-КоА, который является предшественником путей синтеза жирных кислот и мевалонатов (см. выше).

Ацетил-КоА является жизненно важным строительным блоком для эндогенного биосинтеза жирных кислот и холестерина и участвует в модификациях белков на основе изопреноидов. Кроме того, ацетил-КоА необходим для реакций ацетилирования, например, ацетилирования гистонов, которые модифицируют белки, играющие критическую роль в регуляции глобальной архитектуры хроматина и транскрипции генов.
Считается, что ACLY-зависимое ацетилирование способствует селективной регуляции генов, участвующих в метаболизме глюкозы. Сообщается, что экспрессия инсулин-чувствительного транспортера глюкозы Glut4, а также 3 ключевых регулятора гликолиза - гексокиназы-2, фосфофрукто - киназы-1 и лактатдегидрогеназы А, по-видимому, существенно подавляются при сайленсинге (отключении) ACLY.

Отчетливое повышение экспрессии и активности ACLY отмечено в опухолях легких, мочевого пузыря, молочной железы, печени, желудка и толстой кишки. Так, при аденокарциноме легкого человека экспрессия фосфорилированного ACLY коррелировала со стадией, степенью дифференцировки и плохим прогнозом. Продукция муцина, характерная для дифференцированного респираторного эпителия, была обнаружена только в опухолях, у которых ACLY подавлялась.

В раковых клетках фосфорилирование и активация ACLY напрямую регулируются Akt из пути фосфоинозитид-3-киназы (PI3K) / Akt. Akt также усиливает уровни мРНК ACLY посредством активации SREBP-1, транскрипционного фактора для генов, участвующих в синтезе холестерина и жирных кислот.

Отметим, что остановка пролиферации, вызванная ингибированием ACLY, коррелирует с гликолитическим фенотипом опухоли. Раковые клетки, демонстрирующие высокий уровень метаболизма глюкозы, более сильно подвержены ингибированию ACLY. В этом отношении рак предстательной железы, клетки которого получают значительную долю энергии из жирных кислот, более устойчив к сайленсингу ACLY. Поэтому, кстати, в южных странах с преимущественным употр***ением растительной пищи, заболеваемость раком простаты значительно меньше, чем у северян со значительной долей мясной и молочной пищи. В этом отношении можно выделить яйца с большим содержанием холина.

albert52
07.01.2020, 04:37
Вставка 4.

Усиленное потр***ение глюкозы раковыми клетками (эффект Варбурга) породило надежду на то, что такая метаболическая особенность опухолей может быть использована для лечения больных раком. Интерес к эффекту Варбурга как ахиллесовой пяте, который будет использоваться при лечении рака, был дополнительно стимулирован демонстрацией того, что усиленный метаболизм глюкозы является частым следствием многих мутаций, ответственных за рак человека, и, следовательно, может быть центральным процессом, необходимым для рост опухоли.

Однако с точки зрения разработки стратегий лечения рака опухолевый метаболизм до сих пор является скорее священным Граалем, чем ахиллесовой пятой. Часть трудностей заключается в гибкости метаболических систем и разнообразии питательных веществ, к которым имеют доступ опухоли. Таким образом, полная картина метаболизма любой опухоли должна учитывать вклад нескольких питательных веществ одновременно.

Главным среди других питательных веществ, доступных опухолям, является глутамин, самая распространенная аминокислота в плазме и основной переносчик азота между органами. Важность глутамина в метаболизме опухолевых клеток обусловлена ​​характеристиками, которые он разделяет с глюкозой. Оба питательных вещества помогают удовлетворить две важные потребности в пролиферирующих опухолевых клетках: биоэнергетика (производство АТФ) и обеспечение промежуточных соединений для макромолекулярного синтеза.

Глютамин является универсальным питательным веществом, которое участвует в образовании энергии, окислительно-восстановительном гомеостазе, макромолекулярном синтезе и передаче сигналов в раковых клетках. В концентрациях 0,6–0,9 ммоль / л глутамин является наиболее распространенной аминокислотой в плазме. Хотя большинство тканей может синтезировать глютамин, в периоды быстрого роста или других стрессов спрос превышает предложение, и глютамин становится условно необходимым. Это требование к глютамину особенно верно в отношении раковых клеток.

У здоровых людей пул глютамина в плазме в основном является результатом высвобождения из скелетных мышц. Легкие человека также обладают способностью к заметному выделению глютамина, хотя такое выделение наиболее заметно во времена стресса. Стресс-индуцированное высвобождение из легких регулируется индукцией экспрессии глутаминсинтазы как следствие передачи сигналов глюкокортикоидами и другими механизмами. Хотя это приводит к небольшой артериовенозной разнице, общий выброс глютамина является значительным из-за большой легочной перфузии.

Жировая ткань является второстепенным, но потенциально важным источником глютамина. Печень обладает способностью синтезировать или катаболизировать глютамин, причем эти виды деятельности подвержены как региональной гетерогенности среди гепатоцитов, так и регуляторным эффектам системного ацидоза и гипераммонемии. Тем не менее, печень, по-видимому, не вносит основной вклад в пул глютамина в плазме у здоровых людей.

Потр***ение глютамина у здоровых людей происходит в основном в кишечнике и почках. Органы желудочно-кишечного тракта, дренированные портальной веной, особенно тонкая кишка, являются основными потребителями глютамина в плазме. Энтероциты окисляют более половины углерода глутамина до CO 2 , что составляет треть дыхания этих клеток у животных натощак. Почка также потр***яет много глютамина для поддержания кислотно-щелочного баланса.

Так, во время ацидоза почки существенно увеличивают поглощение глютамина, расщепляя его с помощью GLS с образованием аммиака, который выделяется вместе с органическими кислотами для поддержания физиологического pH. Глютамин также является основным метаболическим субстратом в лимфоцитах и ​​макрофагах, по крайней мере, во время митогенной стимуляции.

Рак, по-видимому, вызывает серьезные изменения в межорганном обороте глютамина. При этом не все раковые клетки нуждаются в экзогенной поставке глютамина. Так, клетки рака молочной железы демонстрируют системные различия в зависимости от глютамина, при этом клетки базального типа имеют тенденцию быть зависимыми от глютамина, а клетки люминального типа наоборот, более независимы. Устойчивость к депривации глютамина связана со способностью синтезировать глутамин de novo и / или вовлекать альтернативные пути анаплероза.

Катаболизм глутамина начинается с его превращения в глутамат в реакциях, которые либо отдают амидный азот в пути биосинтеза, либо выделяют его в виде аммиака. Последние реакции катализируются глутаминазами (GLS), из которых несколько изозимов кодируются генами GLS и GLS2.

Роль GLS2 в раке, по-видимому, зависит от контекста. Так, в некоторых тканях GLS2 является геном-мишенью p53 и, по-видимому, функционирует при подавлении опухоли. Так как онкоген c-Myc стимулирует экспрессию GLS, некоторые изозимы GLS можно позиционировать, по меньшей мере, как про-онкогенные.
с-Myc управляет поглощением глутамина и катаболизмом, активируя экспрессию генов, участвующих в метаболизме глутамина, включая GLS и SLC1A5 , который кодирует Na + -зависимый переносчик аминокислот ASCT2. Усиление Mус происходит в 20-25% нейробластом и коррелирует с плохим исходом.

Глутамат, продукт реакции GLS, является предшественником глютатиона, важного клеточного антиоксиданта. Он также является источником аминогрупп для заменимых аминокислот, таких как аланин, аспартат, серин и глицин, которые необходимы для макромолекулярного синтеза. В клетках, потр***яющих глутамин, глутамат также является основным источником α-кетоглутарата, промежуточного звена цикла TCA и трансаминирования аминокислот, а также субстрата для диоксигеназ, которые модифицируют белки и ДНК.

Превращение глутамата в α-кетоглутарат происходит либо посредством окислительного дезаминирования глутаматдегидрогеназой (GDH) в митохондрии, либо в процессе трансаминирования. Во время активного метаболизма глюкозы преобладает путь трансаминирования. Когда глюкозы мало, GDH становится основным путем доставки глютаминового углерода в цикл TCA и необходим для выживания клеток.
При дисфункции митахондрий вследствии мутаций или гипоксии полученный из глутамина α-кетоглутарат может восстанавливать цикл TCA (см. ваше). Глутамин также подавляет экспрессию тиоредоксин-взаимодействующего белка, негативного регулятора поглощения глюкозы.

Патологический рост раковых клеток зависит от поддержания пролиферативных сигнальных путей с повышенной автономией по сравнению с незлокачественными клетками. В некоторых раковых клетках избыток глютамина экспортируется в обмен на лейцин и другие незаменимые аминокислоты. Этот обмен облегчает активацию серин / треонинкиназы mTOR, основного положительного регулятора роста клеток. Кроме того, получаемый из глютамина азот является компонентом аминосахаров, известных как гексозамины, которые используются для гликозилирования рецепторов факторов роста и способствуют их локализации на клеточной поверхности. Нарушение синтеза гексозамина снижает способность инициировать сигнальные пути ниже факторов роста.

ІК Юглон
09.01.2020, 01:19
Вставка 4.

Усиленное потр***ение глюкозы раковыми клетками (эффект Варбурга) породило надежду на то, что такая метаболическая особенность опухолей может быть использована для лечения больных раком. Интерес к эффекту Варбурга как ахиллесовой пяте, который будет использоваться при лечении рака, был дополнительно стимулирован демонстрацией того, что усиленный метаболизм глюкозы является частым следствием многих мутаций, ответственных за рак человека, и, следовательно, может быть центральным процессом, необходимым для рост опухоли.

Однако с точки зрения разработки стратегий лечения рака опухолевый метаболизм до сих пор является скорее священным Граалем, чем ахиллесовой пятой. Часть трудностей заключается в гибкости метаболических систем и разнообразии питательных веществ, к которым имеют доступ опухоли. Таким образом, полная картина метаболизма любой опухоли должна учитывать вклад нескольких питательных веществ одновременно.

Главным среди других питательных веществ, доступных опухолям, является глутамин, самая распространенная аминокислота в плазме и основной переносчик азота между органами. Важность глутамина в метаболизме опухолевых клеток обусловлена ​​характеристиками, которые он разделяет с глюкозой. Оба питательных вещества помогают удовлетворить две важные потребности в пролиферирующих опухолевых клетках: биоэнергетика (производство АТФ) и обеспечение промежуточных соединений для макромолекулярного синтеза.

Глютамин является универсальным питательным веществом, которое участвует в образовании энергии, окислительно-восстановительном гомеостазе, макромолекулярном синтезе и передаче сигналов в раковых клетках. В концентрациях 0,6–0,9 ммоль / л глутамин является наиболее распространенной аминокислотой в плазме. Хотя большинство тканей может синтезировать глютамин, в периоды быстрого роста или других стрессов спрос превышает предложение, и глютамин становится условно необходимым. Это требование к глютамину особенно верно в отношении раковых клеток.

У здоровых людей пул глютамина в плазме в основном является результатом высвобождения из скелетных мышц. Легкие человека также обладают способностью к заметному выделению глютамина, хотя такое выделение наиболее заметно во времена стресса. Стресс-индуцированное высвобождение из легких регулируется индукцией экспрессии глутаминсинтазы как следствие передачи сигналов глюкокортикоидами и другими механизмами. Хотя это приводит к небольшой артериовенозной разнице, общий выброс глютамина является значительным из-за большой легочной перфузии.

Жировая ткань является второстепенным, но потенциально важным источником глютамина. Печень обладает способностью синтезировать или катаболизировать глютамин, причем эти виды деятельности подвержены как региональной гетерогенности среди гепатоцитов, так и регуляторным эффектам системного ацидоза и гипераммонемии. Тем не менее, печень, по-видимому, не вносит основной вклад в пул глютамина в плазме у здоровых людей.

Потр***ение глютамина у здоровых людей происходит в основном в кишечнике и почках. Органы желудочно-кишечного тракта, дренированные портальной веной, особенно тонкая кишка, являются основными потребителями глютамина в плазме. Энтероциты окисляют более половины углерода глутамина до CO 2 , что составляет треть дыхания этих клеток у животных натощак. Почка также потр***яет много глютамина для поддержания кислотно-щелочного баланса.

Так, во время ацидоза почки существенно увеличивают поглощение глютамина, расщепляя его с помощью GLS с образованием аммиака, который выделяется вместе с органическими кислотами для поддержания физиологического pH. Глютамин также является основным метаболическим субстратом в лимфоцитах и ​​макрофагах, по крайней мере, во время митогенной стимуляции.

Рак, по-видимому, вызывает серьезные изменения в межорганном обороте глютамина. При этом не все раковые клетки нуждаются в экзогенной поставке глютамина. Так, клетки рака молочной железы демонстрируют системные различия в зависимости от глютамина, при этом клетки базального типа имеют тенденцию быть зависимыми от глютамина, а клетки люминального типа наоборот, более независимы. Устойчивость к депривации глютамина связана со способностью синтезировать глутамин de novo и / или вовлекать альтернативные пути анаплероза.

Катаболизм глутамина начинается с его превращения в глутамат в реакциях, которые либо отдают амидный азот в пути биосинтеза, либо выделяют его в виде аммиака. Последние реакции катализируются глутаминазами (GLS), из которых несколько изозимов кодируются генами GLS и GLS2.

Роль GLS2 в раке, по-видимому, зависит от контекста. Так, в некоторых тканях GLS2 является геном-мишенью p53 и, по-видимому, функционирует при подавлении опухоли. Так как онкоген c-Myc стимулирует экспрессию GLS, некоторые изозимы GLS можно позиционировать, по меньшей мере, как про-онкогенные.
с-Myc управляет поглощением глутамина и катаболизмом, активируя экспрессию генов, участвующих в метаболизме глутамина, включая GLS и SLC1A5 , который кодирует Na + -зависимый переносчик аминокислот ASCT2. Усиление Mус происходит в 20-25% нейробластом и коррелирует с плохим исходом.

Глутамат, продукт реакции GLS, является предшественником глютатиона, важного клеточного антиоксиданта. Он также является источником аминогрупп для заменимых аминокислот, таких как аланин, аспартат, серин и глицин, которые необходимы для макромолекулярного синтеза. В клетках, потр***яющих глутамин, глутамат также является основным источником α-кетоглутарата, промежуточного звена цикла TCA и трансаминирования аминокислот, а также субстрата для диоксигеназ, которые модифицируют белки и ДНК.

Превращение глутамата в α-кетоглутарат происходит либо посредством окислительного дезаминирования глутаматдегидрогеназой (GDH) в митохондрии, либо в процессе трансаминирования. Во время активного метаболизма глюкозы преобладает путь трансаминирования. Когда глюкозы мало, GDH становится основным путем доставки глютаминового углерода в цикл TCA и необходим для выживания клеток.
При дисфункции митахондрий вследствии мутаций или гипоксии полученный из глутамина α-кетоглутарат может восстанавливать цикл TCA (см. ваше). Глутамин также подавляет экспрессию тиоредоксин-взаимодействующего белка, негативного регулятора поглощения глюкозы.

Патологический рост раковых клеток зависит от поддержания пролиферативных сигнальных путей с повышенной автономией по сравнению с незлокачественными клетками. В некоторых раковых клетках избыток глютамина экспортируется в обмен на лейцин и другие незаменимые аминокислоты. Этот обмен облегчает активацию серин / треонинкиназы mTOR, основного положительного регулятора роста клеток. Кроме того, получаемый из глютамина азот является компонентом аминосахаров, известных как гексозамины, которые используются для гликозилирования рецепторов факторов роста и способствуют их локализации на клеточной поверхности. Нарушение синтеза гексозамина снижает способность инициировать сигнальные пути ниже факторов роста.

Написано очень доходчиво. Может Вы развернете процесс взаимодействия онкоклеток , например со стрептококками и вирусом Ньюкасла ?

albert52
09.01.2020, 08:10
ІК Юглон, не повторяйте меня, по крайней мере на моей странице. Что мне писать, решаю я сам, всему свое время.

Вернемся к молекулярной биологии клетки. Как я уже упоминал, высокое соотношение АМФ / АТФ ( так правильнее) отражает заряд энергии клетки, вернее его дефицит, и АМФ самолично его повышает. На уровне передачи сигнала AMP-активируемая протеинкиназа (AMPK) является датчиком, который реагирует на изменения в соотношении ATP к AMP (и ADP) и координирует различные метаболические ответы с целью поддержки гомеостаза клеточной энергии. AMPK представляет собой гетеротримерный комплекс с каждой субъединицей, кодируемой более чем одним геном, а тканеспецифичная экспрессия различных изоформ обеспечивает генетически кодируемое средство опосредования гетерогенных регуляторных ответов.

AMPK отрицательно регулирует аэробный гликолиз (эффект Варбурга) в раковых клетках и подавляет рост опухоли. Инактивация AMPKα как в трансформированных, так и в нетрансформированных клетках способствует метаболическому переходу к аэробному гликолизу, увеличению перехода углерода глюкозы в липиды и накоплению биомассы, т.е. к анаболизму.

Многие из ведущих мутаций (драйверов), наблюдаемых при раке, также контролируют метаболизм опухолевых клеток, предполагая, что онкогенные и опухолевые супрессорные сети влияют на метаболизм как часть их способа действия. С метаболической точки зрения AMPK как энергетический сенсор способствует сохранению АТФ в условиях метаболического стресса, активируя пути катаболического метаболизма, такие как аутофагия и ингибирование анаболических процессов, включая биосинтез липидов, TORC1-зависимый биосинтез белка и пролиферацию клеток. Активность AMPK при раке таким образом связана со стрессоустойчивостью и выживаемостью в опухолевых клетках, предоставляя им гибкость для адаптации к характерному для них метаболическому стрессу .

AMPK обеспечивает как краткосрочный, так и долгосрочный контроль обратной связи для клеток, контролируя активность многочисленных белков посредством фосфорилирования. AMPK также регулирует у млекопитающих мишень рапамицинового комплекса-1 (mTORC1). Ингибирование mTORC1 имеет решающее значение для выживания клеток в условиях стресса, поскольку опосредованное рапамицином ингибирование может снижать процессы биосинтеза, которые потр***яют АТФ, и предотвращать биоэнергетическую катастрофу. Кроме того, активация аутофагии посредством фосфорилирования ULK1 может обеспечить дополнительное топливо для поддержки продукции АТФ в митохондриях.

Подавление активности AMPK устраняет ключевую метаболическую контрольную точку, которая обычно противодействует анаболическому прогрессированию клеточного метаболизма. Таким образом, AMPK может действовать в раковых клетках в качестве метаболического привратника, который функционирует для установления метаболических контрольных точек, ограничивающих деление клеток, и ее подавление может усиливать как онкогенез, так и прогрессирование опухоли.

Метаболический контроль на более длительных временных шкалах осуществляется AMPK посредством контроля экспрессии генов, например SREBP1. Этот белок регулирует гены, необходимые для метаболизма глюкозы и жирных кислот и производства липидов и его экспрессия регулируется с помощью инсулина. Инсулин - стимулированный SBREP-1c увеличивает гликолиз активацией фермента глюкокиназы и повышает липогенез (преобразование углеводов в жирные кислоты). Его активность регулируется уровнем стеролов в клетке.

Другой важной мишенью для AMPK является PGC1α, который является помощником факторов транскрипции как в ядре, так и в митохондриях ( здесь он помогает специальному фактору транскрипции — Tfam, который активирует только гены митохондриального генома). Сегодня PGC-1α рассматривается как одна из мишеней для лечения заболеваний, связанных с митохондриями. Например, небольшое увеличение экспрессии PGC-1α в мышцах приводит к ослаблению атрофии, облегчает течение мышечной дистрофии Дюшенна, болезни Паркинсона и Хантингтона.

ІК Юглон
09.01.2020, 09:38
уже не повторяю, то была техническая ошибка. Подожду. Спасибо

albert52
10.01.2020, 03:10
Таким образом, увеличение клеточного отношения AMP / ATP вызывает прогрессирующую активацию AMPK. ADP также может регулировать активацию AMPK путем защиты AMPK от дефосфорилирования.

Коснемся слегка интеграции АМФК в метаболическую сеть клетки для осознания сложности всего происходящего (беречь не буду).

Препарат для лечения диабета 2 типа метформин: механизм действия включает активацию AMPK в гепатоцитах. Метформин вызывает энергетический стресс путем ингибирования комплекса I дыхательной цепи в митохондриях. Это приводит к изменению отношения АТФ к АМФ и канонической активации АМФК и фосфорили -рованию ацетил-КоА-карбоксилазы (ACC) в качестве основного участника изменений в синтезе липидов, которые индуцируются метформином. Она, в свою очередь, модулирует чувствительность к инсулину и поглощение глюкозы в мышцах.

Существует 12 возможных комбинаций комплексов αβγ АМФК в зависимости от того, какие субъединицы составляют комплекс. Конкретные композиции субъединиц позволяют различным комплексам AMPK реагировать на различные типы стрессовых стимулов. Также разные субъединицы имеют разную субклеточную локализацию в клетках, например α2 может иметь ядерную локализацию. Но в целом AMPK локализуется в лизосомах благодаря взаимодействию с аксином, белком, который лучше всего характеризуется своей ролью в регуляции пути WNT. В этом контексте аксин также локализуется в лизосомах, где он взаимодействует с киназой печени B1 (LKB1; также известна как STK11, является опухолевым супрессором). LKB1 ответственна за большую часть активации AMPK при энергетическом стрессе.

Комплекс AMPK активируется путем фосфорилирования Thr172 в петле активации каталитической (α) субъединицы с помощью вышестоящей киназы. В ответ на энергетический стресс AMP стимулирует взаимодействие с аксином, что позволяет фосфорилировать Thr172 путем активации LKB1 и AMPK. Это позволит совместно регулировать mTOR, который играет противоположную роль по отношению к AMPK: он стимулирует анаболические пути в условиях высокой питательности. AMPK и mTOR являются компонентами древних консервативных путей, которые развивались как антагонистический механизм, похожий на инь-янь, контролирующий катаболизм и анаболизм.

Отметим, что глюкозное голодание активирует AMPK независимо от канонического AMP-зависимого аллостерического механизма. Скорее всего, связывание гликолитического фермента альдолазы с его субстратом фруктозо-1,6-бисфосфатом (FBP) регулирует образование комплекса AMPK-аксин и активность AMPK.

Учитывая роль пути AMPK-ACC в регуляции синтеза жирных кислот, активация AMPK также является привлекательным вариантом лечения для состояний, связанных с повышенной выработкой жирных кислот, таких как неалкогольная жировая болезнь печени (НАЖБП).

mTOR является ключевой регуляторной киназой, которая играет роль в регуляции рибосомальной трансляции мРНК в белки и важна для роста и выживания клеток. Передача сигналов mTOR усиливается при многих раковых заболеваниях, и поиск эффективных ингибиторов mTOR является основной задачей многих фармацевтических компаний.
mTOR активируется питательными веществами, факторами роста и другими стимулами и интегрирует сигналы от множества восходящих киназ, таких как пути киназы PI3K-Akt и Ras-Raf, и ингибиторов этих путей, таких как PTEN (гомолог фосфатазы и тензина, природный ингибитор PI3K-Akt), которые также ингибируют mTOR. АМФК является важным восходящим регулятором, и активация AMPK с помощью киназы печени B1 (LKB1) или сестрина 2 приводит к фосфорилированию комплекса туберозного склероза (TSC), который ингибирует mTOR.
Химиотерапия, нацеленная на mTOR, включает как прямые ингибиторы, такие как эверолимус и темсиролимус, так и ингибиторы киназ, расположенные выше по течению.

АФК-зависимая активация р53 приводит к индукции двух р53-регулируемых генов, а именно, сестрина 1 и сестрина 2, которые путем активации AMPKα ингибируют передачу сигналов mTOR . АФК (активные формы кислорода) могут сами опосредованно через глутатионовый косплекс активировать AMPKα. Эффекты различных индукторов АФК зависят от клеточного контекста; например, некоторые агенты, такие как куркумин, вызывают аутофагическую гибель клеток в раковых клетках толстой кишки, и предположительно АФК-зависимое ингибирование mTOR куркумином также способствует этому ответу.

Транскрипционные белки Sp1, Sp3 и Sp4 активно экспрессируются в раковых клетках и опухолях, а высокая экспрессия Sp1 в опухолях является негативным прогностическим показателем выживаемости пациентов с раком легких, поджелудочной железы, желудка, глиомы, простаты и молочной железы. Факторы транскрипции Sp играют важную роль в пролиферации, выживании и миграции / инвазии раковых клеток.
АФК-индуцирующие противораковые агенты индуцируют каскад событий, в которых АФК-зависимое эпигенетическое подавление c-Myc вызывает снижение экспрессии c-Myc-регулируемых микроРНК miR-27a и miR-20a / miR-17-5p, что приводит к индукции miR регулируемых транскрипционных репрессоров ZBTB10 / ZBTB34 и ZBTB4 соответственно. Репрессоры ZBTB связывают богатые аминокислотами GC сайты ДНК, чтобы вытеснить Sp1, Sp3 и Sp4. Эти сайты, кстати, особо чувствительно к эпигенетическому метилированию.

Индукторы АФК также могут быть эффективны для комбинированной терапии, поскольку многие Sp-регулируемые гены играют роль в лекарственной и радиационной устойчивости.

albert52
11.01.2020, 15:59
Три транскрипционных фактора, HIF-1, c-Myc и p53, являются ключевыми регуляторами и по-разному координируют регуляцию метаболизма клетки, в том числе раковой.

Большинство раковых клеток на ранней стадии канцерогенеза подвержены хронической гипоксии чаще всего воспалительной природы. Клетки должны чувствовать и реагировать на изменения окружающей среды. Сигнальный ответ на низкий уровень кислорода опосредуется семейством EGLN альфа-кетоглутарат (αKG) - зависимых диоксигеназ. У млекопитающих и человека, αKG-зависимые диоксигеназы играют роль в биосинтезе (например , биосинтез коллагена и биосинтез L-карнитин), посттрансляционной модификации (например , гидроксилирование белка - см. выше), эпигенетике (например деметилирование гистонов и ДНК вследствие гидроксилирования с последующей активизацией генов), а также наряду с АМФК служат датчиками энергетического обмена.

Реакция диоксигеназ на гипоксию опосредуется HIF ( гипоксией индуцируемый фактор): (HIF-1 и HIF-2), являются гетеродимерными факторами транскрипции, которые ответственны за изменения экспрессии генов при гипоксии. Они состоят из конститутивно экспрессированной субъединицы HIF-1β и субъединиц HIF-1α или HIF-2α, которые быстро экспрессируются при воздействии гипоксии. Субъединица HIF-1α экспрессируется повсеместно, тогда как экспрессия субъединицы HIF-2α ограничивается клетками эндотелия, легких, почек и печени.

HIF-1α является фактором транскрипции, ответственным за активацию экспрессии генов, вовлеченных в клеточный ответ на гипоксию . Эти генные продукты могут включать белки, такие как гликолитические ферменты и ангиогенные факторы роста.

В нормоксических условиях субъединицы HIF-1α подвергаются кислород-зависимому гидроксилированию ферментом пролилгидроксилазой 2 ( PHD2 - это диоксигеназа, ее ген EGLN ), что приводит к их распознаванию супрессором опухолей фон Гиппеля-Линдау (VHL), подключению убиквитинлигазы E3 и последующей деградации. Таким образом, период полураспада α-субъединицы HIF является коротким, когда уровни кислорода высоки, поскольку она нацелена на деградацию (см. выше). При гипоксии кислород становится ограничивающим фактором для гидроксилирования белка, и активный фактор транскрипции HIF накапливается.

Затем HIF-1α димеризуется с постоянно присутствующей субъединицей HIF-1β и накапливается в ядре. Впоследствии димер HIF-1 (т.е. активный комплекс HIF-1α и HIF-1β) связывается с элементом ответа на гипоксию генов-мишеней, что приводит к их транскрипционной активности.
PHD2 является основным регулятором уровней устойчивого состояния HIF-1α в клетке. Нокдаун PHD2 показал повышенные уровни HIF-1α при нормоксии и накопление ядерного HIF-1α и соответственно усиление HIF-зависимой транскрипции.

Фермент имеет высокое сродство к железу (II) и 2-оксоглутарату (также известному как вездесущий α-кетоглутарат) и образует долгоживущий комплекс с этими факторами. Изменение их концентрации приводит к тому, что пролилгидроксилазы реагируют на соответствующее «гипоксическое окно» для определенного типа клеток или ткани. Считается, что PHD2 является наиболее важным датчиком кислородного статуса клетки.

Альфа-кетозависимые гидроксилазы являются негемовыми, содержащим железо ферментами , которые поглощают кислород. Они катализируют широкий спектр реакций оксигенации и функционально сопоставимы с ферментами цитохрома Р450, которые используют кислород и восстановительные эквиваленты для оксигенации субстратов одновременно с образованием воды.

Каталитическая активность многих αKG-зависимых диоксигеназ зависит от уровня АФК в клетке, так как АФК окисляет Fe+ и в частности ограничивает активность генов EGLN и, соответственно PHD2, что повышает уровень HIFα и активирует HIF-зависимую транскрипцию. В этих случаях помогают восстанавливающие агенты (особенно аскорбат).

albert52
13.01.2020, 01:43
Продолжим.

В ходе эволюции аэробные организмы разработали сложные системы для реагирования на изменения концентрации кислорода, поскольку кислород выступает в качестве конечного акцептора электронов в окислительном фосфорилировании для производства энергии. Электронный перенос дыхательной цепи в митохондриях не является полностью эффективным, и происходит утечка электронов, которая образует активные формы кислорода (АФК), такие как супероксидный анион и перекись водорода, путем прямого восстановления кислорода.
Хотя клетки оснащены антиоксидантными системами, неосвоенные АФК оказывают сильное окислительное действие на клеточные компоненты, такие как липиды, белки и нуклеотиды, которые могут угрожать выживанию клеток. Поэтому необходимо тщательно регулировать концентрацию кислорода, чтобы сбалансировать потребность и снабжение кислородом, благодаря чему клетки могут поддерживать выработку АТФ с меньшим образованием АФК.

Гипоксия (пониженные условия содержания кислорода) может быть вызвана не только снижением поступления кислорода из местной системы кровообращения (например, при раке, ишемической болезни сердца и эмбролии), но также и повышенным потр***ением кислорода клетками, выполняющими определенные функции (например, при воспалении, пролиферации и гормональной секреции).

Индуцируемый гипоксией фактор (HIF) играет центральную роль в адаптивной регуляции энергетического метаболизма, инициируя переход от митохондриального окислительного фосфорилирования к анаэробному гликолизу в условиях гипоксии путем экспрессии переносчиков глюкозы (GLUT1 и GLUT3) и гликолитических ферментов, включая гексокиназу (HK1 и HK2) и фосфоглицераткиназу 1 (PGK1). Пируваткиназа M2 (PKM2) как альтернативная форма PK, экспрессируется преимущественно в эмбриональных и раковых клетках, она катализирует последнюю стадию необратимых реакций в гликолизе и индуцируется гипоксией HIF-1-зависимым образом.
HIF также является центральным фактором транскрипции, который обеспечивает адаптивный ответ на гипоксический стресс в нормальных и патологических состояниях путем активации большого количества генов, ответственных за доставку кислорода, ангиогенез, пролиферацию и дифференцировку клеток, и метаболизм.

Онкогены, такие как c-Myc и v-Src, способствуют метаболическому перепрограммированию, в частности, благодаря активации HIF-1, пусть и опосредованно (об этом позже). Кроме того, потеря генов-супрессоров опухолей, включая PTEN и VHL, вовлечена в развитие эффектов Варбурга посредством активации HIF-1 независимо от концентрации кислорода.
HIF также снижает потр***ение кислорода в митохондриях путем ингибирования превращения пирувата в ацетил-КоА с торможением ТСА цикла, что ведет к снижению выработки NADH и тем самым подавлению митохондриального биогенеза и активации аутофагии митохондрий, одновременно со снижением продукции АФК.

Недавно установлено, что в ответ на гипоксию HIF-1 индуцирует транскрипцию микроРНК miR-210, которая снижает экспрессию железо-серных каркасных белков ISCU1/2, необходимых компонентов для сборки железо-серного кластера. Поскольку железо-серный кластер является обязательным условием для активности аконитазы, субъединицы D ***цинатдегидрогеназы, комплекса I и субъединицы COX10, увеличение miR-210 ингибирует цикл TCA и окислительное фосфорилирование, что приводит к снижению потр***ения митохондриального кислорода при гипоксии.

Кроме того, метаболическое перепрограммирование в ответ на гипоксию посредством активации HIF не ограничивается регуляцией углеводного обмена; это происходит и в липидном обмене, поскольку окислительное расщепление жирных кислот потр***яет большое количество кислорода. Отметим, что в регуляции β-окисления жирных кислот активен HIF-2, а не HIF-1, как обычно. Впрочем, HIF-1 защищает от развития алкогольной жирной печени путем ингибирования синтеза жирных кислот de novo.

При липидном обмене липогенез и окисление жирных кислот в печени происходят соответственно в перицентральной (менее оксигенированной) и перипортальной (хорошо оксигенированной) области ацинуса печени. Когда экспрессия HIFα форсируется либо инактивацией гена VHL, либо аденовирусным вектором, кодирующим ген HIFα, HIF-опосредованные метаболические изменения представляются важными для поддержания локального кислородного гомеостаза в печени путем ограничения либо потр***ения кислорода (окисление жирных кислот), либо утилизации АТФ (синтез жирных кислот de novo), что и наблюдается при гипоксии.

albert52
22.01.2020, 12:43
Вставка 5.

Еще в 1976 году Лю Б. Н. была высказана идея: в активно функционирующих предопухолевых и опухолевых клетках повышаются уровни свободного О2 и его парциального давления вследствие уменьшения потр***ения О2 отчасти дефектными в них митохондриями. «Гипоксия» при гипероксии является характерным состоянием активной истинно неоплас -тической клетки. С повышенным в ней рО2 и избыточным перекисным окислением биологических молекул, прежде всего липидов, в конечном счете связываются дестабилизация всех мембранных структур, изменение активности многих ферментов и вынужденное зависимое от активных форм О2 перепрограммирование части генома.

Указанные представления легли в основу общей кислородно-перекисной концепции канцерогенеза. Исходя из тех же представлений впервые многие противоопухолевые агенты и факторы чётко подразделены на 2 категории – антиоксидантные, снижающие уровень окислительного стресса в опухолевых клетках, и прооксидантные, напротив, усиливающие его до летального уровня.

В дальнейшем кислородно-перекисная концепция была распространена на другие фундаментальные биологические процессы – окислительный митогенез, старение, возрастные патологии, апоптоз и окислительный цитолиз клеток. Под все эти феномены, как и под канцерогенез, подведено индуцирующее их начало в виде соответствующих «специализированных» дисбалансов Δ (ПО –АО) между прооксидантными (ПО) и антиоксидантными (АО) составляющми в клетке.

Отметим, что «зазор» между ПО- и АО-составляющими существует постоянно, травмируя прежде всего чувствительные к окислительным повреждениям митохондрии – основные О2-потр***яющие органеллы в клетке. В результате значения рО2 и Δ (ПО –АО) в клетке постепенно повышаются, и возникающий окислительный стресс становится объективной первопричиной нормального клеточного старения, возрастных патологий, в том числе атеросклероза, сахарного диабета, болезни Альцгеймера и спонтанного канцерогенеза. При более сильном возрастании Δ (ПО –АО) реализуются апоптоз и некроз. Это не исключает того, что в некоторых случаях негативные внешние воздействия (радиация, химические агенты и др.), особенно избыточные, могут одновременно прямо влиять на геном и создавать впечатление о единственности такого пути повреждающего их действия.

В постулируемой достаточно условной градации дисбалансы связаны между собой неравенствами
∆i (ПО – АО) < ∆p (ПО – АО) < ∆k (ПО – АО) < ∆ц (ПО – АО)
где ∆i (ПО – АО) соответствует клетке в покое, ∆p (ПО – АО) - в состоянии митоза, ∆k (ПО – АО) - при канцерогенезе, ∆ц (ПО – АО) вызывает гибель клетки. Следует подчеркнуть, что каждый из рассмотренных дисбалансов представляет определённый диапазон изменений, а не одну какую-то величину. Кроме того, для каждой ткани и даже клетки все эти переменные параметры индивидуальны по величинам и диапазону своего проявления.

При дефиците О2 в клетках деградируют митохондрии в соответствии с принципом: нефункционирование живой структуры есть способ её саморазрушения. Вместе с тем сокращение общей «мощности» митохондрий в клетке можно рассматривать как адаптивную реакцию на гипоксию и аноксию. Если степень сокращения митохондриальной базы слишком велика и энергообеспеченность серьёзно нарушена, то такая клетка, скорее всего, погибнет. Это крайний случай. Для многих же клеток более вероятна ситуация, когда утрата части митохондрий ведёт к некоторому снижению потр***ения О2, причём даже при слабых поступлении и утилизации О2 в зависимости от их соотношения в клетке могут устанавливаться разные уровни рО2 и, следовательно, ∆ (ПО – АО), от низких и вплоть до ведущих к избыточной пероксидации. Значит, эта категория клеток, хотя и с замедленной скоростью, также будет проходить через все указанные выше состояния.

albert52
02.02.2020, 23:01
Продолжим.

В ответ на рост рО2 в земной атмосфере живая природа реализовала систему защитных механизмов, предохраняющих клетку от избыточного накопления в ней токсических продуктов ПОЛ (перекисного окисления липидов). Антиоксидантная система защиты, по общему мнению исследователей, является иерархической и осуществляется не менее чем на трёх уровнях.

Первая и основная ступень защиты – антикислородная. За счёт активности дыхательных ферментов и специальной группы соединений, депонирующих избыточный О2, данная ступень поддерживает внутри клеток довольно низкие значения рО2, порядка 1-5 мм рт. ст., достаточные, однако, для тканевого дыхания и энергообеспечения. Измеренное в цитозоле клеток (кардиомиоциты, гепатоциты и др.) значение рО2 составляет всего 0,4-4,0 мм рт. ст. Непосредственно же около митохондрий предположительно рО2 1 мм рт. ст., а в их матриксе – 0,01-0,1 мм рт. ст., т.е. на уровне критического рО2 для цитохромоксидазы как терминального фермента дыхательной цепи.

Антикислородная линия защиты не в состоянии, вероятно, полностью предотвратить возможные негативные последствия избыточного ПОЛ, поскольку необходимые для него свободные радикалы образуются в процессах нормального метаболизма. Поэтому существуют последующие более «тонкие» ступени защиты – антирадикальная и антиперекисная, надёжная работа которых зависит от исправного функционирования антикислородной линии защиты.

В клетках неоплазмы воспроизводится состояние фиктивной гипоксии, при которой даже избыток О2 не может быть эффективно использован для дыхания, а степень повышения рО2 в значительной мере определяется степенью инактивации дыхательных ферментов и деградации митохондрий. Таким образом, «гипоксия» при гипероксии является, по-видимому, характерным состоянием истинно опухолевой клетки.

Следует особо отметить, что в своей биохимической теории рака Варбург прошёл мимо указанных идей, особенно ключевой идеи о внутриклеточной гипероксии, детерминируемой снижением интенсивности дыхания. По Варбургу возникновение опухолей связано с фактическим постоянным недостатком О2, вызванным теми или иными затруднениями в снабжении О2, развитием в этих условиях высокой гликолитической активности, которая компенсирует возникший дефицит энергии. Как я уже указывал, такое наблюдается далеко не всегда. Низкое рО2 внутри неоплазм может быть результатом их нерегулируемого роста, объёмного расположения и относительности бедности капиллярной сети, но не отражением какого-то характерного свойства самих опухолевых клеток вообще.

Установлено, что размножающиеся клетки в различных зонах опухоли располагались преимущественно около поддерживающей стромы. На периферии опухолей и вдоль нормально функционирующих в них кровеносных сосудов должен существовать определённый, непрерывно воспроизводимый слой гипероксических опухолевых клеток, величина рО2 в которых постоянно превышает таковую в гомологичных им нормальных клетках. Эта особенность клеток предопределяет, в частности, устойчивое распространение опухолевого процесса «вширь» за счёт незатухающей активности периферийного слоя. Чем больше объём опухоли, тем меньшую долю в нём будет занимать узкий активно растущий периферийный слой.

И, наконец, падение уровня ATФ при дегенерации митохондрий – необходимый регуляторный момент для начала и облегчения репликации ДНК, а повышение уровня ATФ в ядерном компартменте угнетает репликацию ДНК и клеточную пролиферацию.

Далее.

Как я уже говорил, почти во всех клетках около 90 % потр***яемого кислорода восстанавливается в цепи тканевого дыхания с участием цитохромоксидазы (окисление, сопряженное с фосфорилированием АТФ, выполняет энергетическую функцию). Остальной О2 в норме используется в основном в оксигеназном пути, моно - в микросомах и митохондриях, и диоксигеназном. В митохондриях происходит гидроксилирование (при участии НАДФН2, цитохромР450), при этом образуются окисленный продукт, вода и НАДФ.

Монооксигеназная система митохондрий выполняет также биосинтетическую функцию: синтез холестерола; стероидных гормонов (кора надпочечников, яичники, плацента, семенники); желчных кислот (печень); образование витамина D3 (почки).

Второй вид реакций монооксигеназного пути окисления объединяется под названием микросомальное окисление. Этот вид реакций происходит в микросомах, в основном в печени. В этом виде окисления участвует мультиферментная мембраносвязанная система, включающая НАДФН2, особые ФП(флавопротеины) и цитохромР450. Здесь в субстрат включается один атом кислорода. Второй атом О2 используется для образования воды. Одна молекула цитохрома может за секунду передать несколько тысяч молекул кислорода. По этой причине количество цитохрома в клетке ограничено.
Этот тип окисления является защитной реакцией организма, т.к. происходит окисление различных чужеродных веществ. При этом они переходят в безвредные или становятся более растворимыми в воде и легко выводятся из организма.

В процессе диоксигеназного окисления в молекулу субстрата включаются оба атома кислорода. Эти реакции протекают на поверхности гладкого эндоплазматического ретикулума(ЭПР) и таким образом окисляются циклические структуры типа бензола с разрывом цикла.

И наконец пероксидазный путь окисления является побочным путем окисления, обычно наблюдается при повреждении цитохромной системы или гипероксии клетки, а также когда субстрат не окисляется другим путем, например, мочевая кислота. Здесь окисление субстрата происходит путем дегидрирования. Два атома водорода переносятся на молекулу кислорода с образованием перекиси. Затем в норме в действие вступают пероксидазы, превращающие перекиси в воду.

При гипероксигенации клетки, прямой или непрямой, пероксидазы не справляются с потоком перекиси, что приводит к повышению уровня активных форм кислорода (АФК) в клетке. В норме в организме образуется около 2% АФК от всего кислорода, процесс образования идет спонтанно и подавить его трудно.

АФК образуются в результате последовательного присоединения электронов к молекуле кислорода. В ходе реакций образуются сначала супероксидный анион (или перекись), затем очень реакционноспособный гидроксильный радикал и другие кислородные радикалы. Они оказывают воздействие на различные структурные компоненты клеток: ДНК (повреждение азотистых оснований); белки (окисление аминокислотных остатков, образование ковалентных «сшивок»); липиды; мембранные структуры.

Отщепляя электроны от многих соединений, АФК превращают их в новые свободные радикалы, и инициируют тем самым цепные окислительные реакции. Если в реакцию с АФК вступают ненасыщенные жирные кислоты плазматических мембран, говорят о перекисном окислении липидов.

Продукты ПОЛ необходимы при синтезе некоторых гормонов и белков (например, в синтезе тироидных гормонов), образования простагландинов (ПРГ), для функционирования фагоцитов, для регуляции проницаемости и состава липидов мембран, скорости пролиферации клеток и их секреторной функции.
Увеличение скорости ПОЛ и концентрации продуктов ПОЛ приводит к повреждению мембраны и смерти клетки, так как АФК и продукты ПОЛ в большом количестве:
1) нарушают структуру мембранных фосфолипидов;
2) повреждают ДНК и РНК, вызывая мутации;
3) вызывают денатурацию белков;
4) увеличивают концентрацию внутриклеточного кальция, вызывая деполимеризацию актина и т.д.

Упомянутые мною раньше мутации протоонкогенов метаболического характера(геномная нестабильность) во многом связаны с действием АФК и продуктов ПОЛ.

albert52
02.02.2020, 23:21
Продолжим.

Недостаточное митохондриальное дыхание (потр***ение О2), ответственное за гипероксию в предопухолевых и неопластических клетках, должно приводить к повышению в этих клетках содержания различных АФК, так как увеличение концентрации О2 стимулирует внутриклеточную продукцию его активных форм митохондриями, микросомами, пероксисомами, ферментами цитозоля, а также в ходе неферментативных процессов окисления, прежде всего липидов. Подсчитано, что ДНК подвергается нападению свободных радикалов до 10000 раз в день.

Окислительный стресс – это состояние, вызванное избыточным образованием свободных радикалов в организме. Он наступает уже на ранних стадиях канцерогенеза.

Когда молекула теряет электрон (этот процесс называется окислением), она становится реакционно-способным свободным радикалом с электроном, у которого нет пары. Свободный радикал (СР) пытается украсть электрон у ближайшей молекулы, чтобы восстановить нарушенный баланс. Молекула антиоксиданта способна нейтрализовать СР, отдав ему один из своих электронов и не требуя ничего взамен. В отличие от СР она остается стабильной, перераспределяя собственные электроны.

В организме существует система защиты клеток от АФК (система тушения АФК) или антиоксидантная система (АОК). Важнейшей ее частью являются ферменты антиоксидантного действия. Они катализируют реакции, в результате которых токсичные свободные радикалы и перекиси превращаются в безвредные соединения. При этом сами ферменты выходят из реакции химически совершенно устойчивыми, т.е. не изменяясь.

Ферменты антиоксидантного действия - супероксиддисмутаза (СОД), каталаза и глутатионпероксидаза. СОД и каталаза образуют антиоксидантную пару. Супероксиддисмутаза катализирует реакцию взаимодействия двух супероксидных радикалов друг с другом, превращая их в менее токсичную перекись водорода (H2O2) и кислород:

O2- + O2- + 2H+ = > H2O2 + O2.

Поскольку перекись водорода H2O2, также является радикалом и оказывает повреждающее действие, в клетке происходит ее постоянная инактивация ферментом каталазой, которая катализирует расщепление перекиси водорода H2O2 до молекул воды и кислорода и может разложить 44 000 молекул H2O2 в секунду.

Глутатионпероксидаза обезвреживает липидные перекиси, обрывая тем самым цепное перекисное окисление липидов (для ее работы необходим селен) .

Помимо антиоксидантов - ферментов, существует ряд веществ иного происхождения, способных блокировать реакции свободно-радикального окисления и восстанавливающих окисленные соединения. Кроме того, для нормального синтеза антиокидантных ферментов, речь о которых шла выше, важно потр***ять достаточное количество минералов и витаминов: марганец важен для синтеза супероксиддисмутазы в митохондриях, где продуцируется большая часть свободных радикалов, витамин С необходим для синтеза каталазы, а производство глутатиона невозможно без пиридоксина (витамин В6), селена и серы.

Весьма эффективные антиоксидантные кооперативы содержатся в растениях. Это растительные полифенолы или биофлавоноиды, которые сообща очень эффективно борются со свободными радикалами. Наиболее мощными антиоксидантными системами обладают растения, которые могут расти в суровых условиях, — облепиха, сосна, кедр, пихта и другие.

albert52
03.02.2020, 04:31
Как я уже упоминал, отщепляя электроны от многих соединений, АФК превращают их в новые свободные радикалы, и инициируют тем самым цепные окислительные реакции. Так возникает второй раунд окислительных реакций в клетке, при этом образующиеся в большом количестве свободные раликалы и, шире, разнообразные электрофильные вещества, способны также атаковать нуклеиновые кислоты и белки, обладающие центрами высокой электронной плотности.

В защите клеток от окислительного и ксенобиотического повреждения центральную роль играет связка белков Keap1 - Nrf2. Фактор транскрипции Nrf2 (связанный с NF-E2 фактор 2) является мощным активатором транскрипции и играет центральную роль в индуцируемой экспрессии многих цитопротективных генов (более 100). Целевые гены Nrf2 участвуют в синтезе глутатиона, элиминации активных форм кислорода (АФК), метаболизме ксенобиотиков, например, путем индукции ферментов глюкуронидации, которые связывают ксенобиотики для экскреции. NRF2 также может влиять на действие лекарств посредством индукции семейства генов, связанных с множественной лекарственной устойчивостью, например, к цисплатину, карбоплатину, 5-фторурацилу и т.д.

Keap1 (Kelch-подобный ECH-ассоциированный белок 1) важен для регуляции активности Nrf2. Он является датчиком содержания электрофильных веществ. При этом интактный гомодимер Keap1 образует структуру вишневого боба, в которой одна молекула Nrf2 связывается с двумя молекулами Keap1, используя два сайта связывания в домене Neh2 Nrf2. Это двухсайтовое связывание является критическим для убиквитинирования Nrf2 (напоминает регуляцию HIF-1).

При нормальных условиях Nrf2 постоянно разлагается через путь убиквитин-протеасома зависимым от Keap1 способом. Так, в спокойном состоянии Nrf2 постоянно разлагается с периодом полураспада <20 мин. Этот быстрый оборот поддерживает клеточный Nrf2 на низком уровне.
При воздействии стресса Keap1 инактивируется путем прямой модификации остатков тиола цистеина, а затем Nrf2 стабилизируется, транслоцируется в ядро ​​и активирует транскрипцию различных генов детоксикации и антиоксидантных ферментов. В присутствии электрофилов или АФК деградация Nrf2 прекращается, стабилизированный Nrf2 накапливается в ядрах, гетеродимеризуется с небольшими белками Maf и активирует гены-мишени для цитопротекции через элементы антиоксидантного ответа (ARE) / (EpRE). Таким образом, уровень белка Nrf2 регулируется процессами деградации, а индуцибельная стабилизация Nrf2 является сущностью клеточного ответа на окислительные и электрофильные стрессы.

Различные стрессоры могут по-разному реагировать с различными остатками цистеина в KEAP1, что позволяет предположить, что конкретные остатки цистеина, индивидуально или в комбинации, вносят уникальный вклад в общую активность KEAP1. Эта точная настройка, называемая «цистеиновым кодом», указывает на то, что модуль NRF2 – KEAP1 не является простым переключателем «включено» или «выключено», но вместо этого может по-разному реагировать на различные схемы образования аддукта различными стрессорами.

Отметим, что модуль NRF2 – KEAP1 является частью целой сети белков (тиоловый протеом), чья активность регулируется путем модификации остатков цистеина в ответ на окислительно-восстановительное состояние клеток. Реакционная способность этих остатков цистеина может модулироваться не только окислительно-восстановитель -ными реакциями, но также NO или гуанином. Классическими примерами таких белков являются множественные протеинтирозинфосфатазы, которые содержат активные остатки цистеина в своих активных центрах и влияют на многие аспекты жизни клеток.

Регуляция уровней Nrf2 с помощью Keap1 отменяется при некоторых раковых заболеваниях человека вследствие мутаций в генах NRF2 и KEAP1 . Эти мутации достаточны для того, чтобы привести к конститутивной активации NRF2 путем нарушения взаимодействия NRF2-KEAP1. Так, мутации в NRF2 обнаруживаются в основном в плоскоклеточных карциномах пищевода, кожи, легких и гортани. Мутантные белки обычно сохраняют свою транскрипционную активность, но теряют способность связываться с KEAP1.

Мутации в KEAP1 человека были обнаружены в карциномах легких, желчном пузыре, яичнике, груди, печени и желудка; эти мутации приводят к конститутивной активности NRF2. Кроме того, мутации KEAP1 могут иметь онкогенные роли помимо активации NRF2, такие как дисфункциональное связывание KEAP1 с другими белками, которые регулируют пролиферацию и апоптоз. Например, KEAP1 дикого типа связывается с ингибитором киназы NF-κB (IKK), что усиливает протеасомную деградацию IKK и приводит к активации NF-κB, являющегося онкогеном (см. выше). Это ингибирование про-онкогенной транскрипционной активности NF-κB теряется, когда KEAP1 мутирует.
Хотя частоты мутаций NRF2 и KEAP1 в опухолях часто бывают низкими, были обнаружены другие способствующие механизмы - такие как эпигенетическое гиперметилирование промоторов KEAP1 или NRF2, и нарушения уровней экспрессии KEAP1 и NRF2 часто наблюдаются при раке. Также такие распространенные онкогены, как KRAS , BRAF и MYC усиливают транскрипцию и активность NRF2, что приводит к увеличению цитопротекторной активности в клетке и, что особенно важно, к снижению уровня АФК.

Таким образом, если такие лекарства как сульфорафан и куркумин, активирующие Nrf2, используются для профилактики рака, то повышенная экспрессия генов-мишеней Nrf2 дает преимущества в отношении устойчивости к стрессу и пролиферации для уже раковых клетках. Отмитим, что в настоящее время в Китае проводятся исследования по химиопрофилактике рака человека с использованием богатых сульфорафаном экстрактов брокколи. С другой стороны, открытие и разработка селективных ингибиторов Nrf2 должны внести серьезный вклад в улучшение терапии рака.

Eva-2901
03.02.2020, 10:00
Продолжим.


Добрый день!Всегда радуюсь, когда доктора в силе вылечить больных и вдвойне рада за тех, кого вылечили. У моей знакомой тоже вывили онкологию, это был мягко говоря шок, удар для всей ее семьи и друзей.Все хотели помочь ей и не знали как.Кто-то искал клинику, кто- то докторов, кто чем мог.Докторов было много, но браться никто не хотел, после первого же посещения.Кто-то после нескольких процедур (доктора) опускал руки. Через знакомых, семь рукопожатий, порекомендовали доктора, как оказался- отличный врач.
Да, и стоит он не дешево, но на жизнь жалеть не стоит!У него все курсы проходила, и проходит еще, состояние значительно улучшилось, аппетит появился, сон улучшился и даже цвет лица поменялся на здоровый!Кто-то сейчас читает и смеется, но тут ничего смешного нет, кто не сталкивался с этим не поймет, Даже врагу такого не пожелаешь.
Доктор говорит, что идет на поправку, естественно не все сразу, но у знакомой ее Лена зовут, есть все шансы.Пока Лена находилась под присмотром у доктора все ее друзья, знакомые и семья подружились мед персоналом и лечащим врачом. Ничего не подумайте,это не реклама и не спам, просто хочу всем помочь, кто оказался в такой ситуации.Обратитесь к хорошему доктору, который сможет вам помочь.
Глебовский Роман Владимирович -доктор в большой буквы, я с Леной не лучшие подруги, но в трудный момент все стараются чем- то помочь, вот и рекомендую доктора.Номер телефона тоже могу оставить 8-926-529-80-57, кому реально нужна помощь в данной сфере обращайтесь.Если кому-то он поможет я еще больше буду рада, так как +1 человек(или несколько) кому я помогла, как говорят у меня на работе +(плюсик) тебе в карму.Не опускайте руки, просите помощи, обращайтесь кому и куда только возможно.Всем счастья, здоровья и удачи!

albert52
04.02.2020, 01:06
Продоложим.

Полностью злокачественные клетки, которые характеризуются своей автономией, очень отличаются от диспластических (но еще не полностью неопластических) клеток в предраковых опухолях. Предраковые клетки находятся под гораздо большим контролем воспалительных клеток и других стромальных клеток в их микроокружении, и, кроме того, они еще не достигли уровня повреждения ДНК, который делает их автономными. Следовательно, усиление активности NRF2, которое уменьшит как воспалительный, так и дополнительный окислительный или мутагенный стресс, оказывается полезным во время предраковых состояний и, следовательно, для подавления канцерогенеза.

Таким образом, биологический контекст времени важен: активность NRF2 желательна (для организма-хозяина) на ранних стадиях онкогенеза, когда хозяин стремится контролировать предраковый канцерогенез, но нежелательна на более поздних стадиях онкогенеза. Канцерогенез является континуумом, и может быть много разных предраковых генотипов и фенотипов в каждом восприимчивом органе.

Аналогичная ситуация существует с трансформирующим фактором роста-β (TGFβ), который может подавлять ранние стадии канцерогенеза, но усиливать рост опухоли и метастазирование на более поздних стадиях или участвовать в разное время в инициировании или прекращении воспалительного процесса.

Фумарат образует аддукты с KEAP1 и, таким образом, является активатором NRF2. В цикле Кребса внутриклеточный фумарат быстро метаболизируется в малат с помощью фермента фумаратгидратазы (FH). Гомозиготные мутации FH являются известной причиной папиллярной карциномы почек у людей. Потеря активности фермента FH вызывает накопление высоких уровней фумарата в почке, который затем образует аддукты с KEAP1 путем тиоалкилирования. Это приводит к увеличению активности NRF2, которая предположительно является причиной рака почки. «Доза делает яд», аксиома, приписываемая Парацельсу, подходит для этого активатора NRF2.

Вообще, классическая -α, β-ненасыщенная кетоновая (еноновая) структура молекулы фумарата является парадигматической для многих лекарств, которые активируют NRF2.

Nrf2 перенаправляет глюкозу и глютамин в анаболические пути, особенно при устойчивой активации передачи сигналов PI3K-Akt. Недавно было показано, что GSK-3 (гликогенсинтазакиназа 3) способствует Keap1-независимой деградации Nrf2. Так как Akt фосфорилирует GSK-3 и тормозит его активность, активная передача сигналов PI3K-Akt должна стабилизировать Nrf2 посредством подавления GSK-3.
Nrf2 в свою очередь активирует Akt, а активный путь PI3K-Akt увеличивает ядерное накопление Nrf2 и позволяет Nrf2 стимулировать метаболические активности, которые поддерживают пролиферацию клеток в дополнение к усилению цитопротекции, например, способствовать синтезу пуриновых нуклеотидов и метаболизму глютамина.

Генетическая инактивация PTEN, приводящая к конститутивной активации передачи сигналов PI3K-Akt, была обнаружена во многих раковых опухолях человека. Многие онкогенные сигналы также активируют сигнальный путь PI3K-Akt. Это демонстрирует петлю положительной обратной связи между путями Pten-PI3K-Akt и Keap1-Nrf2, которая, по-видимому, является одним из наиболее существенных механизмов, способствующих злокачественной эволюции рака. Медикаментозная отмена обратной связи будет эффективной стратегией противораковой терапии.

Было показано, что несколько микроРНК (miRNAs) участвуют в регуляции NRF2 , включая miR-144, miR-28 и miR-200a. miRNAs - это короткие одноцепочечные некодирующие РНК, которые регулируют экспрессию генов путем специфического связывания последовательности с мРНК, либо ингибируя трансляцию, либо вызывая деградацию мРНК. Так, miR-144 была первой микроРНК, которая была полностью охарактеризована как негативный регулятор экспрессии Nrf2. miR-200a в свою очередь отрицательно регулирует стабильность мРНК KEAP1 и уровень белка Keap1, что свидетельствует о том, что miR-200a косвенно усиливает Nrf2.

Белок p62/SQSTM1 - это каркасный белок, который может связываться с различными убиквитин-мечеными мишенями и направлять их на пути протеасомной или лизосомальной деградации в зависимости от их посттрансляционных модификаций. Он напрямую взаимодействует с доменом Kelch Keap1 через его мотив STGE, нарушая тем самым фиксацию комплекса Keap1-Nrf2. Такое аберрантное накопление Nrf2 путем дерегуляции его аутофагии является p62-зависимым и Keap1-Cys - независимым, то есть неканоническим механизмом активации Nrf2. При этом возникает петля положительной обратной связи, обусловленная Nrf2-опосредованной активацией экспрессии гена p62. Кстати, после неканонической p62-опосредованной активации Nrf2 NQO1, транскрипционная мишень Nrf2, стабилизирует опухолевый супрессор p53.

Отметим еще, что p62/SQSTM1 входит в состав ДНК-вакцин, проходящих сейчас клиническую апробацию.

albert52
08.02.2020, 10:34
Остановимся поподробней на окислительно-восстановительных процессах, играющих важнейшую роль как в нормальном функционировании клетки, так и в процессах канцерогенеза.

Недостаточное митохондриальное дыхание (потр***ение О2), ответственное за гипероксию в предопухолевых и неопластических клетках, должно приводить к повышению в этих клетках содержания различных АФК, так как увеличение концентрации О2 стимулирует внутриклеточную продукцию его активных форм митохондриями, микросомами, пероксисомами, ферментами цитозоля, а также в ходе неферментативных процессов окисления, прежде всего липидов. Супероксид (О2–) создается на обеих сторонах внутренней мембраны митохондрий, таким образом возникая в матриксе и межмембранном пространстве (ММП). Супероксид может быть преобразован в пероксид водорода (Н2О2) при помощи ферментов супероксид дисмутазы (SOD1 для ММП, SOD2 для матрикса). Получившийся пероксид водорода может пересекать мембраны и проникать в цитоплазму, выполняя сигнальную функцию для окислительно-восстановительных процессов. Супероксид сам по себе не может попасть в цитоплазму, но может попасть в нее через специальные мембранные каналы. Реактивные виды кислорода кроме сигнальной функции могут окислять и модифицировать другие молекулы в митохондрии, которые затем попадут в цитоплазму. Реактивные виды кислорода приводят к ответным реакциям и изменениям в ядре клетки.

Супероксид может прореагировать с оксидом азота (NO) с образованием пероксинитрита (ONOO–). Это предотвратит создание пероксида водорода (H2O2) и может ограничить доступность NO в клетке. Пероксид водорода уничтожается ферментом глутатион пероксидаза (Gpx) в матриксе и пероксиредоксинами (Prdx) в матриксе и других частях клетками. Пероксиредоксины способствуют формированию дисульфидных связей в белках. В присутствии переходных металлов, пероксид водорода может сформировать повреждающие гидроксильные радикалы.

Активные формы кислорода, таким образом, очень нужны, но в «разумных» количествах. Тонкое место – супероксид дисмутаза. В небольших количествах реактивные виды кислорода будут запускать восстановительные процессы в клетке, в больших количествах – SOD-ферменты не справятся и нашим клеткам (в первую очередь митохондриям) придется «держать удар».

Далее.

В организме основным источником АФК являются ферментативные реакции, но в ряде случаев свободные радикалы образуются случайно, как продукт "утечки" отдельных электронов.

1. Основным источником случайных АФК является дыхательная цепь митохондрий. Все ее комплексы (особенно коэнзим Q) способны "терять" электроны, которые используются для образования АФК. Дополнительными индукторами образования являются гипоксия, различные ингибиторы дыхательных ферментов или АТФ-синтазы, все, что замедляет скорость движения электронов и передачу их на кислород на 4-м комплексе дыхательной цепи. Это приводит к «сбрасыванию» электронов на кислород на более ранних этапах, т.к. у других дыхательных ферментов имеется большее сродство к кислороду, которое в норме проявляется слабо.

Важно отметить, что в норме генерация АФК в митохондриях является хорошо регулируемым процессом. Так, семейство митохондриальных белков-разобщителей (UCP) играет важную роль в снижении уровня АФК в клетке через «принудительное» движение электронов вдоль дыхательной цепи. В результате такого контроля поток электронов в цепи не замедляется, т.к. он необходим для восполнения электро-химического градиента.

Некоторое количество АФК синтезируется с участием цитохромов Р450 и b5 в микросомальном окислении. Это окисление происходит в мембранах эндоплазматического ретикулума всех тканей, кроме мышечной, и используется при синтезе и метаболизме ряда веществ (желчных кислот, эйкозаноидов, холестерола, стероидных гормонов и т.п.), или для окисления веществ при их обезвреживании. В одной из реакций происходит спонтанная передача электрона на присоединившийся кислород и образуется супероксид анион-радикал.

Также при спонтанной дисмутации двух супероксид анион-радикалов возможно образование синглетного кислорода и пероксида водорода.

Некоторые ферменты при осуществлении своей реакции производят активные формы кислорода. При этом свободные радикалы могут быть как целевыми продуктами, например, для НАДФ-оксидазы, миелопероксидазы, NO-синтазы, так и появляться как обязательный, но все-таки побочный продукт реакции (моноаминоксидаза, лизилоксидаза, ксантиноксидаза, циклоксигеназы, липоксигеназы, оксидазы D- и L-аминокислот).

NO-синтаза – группа НАДФН-зависимых изоферментов, катализирующих сложную многоходовую реакцию окисления аргинина с образованием оксида азота (NO). Выделяют нейрональную, эндотелиальную и индуцируемую (в сердечно-сосудистой и иммунной системах) формы фермента.

Также в клетках осуществляются реакции целенаправленного образования органических форм кислородных радикалов – гидроперекисей жирных кислот посредством липоксигеназ и циклооксигеназ. И хотя гидроперекись способна спонтанно вызывать образование новых свободных радикалов (перекисное окисление липидов), в данном случае целью процесса является биосинтез эйкозаноидов – простагландинов, тромбоксанов и лейкотриенов.

Так, липоксигеназы – железосодержащие ферменты, присоединяющие два атома кислорода к полиненасыщенным жирным кислотам. Продуктом реакции является гидропероксид жирной кислоты, который в дальнейшем используется для синтеза лейкотриенов, важнейших регуляторов активности лейкоцитов. Циклооксигеназы присоединяют к полиненасыщенным жирным кислотам четыре атома кислорода с образованием гидроперекиси – простагландина G (PgG), который далее идет на образование других простагландинов, простациклинов и тромбоксанов.

Ряд реакций метаболизма, предназначенные для образования или уборки каких-либо веществ, сопровождаются образованием активных форм кислорода как побочного продукта реакции.
Многие такие реакции катализируются оксидазами по однотипной схеме: для реакции необходима молекула кислорода О2, один атом кислорода от молекулы О2 включается в структуру субстрата и используется для формирования оксогруппы (C=O), другой атом кислорода связывается с H2O с образованием H2O2.

1. Моноаминооксидаза, ФАД-содержащий фермент, расположенный на внешней мембране митохондрий, окисляет биогенные амины (гистамин, серотонин, дофамин) в альдегиды. На эту реакцию соответствующими клетками расходуется до 2% потр***яемого кислорода.

2. Оксидазы D- и L-аминокислот локализуются в пероксисомах клеток, в первую очередь печени и почек, содержат флавиновые коферменты – ФАД (оксидаза D-аминокислот) и ФМН (оксидаза L-аминокислот). Их реакция заключается в прямом окислительном дезаминировании аминокислот, побочным продуктом является H2O2.

Полиаминоксидазы, ФАД-зависимые ферменты пероксисом печени, катализируют окислительное дезаминирование полиаминов (спермина, спермидина) с одновременным образованием H2O2 и отщеплением аминоальдегидов.

Ксантиндегидрогеназа – фермент, содержащий в своем составе ФАД, молибден и железо. Она принимает участие в конечных реакциях катаболизма пуриновых нуклеотидов АМФ и ГМФ – превращает гипоксантин и ксантин в мочевую кислоту. В аэробных условиях фермент использует в качестве акцептора электронов НАД с образованием НАДН.
Однако в клетке может происходить превращение фермента в О2-зависимую ксантиноксидазу. Превращение может запускаться разными механизмами, включая окисление HS-групп остатков цистеина в ферменте или ограниченный протеолиз. Образуемый ксантиноксидазой H2O2 составляет существенную долю в общей массе активных форм кислорода клетки.

Агрессивность свободных радикалов надо контролировать. По природе и действию выделяют ферментативные и неферментативные антиоксиданты:

Каталаза, гемсодержащий фермент, присутствует в пероксисомах всех клеток человека и обладает чрезвычайно высокой молекулярной активностью. В эритроцитах она находится в цитозоле и защищает гемоглобин от окисления.

Глутатионпероксидаза, как и каталаза, является гемсодержащим ферментом и обезвреживает H2O2. Обладая в 1000 раз большим сродством к пероксиду водорода, чем каталаза, она эффективна даже при низких его концентрациях.
Особенностью глутатионпероксидазы является наличие в активном центре фермента селеноцистеина, т.е. такого цистеина, в котором сера заменена на селен. В качестве восстановителя для H2O2 фермент использует трипептид глутатион, содержащий цистеин с его SH-группой. Окисленный в результате реакции глутатион восстанавливается глутатионредуктазой.

Глутатион-S-трансфераза обеспечивает взаимодействие различных веществ с восстановленным глутатионом. Существуют три вида фермента – митохондриальный, микросомальный и цитозольный (у млекопитающих до 10% всех белков цитоплазмы). Мишенью фермента являются различные ксенобиотики и пероксиды липидов.

При реакции восстановленного глутатиона с перекисью жирной кислоты происходит восстановление окисленной группы жирной кислоты до спирта и воды. В случае реакций обезвреживания ксенобиотиков фермент осуществляет конъюгацию вещества с глутатионом, а не восстановление перекисной группы.

Пероксиредоксины – антиоксидантные ферменты, контролирующие уровень цитокин-индуцированных пероксидов, участвующих в передаче клеточных сигналов. В активном центре фермента находятся SH-группы цистеина, которые окисляются до R-SOH состояния пероксидным субстратом (H2O2 или липидной гидроперекисью)

albert52
19.04.2020, 16:56
Продолжим конкретные формы рака с рассмотрения рака толстой кишки (РТК). В толстой кишке происходит миграция клеток - эпителиальные клетки, делящиеся в нижней половине кишечных крипт, мигрируют на поверхность, откуда они в конце концов выталкиваются в просвет кишки. Эпителий теряет способность к созреванию по мере миграции клеток из глубоких отделов крипт к поверхности (феномен отсутствия поверхностного созревания).

В основании крипт в ободочной и прямой кишке встречаются клетки незрелого вида, которые, как предполагается, служат стволовыми клетками эпителия. По мере того как эти клетки мигрируют к устью крипты, они сначала заполняются секреторными вакуолями; однако, еще не достигнув поверхности, они теряют вакуоли и становятся типичными цилиндрическими клетками, микроворсинки которых образуют щеточную каемку. В аноректальном канале, в области границы ректального и анального эпителия, кишечные крипты не обнаруживаются.

Распостраненность рака толстой кишки диктует необходимость выявления их на этапе предраковых изменений. До недавнего времени считалось, что в качестве таковых могут выступать только так называемые диспластические полипы (аденомы тубулярные, тубуло-ворсинчатые, ворсинчатые), причем чем более выражен ворсинчатый компонент, тем интенсивнее выражена дисплазия, а значит, тем выше потенциал злокачественности. Ворсинчатая аденома кишечника может достигать 10 см в диаметре. Впрочем, хотя ворсинчатые аденомы гораздо чаще, чем тубулярные, содержат очаги инвазии, но сам по себе ворсинчатый тип при небольших размерах аденомы не повышает риск развития рака.

Аденомы — это внутриэпителиальные опухоли, варьирующие от маленьких полипов на ножке до крупных плоских образований. Аденомы имеют 50% жителей западных стран старше 50 лет. Аденомы одинаково часто наблюдаются у мужчин и женщин, их частота коррелирует с частотой аденокарцином толстой кишки, при этом локализация и распределение аденом и аденокарцином в толстой кишке сходна.
Цитологическими признаками дисплазии эпителия в полипах являются гиперхромия ядер, его удлинение и псевдостратификация (псевдослои). Эти изменения лучше всего различимы в поверхностных участках аденомы и часто сопровождаются уменьшением количества бокаловидных клеток.

Представители другой группы новообразований — гиперпластические полипы — считались не способными к перерождению в аденокарциному. Однако сегодня доказано, что они представляют собой гетерогенную группу образований с различным неопластическим потенциалом. Самые опасные — зубчатые образования толстой кишки, чаще всего в прямой. Зубчатая аденома прямой кишки имеет характерную поверхность, на которой располагаются зазубренные элементы эпителия. Зубчатость формируется за счет «наползания» пролиферирующих клеток друг на друга, предположительно вследствие угнетения апоптоза. Гистологически она хорошо видна в просвете кишечных крипт.

Аденомы могут образовываться в любом отделе толстого кишечника. Исследования дают следующие результаты частотности локализации аденоматозных полипов: 25 % — прямая кишка; 25 % — сигмовидная кишка; 18 % — нисходящая ободочная; 13 % — восходящая ободочная; 11 % — поперечная ободочная; 7 % — слепая. Данная патология встречается довольно часто, она составляет от 25 % до 40 % от всех новообразований полиповидного типа. Причем 15 – 58 % — это поражение множественными аденомами, процентное содержание которых увеличивается с возрастом.

Если говорить о возрастной группе 50 – 60 – летних людей, поражены этим заболеванием будут 40 % женщин и 50 % мужчин. Люди в возрасте до 30 лет редко сталкиваются с этим заболеванием, поэтому его оправданно считают болезнью пожилого населения. Семейный полипоз, когда количество полипов варьируется в рамках 30 – 100, сегодня выявляется все чаще.

Внутрислизистая карцинома развивается в том случае, когда диспластические эпителиальные клетки проникают через базальную мембрану в собственную или мышечную пластинку слизистой оболочки. Поскольку в слизистой оболочке толстой кишки отсутствуют лимфатические сосуды, внутрислизистая карцинома обладает очень низким метастатическим потенциалом, поэтому тотальная полипэктомия является эффективным методом лечения.

Добавлено через 47 минут
Остановимся поподробнее на полипах.

Гиперпластические полипы (НР) составляют около 75 % всех зубчатых новообразований, и на них приходится от 28 до 42 % всех полипов толстой кишки. Чаще всего они локализуются в левой половине толстой кишки, преимущественно в дистальных отделах, хотя 10—15% располагаются в восходящей и поперечной ободочной кишке, могут носить множественный характер и не имеют клинических проявлений.

Из гиперпластических полипов чаще всего встречается микровезикулярный тип, характеризующийся наличием мелких капель муцина в цитоплазме большинства клеток. Богатый бокаловидными клетками тип встречается несколько реже и преимущественно построен из клеток с обильной светлой цитоплазмой, заполненной муцинами. Пролиферативная зона и зубчатость в нем выражена сравнительно слабо.

В гиперпластическом полипе возможна только минимальная клеточная атипия. Отметим, что микровезикулярный тип может быть предшественником зубчатой аденомы/полипа на широком основании (sessile serrated adenoma/polyp — SSA/P), а богатый бокаловидными клетками — традиционной зубчатой аденомы (TSA). Любой полип, располагающийся проксимальнее селезеночного изгиба и имеющий размер более 1 см, рекомендуется расценивать как SSA/P.

Гистологически SSA/P характеризуется распространением зубчатости на всю глубину крипт вплоть до базальных отделов и деформацией крипт с появлением признаков патологического ветвления, расширения базальных отделов, горизонтального роста вдоль мышечной пластинки с образованием расширений в виде буквы L или перевернутой буквы Т. Зубчатость, как и в гиперпластических полипах, обусловлена выбуханием апикальной части цитоплазмы в просвет крипты. Зона пролиферации асимметрична, часто расположена на одной из стенок, смещена в среднюю треть крипты.

Согласно современным рекомендациям диагностическим критерием для SSA/P считается наличие даже одной измененной крипты при ее зубчатости. Показано, что 15% SSA/P прогрессируют в колоректальную аденокарциному или дисплазию высокой степени. Есть предположение, что существует последовательность: HP → SSA/P → SSA/P с дисплазией → рак. Чаще всего этот каскад наблюдается в проксимальных отделах толстой кишки.

Частота встречаемости SSA/P составляет 2—5% колоректальных полипов и 15—25% всех зубчатых образований. Любой полип, располагающийся проксимальнее селезеночного изгиба и имеющий размер более 1 см, рекомендуется расценивать как SSA/P.

Описано 2 различных генетических пути канцерогенеза в толстой кишке. Первый — это путь АРС/ß-катенина, который связан с геном WNT и классической последовательностью аденома-карцинома. Второй — путь микросателлитной нестабильности, который связан с дефектом системы репарации ДНК. Оба пути приводят к постепенному накоплению многочисленных мутаций, но вовлеченные гены и механизмы, посредством которых накапливаются мутации, различны.

Классическая последовательность аденомакарциномы, которая наблюдается почти в 80% спорадических опухолей толстой кишки, обычно обусловлена мутациями АРС на ранних стадиях опухолевого процесса. Для развития аденомы обе копии гена АРС должны быть функционально неактивными как вследствие мутации, так и из-за эпигенетических воздействий. АРС служит ключевым отрицательным регулятором ß-катенина, являющегося компонентом сигнального пути WNT. В норме белок АРС связывает ß-катенин и вызывает его разрушение. При утрате функции АРС ß-катенин накапливается и переносится в ядро, где активирует транскрипцию генов Myc и циклина D1, которые активируют пролиферацию.

Последующие дополнительные мутации, включая активирующие мутации гена Kras, приводят к активации роста и препятствуют апоптозу клеток. Мутация Kras является последним событием в цепи канцерогенеза. Это подтверждается тем, что эти мутации присутствуют только в 10% аденом диаметром менее 1 см, но обнаруживаются в 50% аденом диаметром более 1 см и в 50% инвазивных аденокарцином.

Прогрессирование опухоли также сопровождается мутациями других генов-супрессоров опухолей — SMAD2 и SMAD4, которые являются эффекторами сигнального пути TGF-ß. Поскольку сигнал TGF-ß в норме подавляет клеточный цикл, утрата этого гена может приводить к неконтролируемому клеточному росту.

Мутации гена-супрессора опухолей р53 определяются в 70-80% случаев рака толстой кишки, но редко наблюдаются при аденомах, позволяя предположить, что мутации р53 возникают на поздних этапах прогрессирования опухоли. Причиной утраты функций р53 и других генов -супрессоров опухолей часто являются делеции (делеция — потеря сегмента хромосомы, приводящая к хромосомному дисбалансу), указывающие на то, что хромосомная нестабильность — типичный признак пути АРС/ß-катенина.

albert52
19.04.2020, 21:13
У пациентов с нарушением работы системы репарации ошибок репликации ДНК вследствие утраты генов, исправляющих эти ошибки, в микросателлитных последовательностях накапливаются мутации. Такое состояние называют микросателлитной нестабильностью (мутаторным фенотипом). Эти мутации, как правило, являются «молчащими», т.к. микросателлиты (микросателлиты или простые короткие (тандемные) повторы — варьирующие участки (локусы) в ядерной ДНК и ДНК митохондрий, состоящие из повторяющихся фрагментов длиной от 1 до 6 пар оснований) обычно расположены в некодирующих участках ДНК.

Однако некоторые микросателлитные последовательности располагаются в кодирующем участке или промоторной зоне генов, участвующих в регуляции клеточного роста, например генов рецептора TGF-ß II типа и проапоптотического белка ВАХ. TGF-ß, как я уже yпоминал, подавляет пролиферацию эпителиальных клеток толстой кишки, утрата его, а также ВАХ может повышать выживаемость генетически аномальных клеточных клонов. Здесь также часто определяются мутации проапоптического онкогена BRAF, и сайленсинг (подавление транскрипции) различных групп генов вследствие гиперметилирования островков CpG. Такой метиляторный фенотип выявляется у 47—60% гиперпластических полипов, 75—77% SSA/P и 31—80% TSA.

Таким образом, комбинация микросателлитной нестабильности, мутации BRAF и метилирования специфических мишеней, таких как MLH1 - гена репарации ДНК, являются отличительными признаками этого пути канцерогенеза.

Морфологически невозможно определить молекулярные изменения, которые приводят к канцерогенезу, однако мутаторный фенотип обычно встречается у неполиповидных (плоских – flat) малых зубчатых аденомах, которые часто встречаются у человека, и некоторые из них могут быстро прогрессировать в рак (малигнизироваться), несмотря на то, что размер их остается небольшим. При отсутствии аденоматозного строения такие образования считаются раком «de novo», а их патогенез называют «зубчатым путем канцерогенеза».

В целом, карциномы толстой кишки с мутацией BRAF имеют худший прогноз, чем Kras-мутантные, а колоректальные карциномы, развившиеся по зубчатому пути, требуют особого режима химиотерапии.

Такие опухоли, так же как и опухоли с метилированием островков CpG, часто локализуются в проксимальном отделе ободочной кишки. Но в целом общие гистологические характеристики аденокарцином дистального и проксимального отделов толстой кишки сходны. Большинство опухолей состоят из высоких цилиндрических клеток, напоминающих диспластичный эпителий, обнаруживаемый в аденомах.

Низкодифференцированные опухоли и опухоли с муцинозной дифференцировкой имеют н***агоприятный прогноз, определяемый двумя наиболее значимыми факторами — глубиной инвазии опухоли и наличием метастазов в лимфоузлах. Инвазия в мышечную оболочку и метастазы в лимфатических узлах значительно снижают выживаемость.

albert52
07.05.2020, 14:13
Рак поджелудочной железы (РПЖ) — злокачественное новообразование, исходящее из эпителия железистой ткани или протоков поджелудочной железы. Обычно опухоль поражает головку железы (50-60 % случаев), тело (10 %), хвост (5-8 % случаев). Также наблюдается полное поражение поджелудочной железы — 20-35 % случаев. Для РПЖ с начала появления клинических симптомов характерно быстрое и агрессивное течение. Сами симптомы часто не специфичны и не выражены, поэтому на момент постановки диагноза менее 20% злокачественных опухолей поджелудочной железы являются операбельными.

Если опухоль поражает головку железы, то для дифференциации появляющейся желтухи используют синдром Курвуазье: при пальпации правого верхнего квадранта живота обнаруживается желчный пузырь, увеличенный вследствие давления желчи.

Рак поражает преимущественно людей пожилого возраста, одинаково часто мужчин и женщин. Факторами риска рака поджелудочной железы являются употр***ение спиртных напитков, курение (считают, что до 25—33% случаев рака ПЖ связано с курением), обилие жирной и острой пищи, избыточное употр***ение в пищу, особенно в жареном и копченом виде, животных жиров и мясных продуктов, которые содержат канцерогены (тетрациклические амины и полициклические ароматические гидрокарбоны), сахарный диабет и цирроз печени.
К предраковым заболеваниям относятся аденома и киста поджелудочной железы, а также хронический панкреатит. Пациенты с хроническим панкреатитом более 5 лет имеют более чем 14-кратный риск развития рака поджелудочной железы по сравнению с общей популяцией.

Значительным прогрессом в диагностике рака поджелудочной железы на ранней стадии является эндосонография (эндоскопический ультразвук). В отличие от обычного УЗИ, для эндосонографии используется гибкий эндоскоп с видеокамерой и ультразвуковым датчиком, который можно ввести в кишку непосредственно к исследуемому образованию. При раке поджелудочной железы эндоскопический ультразвук позволяет установить диагноз в 90—95% случаев на самой ранней стадии. ТИАБ ( тонкоигольная аспирационная биопсия) позволяет выявить опухолевые клетки лишь у 80 % больных РПЖ.

Предложено применение в качестве скрининг‑теста РПЖ определение уровня опухолевых маркеров (ОМ). Достаточно информативным и хорошо изученным является ОМ СА 19‑9, уровень которого при РПЖ, как правило, превышает 100 Е/мл, тогда как при ХП такой уровень наблюдается крайне редко. Но его уровень бывает нормальным на ранних стадиях РПЖ, так как СА 19‑9 и многие другие ОМ – белки эктодермального происхождения, образующиеся у людей, эритроциты которых содержат Lewis‑антиген.

Повышение уровня СЕА (канцерэмбрионального антигена) при РПЖ чаще всего свидетельствует о метастатическом поражении печени. Пациенты, у которых уровень СЕА больше 15 нг/мл, имеют достоверно меньшую выживаемость.

Опухоль представляет собой плотный бугристый узел без чётких границ, на разрезе — белый или светло-жёлтый. Крупные опухоли, как правило, обнаруживаются в хвосте железы, в левом подреберье и при пальпации ошибочно принимаются за увеличенную селезенку. У одной четверти больных присутствуют, кроме основного очага, участки с карциномой in situ. Таким образом, возможно полифокальное возникновение очагов озлокачествления.

Всего насчитывают 5 гистологических форм рака поджелудочной железы, но наиболее распространена аденокарцинома, наблюдающаяся в 80 % случаев рака поджелудочной железы. Чаще всего она исходит из эпителия выводных протоков. Вокруг опухоли железистые элементы подвергаются резкой атрофии, выводные протоки расширены, а окружающая их ткань склерозирована.

Считается, что аденокарцинома в своем развитии имеет некоторую стадийность. Всё начинается с преинвазивной стадии — панкреатической интраэпителиальной неоплазии (PanIN):
PanIN-1, при которой наблюдается интраэпителиальная протоковая гиперплазия;
PanIN-2 — дисплазия низкой степени и
PanIN-3 — выраженная дисплазия протокового эпителия и/или аденокарцинома.

При спорадическом раке в среднем считают 11-12 лет от исходного события, начавшего канцерогенез поджелудочной железы, до развития ракового родительского клона и еще 6,8 года до развития метастатических субклонов в первичном раке, при этом пациенты умирают в среднем 2,7 года спустя. Пациент с первичной опухолью диаметром 1 см имеет вероятность возникновения метастазов на момент постановки диагноза 28%; когда основной размер увеличивается до 2 и 3 см, риск скрытых метастазов возрастает до 73 и 94% соответственно. Средний размер опухоли на момент обнаружения — 5 см. Средняя выживаемость— 16 нед от момента установления диагноза; 1 год живут 17% больных, 5 лет — 1%.

Особенностью РПЖ является выраженный склероз как самой ткани опухоли еще на стадии рак in situ, так и вокруг опухоли, образуя как бы защитный вал. Это обьясняется тем, что на стадии тканевого атипизма вновь образующиеся атипичные протоки (см. ниже) часто тупиковые и агрессивный поджелудочный сок не находя выхода начинает переваривать окружающую ткань железы. В склерозированной ткани мало кровеносных сосудов, в результате чего опухолевые клетки находятся в состоянии постоянной гипоксии и выживают наиболее агрессивные субклоны. А изоляция опухолевых клеток задерживает клинические проявления.

albert52
08.05.2020, 09:10
Молекулярные изменения, которые накапливаются во время канцерогенеза поджелудочной железы, можно классифицировать на ранние (укорочение теломер и активирующие мутации в KRas в PanIN-1), промежуточные (инактивирующие мутации или эпигенетическое молчание CDKN2A в PanIN-2) и поздние (инактивирующие мутации р53 и SMAD4 в PanIN-3) события. Во время формирования PanIN могут также происходить мутации в дополнительных генах. Впрочем наиболее значимо накопление множественных мутаций, а не появление их в определенном порядке.

Наиболее распространенной является мутация в онкогене K-ras (встречается в 90% случаев). Приобретение онкогенной мутации KRas в ацинарных клетках поджелудочной железы приводит к их трансдифференцировке в протоковидные клетки. Этот процесс, называемый ацинарно-протоковой метаплазией (ADM), и формирует PanIN, а сами вновь образующиеся протоки патогенетически можно сравнить с полипами толстой кишки.
Онкогенные KRas могут также модулировать митохондриальный метаболизм и выработку АФК посредством регуляции рецептора трансферрина (TfR1), который высоко экспрессируется в ракe поджелудочной железы. Кроме того, КRas могут вызвать подавление дыхательной цепи комплекса I и III, приводя к митохондриальной дисфункции.

Ген Р16/CDKN2A при РПЖ инактивируется наиболее часто (в 95% наблюдений). Белок р16 играет критическую роль: его инактивация приводит к утрате контроля над клеточным циклом, так как продукт гена p16INK4а ингибирует взаимодействие циклина D с циклин -зависимой киназой 4 (CDK4). В спорадических опухолях INK4a иногда инактивируется гомозиготными делециями и внутригенными мутациями, а в остальном ген INK4a выключается путем метилирования промотора.

Ген-супрессор опухолей DPC4 расположен на хромосоме 18q21 и кодирует ядерный фактор транскрипции Smad 4 - важный элемент TGF-ß сигнального пути. При раке поджелудочной железы DPC4 был инактивирован в 55% наблюдений, а при других злокачественных
опухолях инактивация этого гена происходит очень редко.

Канонический каскад передачи сигналов Smad инициируется фосфорилированием рецептор-регулируемых факторов транскрипции Smad (R-Smads) Smad2 и/или Smad3 активированным ALK5 (Anaplastic Lymphoma Kinase). Это позволяет связывать R-Smad с Smad4 и транслокацию комплекса в ядро, где он может привлекать транскрипционные коактиваторы или корепрессоры к Smad-связывающим элементам (SBE) в промоторах генов-мишеней TGF-β.

Трансформирующий фактор роста (TGF -β) действует как супрессор опухоли во время инициации рака, но как промотор опухоли во время прогрессирования опухоли. Рост опухолевых клеток TGFβ способен ингибировать путем тормозного взаимодействия с циклином D1. Все более очевидно, что TGF-β играет фундаментальную роль в нескольких стадиях прогрессирования опухоли, включая эпителиально-мезенхимальный переход (EMT).

При инвазивной карциноме гиперактивирован сигнальный путь Hedgehog; эта активация может быть зависимой от лиганда Hedgehog (при РПЖ) или из-за мутации Patched (при базально-клеточном раке кожи). Ингибирование этого пути препаратом циклопамином останавливает рост опухоли в эксперименте.

Ген р53. При раке поджелудочной железы инактивация этого гена-супрессора опухолей определяется в 50-70% наблюдений. р53 — это ядерный ДНК-связывающий белок, который влияет на старение клетки и контролирует клеточный цикл, запускает процесс клеточной гибели (апоптоз). Мутации в гене TP53 отменяют его функцию, приводя к генетической нестабильности и прогрессированию опухоли. р53 ингибирует клеточный цикл путем прямой инактивации CDK4 и косвенной инактивации p21, то есть функционирует на переходе G1 / S, блокируя вход в S-фазу, вызванный повреждением ДНК. Потеря p53 связана с анеуплоидией, характерной особенностью карциномы поджелудочной железы.

Forlife
08.05.2020, 10:13
[QUOTE=albert52;452814]Молекулярные изменения, которые накапливаются во время канцерогенеза поджелудочной железы, ......


Сказки про соломенного бычка на молекулярном уровне

albert52
10.05.2020, 09:04
Вставка 6.

В клетке существуют различные сигнальные пути, таких как FGF, Hedgehog, Wnt, TGFß, Notch и др., которые циклично включаются или выключаются. Регуляторный эффект сигнальных каскадов достигается путем активации факторов транскрипции, образующих ген-регуляторные сети, в рамках которых они взаимодействуют друг с другом и регулируют экспрессию генов, расположенных ниже по иерархии, а также экспрессию собственных генов. Основополагающую роль в этих сетях выполняет группа генов, кодирующих мастер-регуляторы, играющие ключевую роль в определении судьбы клеток при развитии организма.

B целом мастер-ген можно охарактеризовать как ген, который экспрессируется в начале развития определенного типа клеток, участвует в их дальнейшей специализации и при аномальной экспрессии может привести к перепрограммированию клеток в другой тип.

При внутриклеточных процессах, происходящих при эмбриогенезе, регенерации поврежденных органов и опухолеобразовании используются одни и те же мастер-регуляторы. Так, в процессе опухолеобразования активируются эмбриональные сигнальные каскады и ген-регуляторные сети, приводящие к трансдифференциации и пролиферации клеток, поддержанию отдельной популяции раковых клеток в стволовом состоянии, появлению у ряда эпителиальных клеток мезенхимальных свойств, способствующих их инвазии и распространению по организму (эпителиально-мезенхимальный переход). Мастер-гены, отвечающие за перечисленные выше процессы, в перспективе могут рассматриваться как маркеры при диагностике рака и как мишени направленной противоопухолевой терапии.

Среди регуляторных генов эмбриогенеза поджелудочной железы можно выделить потенциальные мастер гены PDX1, PTF1A, SOX9, GATA4 и HNF1b, активность которых имеет ключевое значение для развития поджелудочной железы и дисрегуляция которых играет принципиально важную роль при канцерогенезе поджелудочной железы.

В последние 50 лет исследователи, изучающие рак, в основном, сосредоточились на модели, в которой образование рака рассматривается как накопление нарушений, возникающих из-за генетических и молекулярных изменений в соматических клетках, а опухоли интерпретируются как кластеры быстро реплицирующихся мутантных клеток, которые выживают или умирают в соответствии с принципами теории эволюции. Однако например, при изучении трех подтипов эпендидомных опухолей головного мозга было показано, что один подтип имеет внутрихромосомную транслокацию, создающую новый управляющий опухолью ген, у другого типа отсутствуют такие мутации, но есть аберрантные эпигенетические модификации, а у третьего нет ни мутаций, ни эпигенетических аберраций. С другой стороны, были обнаружены тысячи мутаций в связанных с канцерогенезом генах, в том числе в драйверных генах, в эпидермисе нормального века, где исключительно редко развивается рак.

Существует также эмбриологическая теория происхождения рака, согласно которой рак представляет собой аномальное состояние клетки, которое может возникнуть в стволовых клетках взрослого человека, при котором механизм совместного регулирования генов дифференцировки, пролиферации, инвазии клеток и миграции может быть повторно активированным в совершенно неуместном контексте. Так, в поддержании раковых стволовых клеток большую роль играет микроокружение, так наз. "раковые ниши".

Наиболее заметной и специфической особенностью, которая может наблюдаться в этих клетках, является рекапитуляция эмбриональных плюрипотентных сетей и избыточная экспрессия эмбриональных генов. Во время эмбриогенеза сигнальные пути TGF-β, FGFR/MAPK или Akt, Wnt, Notch и sonic hedgehog поддерживают самообновление и плюрипотентность эмбриональных стволовых клеток. Эти пути в конечном итоге активируют три основных фактора транскрипции: Oct3 / 4, SOX2 и Nanog. Эти факторы активируют специфичные гены и поддерживают состояние эмбриональных стволовых клеток путем ингибирования генов дифференцировки.

Во время развития эмбриона и спецификации органа, плюрипотентные гены ингибируются, и гены дифференцировки активируются. Таким образом, во взрослых тканях уровни экспрессии генов «стволовости» Oct3 / 4, SOX2, Nanog и других эмбриональных очень низки. Однако во время инициации и прогрессирования рака эти гены и сети активируются.

Дедифференцировка в раковые стволовые клетки может происходить в ответ на различные факторы, такие как повреждения и стрессовые воздействия, что приводит к возникновению и прогрессированию рака. Так дедифференцировка в стволовые клетки глиомы происходит в ответ на стресс и вызванную гипоксией передачу сигналов HIF1α. Также усиленный гликолиз, характерный для стволовых клеток, хорошо ложится на пролиферативный потенциал раковых клеток (см. выше).

albert52
10.05.2020, 18:40
Продолжим.

Пищеварительные ферменты продуцируются клетками серозного ацинуса в большей экзокринной части поджелудочной железы. Каждый ацинус поджелудочной железы состоит из нескольких серозных клеток, окружающих очень маленький просвет. Ацинарные клетки поляризованы, с округлыми базальными ядрами и апикальными многочисленными гранулами зимогена, типичными для секретирующих белок клеток. Ацинусы окружены лишь небольшим количеством соединительной ткани с фибробластами.

Каждый ацинус дренируется коротким интеркалированным протоком с одинарным плоским эпителием. Клетки этих небольших протоков простираются в просвет ацинуса в виде небольших бледно-окрашенных центроацинарных клеток , уникальных для поджелудочной железы и выделяют большой объем жидкости, богатой HCO3 - (бикарбонат-ионы), которая которая увлажняет, очищает и подщелачивает ферментативную секрецию ацинусов.

Эти пищеварительные ферменты включают в себя несколько протеаз, альфа-амилазы, липазы и нуклеазы ( ДНКазы и РНКазы ). Протеазы секретируются как неактивные зимогены ( трипсиноген, химотрипсиноген, проэластазу, калликреиноген и прокарбоксипептидазы). Так, ингибитор трипсина совместно упаковывается в секреторные гранулы с трипсиногеном, который расщепляется и активируется энтеропептидазами в двенадцатиперстной кишке, генерируя трипсин, который активирует другие протеазы в каскаде.

Интеркалированные протоки сливаются с внутрилобулярными протоками и более крупными межлобулярными протоками , которые имеют все более столбчатый эпителий, прежде чем присоединиться к основному протоку поджелудочной железы, который проходит по длине железы.

Все протоковые клетки имеют базовый уровень активации SOX9 генов, препятстующий превращению этих клеток в ацинарные и эндокринные клетки. Также для SOX9 была показана его связь с процессом регенерации ПЖ при повреждениях. Регенерационный потенциал во взрослом органе обычно связан с Ptf1a+ ацинарными клетками, в которых при повреждении ПЖ происходит факультативная реактивация мультипотентных факторов SOX9 и Hnf1β, в результате чего происходит ацинарно-протоковый переход (АПМ — ацинарно-протоковая метаплазия - см. выше).

Согласно современной концепции развития ПАПЖ (протоковой аденокарциномы ПЖ), клетками-родоначальниками ее классического подтипа являются ацинарные клетки. Ключевым инициирующим событием является АПМ. Этот процесс активируется при остром панкреатите и непосредственно связан с регенерацией ПЖ. В норме это заканчивается редифференциацией «протоковых» клеток в ацинарные, однако при появлении дополнительных факторов это не происходит и могут развиться ПанИН-I, II, III и в конечном итоге инвазивная аденокарцинома.

При хроническом панкреатите (ХП) наблюдается значительная извитость и расширение протоков с ретенционными кистами. Значительная структурная перестройка протоковой системы ПЖ у больных ХП наблюдалась в 87,5 % случаев, в 17,5 % случаев картина дополнялась явлениями ацинарно-протоковой метаплазии с трансформацией ацинарных клеток в протоковые и формированием мелких дуктулоподобных структур, так называемых тубулярных комплексов.
В дальнейшем это приводит к образованию белковых пробок и панкреатический секрет инфильтрирует окружающую ткань с формированием отека железы, за которым следует интрапанкреатическая активация пищеварительных ферментов с угрозой панкреонекроза.

В 87,5 % случаев ХП паренхима ПЖ, таким образом, представляла собой небольшие атрофичные ацинусы, окруженные плотными фиброзными муфтами, с увеличенным количеством зияющих протоков разного диаметра. В протоковой аденокарциноме к этому присоединяются клеточный атипизм прежде всего клеток мелких интеркалированных протоков, а также тканевой атипизм с высокой степенью извитости мелких протоков, часто тупиковых (см. выше).

albert52
26.05.2020, 22:07
Фундаментальным аспектом эмбриональной гипотезы о происхождении рака является эпителиально-мезенхимальный переход (ЭМП) и обратный ему мезенхимально-эпителиальный переход (МЭП), которые происходят во время гаструляции эмбриона.

В процессе опухолевой прогрессии реактивация эмбриональной программы ЭМП ответственна за метастатическое распространение раковых клеток от первичной опухоли.
Ключевыми событиями в ЭМП являются:
- растворение эпителиальных межклеточных соединений;
- потеря апикально-базальной полярности и приобретение передне-задней полярности;
- реорганизация архитектуры цитоскелета и изменение формы клеток;
- снижение экспрессии генов, ответственных за эпителиальный фенотип и активация генов, которые формируют мезенхимальный фенотип, увеличение подвижности и, во многих случаях, способность к ремоделированию внеклеточного матрикса, обеспечивающая возможность инвазии клеток.
Важно отметить что, клетки, которые подвергались ЭМП, приобретают устойчивость к старению и апоптозу.

Основные шаги ЕМТ в онкологии: опухолевые клетки могут мигрировать и проникать в окружающую строму путем усиления транскрипции нескольких маркеров и генов инвазивности, таких как N-кадгерин, виментин и мезенхимальные интегрины. Затем они разлагают внеклеточный матрикс (ЕСМ) и распространяются в кровоток или в лимфатические пути. После распространения опухолевые клетки могут поражать другие органы, где они могут следовать разным судьбам, но в основном образуют растущие микрометастазы.

Агрессивный характер РПЖ обусловлен главным образом метастазированием, что облегчается десмоплазией (свойством эпителиальных тканей воспроизводить элементы соединительной ткани), специфическим микроокружением опухоли и способностью опухолевых клеток проходить EMT и принимать подвижный и инвазивный фенотип. При этом изменяется адгезия между клетками и клеточным матриксом, теряется клеточная полярность, деградируется ECM и усиливается взаимодействие клетка-строма.

Передача сигналов TGF-β играет центральную роль в развитии злокачественного состояния богатых стромой карцином, таких как рак молочной железы и аденокарцинома протоков поджелудочной железы (PDAC). TGF-β сверхэкспрессируется в опухолевой ткани и его
избыточная экспрессия коррелирует с плохим прогнозом.

Отметим, что на ранних стадиях он действует как супрессор опухолей, ингибируя клеточный цикл и способствуя апоптозу, и только на поздних стадиях он функционирует как промотор, усиливающий нестабильность генома, уклонение от иммунитета, неоангиогенез и метастазирование. Это явление было названо «парадоксом TGF-β» и тесно связана с началом программ EMT во время прогрессирования опухоли.

В нормальных условиях отделение эпителиальных и эндотелиальных клеток от ЕСМ приводит к аноикису (апоптозу зависимых от якоря клеток), а чувствительность к аноикису поддерживается белками клеточной полярности и контролируется кооперативным способом с помощью TGF-β, путей Wnt и Hippo. EMT индуцирует устойчивость опухолевых клеток к аноикису.

Активация RHO-GTPases и особенно RAC1 является ключевым шагом в механизме EMT и вероятным фактором, способствующим тубулоинтерстициальному фиброзу и MET. Так, специфичная для поджелудочной железы активация Ki-RAS ведет к ацинарно-протоковой метаплазии (ADM) и образованию предшественников PanIN. Механическая жесткость / жесткость матрикса (опухолевого) микроокружения играет решающую роль в продвижении EMT, контролируя субклеточную локализацию и передачу сигналов вниз по течению путей RAC1 и RAC1b.

Репрессия генов, кодирующих эпителиальные белки клеточных контактов, сопровождается активацией генов, продукты которых способствуют мезенхимальной адгезии. В частности, снижение экспрессии Е-кадгерина уравновешивается повышением экспрессии мезенхимального нейронального кадгерина (N-кадгерина), что ведет к "переключению кадгерина". Изменения в экспрессии генов, кодирующих цитоскелет и белковые комплексы полярности, также способствуют прохождению ЭМП.

Фактор Foxa2, являющийся антагонистом фактора Snail (SNAI1) в регуляции экспрессии гена эпителиального маркера E-кадгерина, отвечает за ингибирование ЭМП, поэтому экспрессия его гена в метастазирующей опухоли также подавляется, при этом в дифференцированных раковых клетках экспрессия Foxa2 присутствует. SOX9 в отличие от Pdx1 и FoxA2, очевидно, способствует ЭМП.

Валентин555
01.06.2020, 06:24
А теперь вам ответ - рак вызывается споровыми. именно они меняют работу клетки и перерождают ее. И вся ваша теория также вписывается в это утверждение. А лечится рак очень просто - за 20 дней.

albert52
16.08.2020, 21:17
Холангиоцеллюлярный рак является болезнью пожилых людей, наибольшее число заболевших приходится на возраст 50 — 70 лет, а пик заболеваемости приходится на восьмую декаду жизни. Заболевание несколько чаще встречается у мужчин, чем у женщин, что, возможно, связано с более частой встречаемостью у них первичного склерозирующего холангита, который является одним из факторов риска при развитии холангиокарцином.

В последние 30 лет наблюдается значительный рост частоты возникновения холангиоцеллюлярного рака у пациентов старше 45 лет, что прежде всего, связано с улучшением качества диагностики и ростом числа факторов риска.

Холангиокарцинома, наряду с раком поджелудочной железы, раком желчного пузыря и раком ампулы Фатерова соска, относится к опухолям билиарной зоны.

По своей гистологической структуре холангиоцеллюлярный рак в 90—95% случаев относится к аденокарциномам с различной степенью дифференцировки (преимущественно — высокодифференцированной). Также могут встречаться аденосквамозные, плоскоклеточные, перстневидноклеточные, муцинозные и анапластические раки.

Первоначальные трансформации, приводящие к развитию рака, по всей видимости, начинаются в плюрипотентных стволовых клетках печени. Считается, что развитие холангиокарциномы происходит по тому же пути, что и развитие рака толстой кишки — начинаясь с гиперплазии и метаплазии, через дисплазию, к появлению собственно злокачественной опухоли. Считается, что наличие хронического воспаления и обструкция желчевыводящих путей способствуют развитию холангиокарциномы.

В зависимости от локализации опухоли холангиоцеллюлярный рак подразделяется на:
- внутрипеченочные (периферические) холангиокарциномы, происходящие из внутрипеченочных желчных протоков. Это опухоли, находящиеся в толще ткани печени и занимающие второе место по частоте после гепатоцеллюлярного рака среди первичных опухолей печени. Они составляют 10—25% всех случаев холангиокарцином, с равной частотой на каждый долевой проток. По макроскопической структуре внутрипеченочный холангиогенный рак делится на три основных вида: массивный — наиболее частый, инфильтрирующий - перипротоков, и внутрипротоковый — с папиллярным ростом или с формированием опухолевого тромба.
- внепеченочные холангиокарциномы, исходящие из внепеченочных желчных путей, которые, в свою очередь подразделяются на проксимальные и дистальные холангио -карциномы. Первые составляют до 50% всех холангиокарцином.

Первые симптомы, с которыми сталкивается врач гастроэнтеролог, обычно связаны с непроходимостью желчных протоков. Больной обращается с жалобами на пожелтение кожных покровов, зуд. Часто наблюдается потемнение мочи и обесцвечивание каловых масс. Из-за нарушения усвоения жиров пациенты теряют вес. Снижение массы тела также может быть связано с отсутствием аппетита, тошнотой, рвотой, раковой интоксикацией. На поздних стадиях заболевания появляются боли в правом подреберье. Холангиокарцинома может осложняться холангитом (воспалением желчных протоков). У больных повышается температура, появляются симптомы лихорадки.

Прогноз при ХГК очень н***агоприятный. Средний срок выживаемости после выставления диагноза составляет 24 месяца (при внутрипеченочных холангиокарциномах составляют 18-30 месяцев, при воротных 12-24 месяца). Большая часть пациентов умирает в течение первого года после верификации диагноза.

В патогенезе идентифицировано два различных молекулярных подкласса с отличительным клиническим поведением. Класс «воспаления» (38% пациентов), характеризуемый активацией воспалительных сигнальных путей, сверхэкспрессией цитокинов и активацией STAT3 , и класс «пролиферации» (62% пациентов) характеризовался активацией онкогенных сигнальных путей.

Так, экспрессия VEGF (эндотелиального фактора роста сосудов) увеличивается при многих раковых заболеваниях желчных путей, и его экспрессия связана с метастазированием и плохой выживаемостью.

albert52
11.10.2020, 21:38
В зависимости от размера протока внутрипеченочное билиарное дерево можно подразделить на малые и большие внутрипеченочные желчные протоки (iBD). Маленькие iBD выстланы маленькими кубовидными холангиоцитами, коммитированные предшественники которых происходят от собственно стволовых клеток печени, тогда как столбчатые и слизистые холангиоциты выстилают большие iBD. Как правило, большие iBD содержат перибилиарные железы в стенке. Внепеченочное билиарное дерево имеет общие анатомические особенности с большими iBD, а также главным и междольковыми протоками поджелудочной железы.

Гистологические варианты холангиокарциномы (CCA) отражают фенотип пораженного протока и предполагаемой клетки происхождения. Обычный внутрипеченочный CCA (iCCA) имеет два основных варианта: iCCA небольшого протокового типа возникает в малых iBD с кубовидными холангиоцитами, представляющими предполагаемую исходную клетку происхождения опухоли, а iCCA большого протокового типа включает большие iBD и происходит от столбчатых холангиоцитов и перибилиарных клеток. Примечательно, что CCA-подобные опухоли HCC ( гепатоцеллюлярные карциномы ) обнаруживают признаки экспрессии, подобные эмбриональным стволовым клеткам, дополнительно подтверждая участие бипотентных печеночных клеток-предшественников. Отсюда подавляющее большинство перихилярных CСА (pCCA) и дистальных CCA (dCCA) происходит из выстилающего протоки эпителия и перибилиарных желез.

Что же касается сходства iССА и p/d CCFс раком поджелудочной железы, то у них большое сходство как предраковых состояний: PanIN в поджелудочной железе и BilIN в желчных протоках, так и вида опухолей: эти злокачественные новообразования макроскопически проявляются в виде плотных сероватых инфильтрирующих масс с узловато-склерозирующим типом роста; гистологически оба могут продуцировать муцин. Как правило, это хорошо дифференцированные канальцевые аденокарциномы, иногда с микропапиллярным компонентом, обычно проявляющиеся периневральной и лимфоваскулярной инвазией и характеризующиеся обильной фиброзной стромой.

Преобладающие геномные изменения в CCA связаны с эпигенетическими процессами. Эпигенетические нарушения – гиперметилирование промоутера и дисрегуляция микроРНК. Гиперметилирование промоутера ( последовательности нуклеотидов ДНК, узнаваемой РНК-полимеразой как стартовой площадки для начала транскрипции ) выключает гены-супрессоры: CDKN2 (83% ХГК), SOCS3 (62%), RASSF1A (69%) и APC (47%).

В эмбриогенезе билиарного древа ключевую роль играет сигнальный путь Notch, нарушение его регуляции присутствует в онкогенезе ССА. Активация Notch способствует переходу нормальных гепатоцитов в билиарные клетки – предшественники iCCA. Путь Notch, как известно, участвует в восстановлении желчных протоков, росте, тубулогенезе, фиброзе и поддержании ниши стволовых клеток. Сверхэкспрессия или аберрантная экспрессия рецептора Notch описана как в iCCA, так и в pCCA и dCCA .

Нарушения другого сигнального пути – Hedgehog встречается в разных опухолях, включая ССА. Ингибирование Hedgehog циклопамином тормозит миграцию, пролиферацию и инвазивность клеток ССА. PDGF ( фактор роста тромбоцитов ) – антагонист циклопропамина, напротив, стимулирует онкогенез ССА.

Сигнальный путь Wnt активируется в большинстве ССА, отчасти как эффект высвобождения лигандов Wnt воспалительными макрофагами, инфильтрирующими строму, но также как следствие изменений метилирования ДНК, направленных на этот путь и / или мутации генов, кодирующих ключевые компоненты канонического пути передачи сигналов WNT-β-catenin. Промотор ингибитора пути WNT-β-catenin SOX17 был гиперметилирован в опухолевой ткани CCA по сравнению со здоровой тканью, что коррелировало с худшим прогнозом после резекции опухоли.

CSCs ( раковые стволовые клетки ) выражают черты EMT в CCA человека. Интересно, что CCA, возникающая у пациентов с PSC ( первичным склерозирующим холангитом ), характеризуется ранними проявлениями EMT и высокой экспрессией маркеров стволовых и / или клеток-предшественников в перибилиарных железах, подтверждая связь между EMT и стволовостью в инициации опухоли. EMT-TFs, такие как ZEB1, регулируют экспрессию маркеров CSC путем ингибирования членов семейства miR-200, хорошо известных мощных репрессоров стволовости.

albert52
12.10.2020, 22:17
Рак желудка

Рак желудка является гетерогенной патологией по анатомическому расположению и гистологическим подтипам. Из трех основных типов рака желудка, аденокарциномы желудка (GC), неходжкинской лимфомы и стромальных опухолей желудочно-кишечного тракта, приблизительно 95% составляют GC, который остается одним из наиболее часто диагностируемых видов рака в мире. Что касается местоположения, GC может возникать в кардиальной или некардиальной областях желудка.

Кардиальная GC делится на две различные этиологические сущности: GC кардии, подобной пищеводу, которая связана с гастроэзофагеальным рефлюксом, курением и диетой и часто встречается в регионах с низким риском GC, и дистальной желудочно-подобной GC кардии, связаной с наличием H. pylori и атрофией слизистой, и наиболее частым вариантом GC кардии в регионах с высоким риском GC.

GC некардиального типа в соответствии с классификацией Лорена подразделяются на два гистологических варианта, называемые GC кишечного и диффузного типов. GC кишечного типа характеризуется образованием железистых структур, дистальной локализацией в желудке и обычно встречается у пожилых людей. Она также чаще встречается у мужчин (соотношение 2: 1) и у лиц с более низким социально-экономическим статусом. Этому типу GC часто предшествует предраковая фаза, которая начинается с перехода нормальной слизистой оболочки в мультифокальный атрофический гастрит. Это первоначальное гистологическое изменение сопровождается кишечной метаплазией, дисплазией и, наконец, аденокарциномой.

С другой стороны, GC диффузного типа плохо дифференцируется, поражает более молодых людей и тесно связана с генетической предрасположенностью (вариант наследственного диффузного GC, который связан с мутациями зародышевой линии в CDH1 , гене, кодирующем E-кадгерин). Кроме того, она не связана с формированием предраковых поражений и, как было установлено, распостраняется на всю поверхность желудка. Этот тип GC одинаково присутствует у представителей обоих полов и связан с худшим прогнозом по сравнению с GC кишечного типа.

Выявлено несколько факторов, которые способствуют развитию GC: к ним относятся бактериальные ( H. pylori ), факторы хозяина и факторы окружающей среды. Helicobacter pylori - грамотрицательная бактерия, поражающая почти 50% населения. В слизистой оболочке желудка большая часть H. pylori находится в слое слизи, но они также могут прикрепляться к эпителиальным клеткам, что приводит к поддержанию, распространению и серьезности инфекции. Инфекция H. pylori была связана с развитием ряда заболеваний, включая язвенную болезнь (10%), некардиальную GC (1-3%) и лимфому, ассоциированную со слизистой оболочкой желудка (MALT) (<0,1 %).

Более того, эта бактерия ассоциирована с тремя различными фенотипами у инфицированного хозяина:
(1) гастрит с преобладанием поражения дна и тела желудка, который может привести к атрофическому гастриту, гипохлоргидрии и развитию GC;
(2) фенотип язвы двенадцатиперстной кишки, при котором гастрит с преобладанием антрального отдела желудка приводит к повышенной секреции кислоты желудочного сока;
(3) доброкачественный фенотип, при котором бактериальная инфекция вызывает легкий смешанный гастрит, который оказывает незначительное влияние на выработку кислоты желудочного сока.

H. pylori приобретается в начале жизни, большинство людей заражается в возрасте до 10 лет при контакте с близкими, которые являются общим источником инфекции. Было высказано предположение, что раннее заражение может быть связано с широким спектром патологий, связанных с инфекцией H. pylori, и с очень устойчивыми уровнями заболеваемости GC в генетически восприимчивых популяциях, которые мигрировали в развитые страны. При отсутствии антибактериальной терапии H. pylori инфекция обычно сохраняется на всю жизнь.

Способность H. pylori выживать и колонизировать желудок связана с рядом механизмов. Самое главное: H. pylori в отличие от других бактерий вырабатывает большое количество фермента уреазы, гидролизующего мочевину до аммиака, который впоследствии взаимодействует с ионами водорода в желудке с образованием аммония.

Кроме того, H. pylori экспрессирует несколько белков внешней мембраны, включая антигенсвязывающий адгезин группы крови (BabA), адгезин, связывающий сиаловую кислоту (SabA) и внешний воспалительный белок (OipA), которые, по-видимому, связываются с рецепторами на поверхности эпителиальных клеток желудка, что снижает скорость выведения бактерий в результате перистальтики. H. pylori противодействует нехватке питательных веществ, вызывая воспаление тканей и, используя специальные системы, повышают усвоение питательных ресурсов.

Тот факт, что более одного штамма H. pylori могут колонизировать слизистую оболочку желудка, дает H. pylori возможность приобретать новые генетические последовательности и подвергаться событиям рекомбинации.

Хотя инфекция H. pylori была признана наиболее важным фактором риска развития GC и классифицирована ВОЗ в 1994 году как канцероген класса 1, этиология GC также включает факторы хозяина и окружающей среды. Об этом свидетельствует тот факт, что только у 1–3% пациентов, инфицированных H. pylori, развивается GC, и что прогрессирование до GC у некоторых субъектов происходит даже после уничтожения бактерии.

albert52
13.10.2020, 12:13
В группу риска развития РЖ следует отнести лиц, с детского возраста имеющих высокие показатели обсемененности слизистой оболочки H. pylori или страдающих заболеваниями, ассоциированными с хеликобактериозом; пациентов, в течение значительного времени страдающих хроническим гастритом (как с пониженной, так и с нормальной или повышенной кислотностью), аденомами (аденоматозными полипами), язвенной болезнью желудка, пернициозной анемией, с резецированным желудком, болезнью Менетрие, а также в случае семейной предрасположенности к РЖ.

Хронический гастрит (некоторые исследователи его рассматривают как гастропатию, так как атрофические и пролиферативные процессы превалируют над воспалительными) предшествует возникновению рака желудка в 73,5-85 % случаев.

Аденоматозные полипы (аденомы) представляют собой аналог аденом толстой кишки. Эти новообразования имеют вид узла на широком основании. Микроскопически представляют собой тубулярные и тубулопапиллярные хаотические эпителиальные разрастания, выстланные высоким цилиндрическим эпителием, с вытянутыми и расположенными на различных уровнях ядрами и высоким ядерно-цитоплазматичес -ким отношением. Частота малигнизации аденом чрезвычайно высока и кол***ется, по данным большинства исследователей, в пределах 30-40 %.

Для обозначения предраковой эпителиальной пролиферации слизистой оболочки желудка, промежуточной между гиперплазией и раком, предложен термин «желудочная интраэпителиальная неинвазивная неоплазия» (синоним «дисплазия»). Для нее характерны нарушение дифференциации клеток с клеточной атипией, а также дезорганизация структуры слизистой оболочки.

В гистологической классификации опухолей желудка ВОЗ (2000) выделены 2 степени выраженности интраэпителиальной неоплазии: слабая (low-grade) и тяжелая (high-grade). Слабо выраженную интраэпителиальную неинвазивную неоплазию очень трудно отличить от регенерирующего эпителия. Появление высокой степени интраэпителиальной неоплазии - маркер повышенного риска развития и этап морфогенеза РЖ. Последнее поражение рассматривается как внутрислизистая неинвазивная карцинома, которая может выглядеть как плоское (дисплазия) или возвышающееся (аденома) поражение.

Следует отметить, что у пациентов с кишечной метаплазией в зоне пищеводно-желудочного перехода и в пищеводе риск развития рака существенно выше, чем у пациентов с кишечной метаплазией в «некардиальном» отделе желудка.

Процесс опухолевой трансформации клеток до первых клинических проявлений РЖ длительный, многоэтапный. Продолжительность «естественной эволюции» РЖ составляет 15-25 лет, что обусловливает возможность его диагностики на ранней стадии, которая может продолжаться с момента обнаружения заболевания от 6 мес до 10 лет и более. Лица с высокой степенью риска заболевания РЖ, у которых морфологически была диагностирована тяжелая интраэпителиальная неоплазия (дисплазия) эпителия, подлежат динамическому наблюдению с обязательным проведением рентгеноскопии и гастроскопии не менее чем 2 раза в год.

РЖ подразделяют на 2 основные категории: ранний (early carcinoma) и распространенный (advanced carcinoma). К раннему относят рак, поражающий слизистую оболочку желудка или подслизистый слой, независимо от наличия или отсутствия метастазов в лимфатических узлах, которые можно диагностировать лишь гистологически. При нем 5-летняя выживаемость находится в пределах 90-100 %.

На практике применяется ставшая классической классификация, предложенная в 1926 г. R. Borrmann. В этой классификации определены критерии четырех анатомических типов роста распространенного рака:
• тип I - полиповидный тип, обладающий экзофитным ростом в просвет желудка;
• тип II - экзофитный изъязвленный тип опухоли, характеризующийся изъязвлением с приподнятыми краями и четкими границами - так называемый блюдцеобразный рак;
• тип III - язвенно-инфильтративный тип, имеющий вид изъязвления, без четких границ с окружающей слизистой оболочкой желудка и с интрамуральной инфильтрацией желудочной стенки;
• тип IV - диффузно-инфильтративный тип, распространяющийся поверхностно в слизистой и подслизистой оболочке с образованием плоских поражений с наличием мелких изъязвлений или без них. В распространенной стадии образуется диффузное циркулярное утолщение стенки желудка на значительном протяжении по типу «кожаной бутылки», зачастую с минимальными изменениями в слизистой оболочке.

Гистологическое строение РЖ отличается многообразием форм аденокарциномы, происходящей из камбиальных эпителиальных клеток слизистой желудка, находящихся в области шейки желудочных желез. Размножаясь эти клетки как поднимаются в зону покровного эпителия, так и спускаются в главную часть желез; этим железы желудка напоминают крипты толстой кишки.

Во многих случаях обнаруживаются сочетания различных гистологических форм РЖ. По мере инвазии карциномы в глубь стенки желудка комплексы опухолевых клеток зачастую утрачивают дифференцировку и предстают в виде мелких лимфоцитоподобных клеток, образуя тяжи и мелкие трубчатые структуры.

Что же касается деления рака на кишечную и диффузную формы, то оно предстввляет значительный клинический интерес. Высокая пролиферативная активность клеток «кишечного» рака определяет высокую скорость их роста. Быстрое клиническое течение рака интестинального типа определяет его ранние клинические проявления, а тесная связь клеток ведет к меньшей инвазивности, чем обеспечивается возможность радикальной операции.

Диффузный тип рака обладает более низкой пролиферативной активностью, что определяет длительность латентного течения таких опухолей. Слабая связь клеток друг с другом ведет к высокой инвазивности диффузного рака, что определяет больший объем радикального оперативного вмешательства и объясняет более низкий процент 5-летней выживаемости.

albert52
14.10.2020, 03:11
Опухоли чаще возникают в антруме или нижней трети желудка, наиболее часто на малой кривизне. Некоторые из таких опухолей многоцентровые. Их локализация, видимо, меняется с возрастом, с увеличением проксимальных опухолей и снижением их в антруме.

Два фенотипа для геномной нестабильности являются общепринятыми при РЖ: фенотип, ассоциированный с микросателлитной нестабильностью (МSI), и фенотип, связанный с хромосомной нестабильностью (ХН). Эти фенотипы не являются независимыми и в некоторых случаях могут накладываться друг на друга.

Анеуплоидия ДНК наблюдалась уже во внутрислизистых GC диаметром менее 5 мм, а также в ранних GC. Сходным образом, изменения числа копий были обнаружены в предшественниках GC, a MSI был идентифицирован при кишечной метаплазии, аденоме желудка и ранней GC.

MSI ( микросателлитная нестабильность ) выявляется до 44% случаев при раке желудка, чаще при кишечной форме и связана с гиперметилированием. Наиболее ее заметным эффектом является мутация рецептора TGF-β ( трансформирующего фактора роста ), снижающая его росттормозящие и проапоптические эффекты. Впрочем, на поздних стадиях он вносит существенный вклад в формирование инвазивного фенотипа.

CIMP ( фенотип метилирования островков CpG c глобальным гиперметилированием генома, приводящий к отключению генов-супрессоров опухоли ) присутствует в 15% кишечной метаплазии и 50% аденом. Вообще, метилирование CpG островков может считаться третьим молекулярным фенотипом РЖ, и гены, имеющие отношение к развитию опухоли, такие как APC ( (аденоматозного полипоза толстой кишки), CDH1, MHL1, CDKN2A, CDKN2B и RUNX3, часто подвергаются метилированию. Причиной инактивации генов CDKN2A, CDH1 и MLH1 чаще является именно метилирование промотора, а не мутации.

RUNX3 – это ген, кодирующий белок, относящийся к семейству транскрипционных факторов, содержащих Runt-домен. Гетеродимер этого домена и бета-субъединицы образуют комплекс, который связывается с основной последовательностью ДНК 5'-PYGPYGGT-3 ', обнаруженной в ряде энхансеров и промоторов, и может активировать или подавлять транскрипцию. Потеря или существенное снижение экспрессии RUNX3 протеина при РЖ значимо ассоциировано с низкой выживаемостью.

При раке желудка гиперактивированы онкогены EGF, Erb-B2, Erb-В3. Все 3 онкогена – эпидермальные факторы роста – полипептиды, функционирующие как сигналы, стимулирующие пролиферацию опухолевых клеток. Выраженная гиперэкспрессия этих онкогенов, отмечаемая при кишечной форме рака желудка, является индикатором плохого прогноза даже при высокой дифференцировке опухолей. Показано, что антитела к гену Егb-В2 тормозят рост опухолевых клеток.

Гетерозиготные мутации зародышевой линии неоднократно обнаруживались в гене E-кадгерина ( CDH1 ) и гене α-E-катенина ( CTNNA1 ), что подчеркивает их инактивацию и, следовательно, снижение сцепления клеток. Мутации этих генов считаются главной причиной HDGC ( наследственный диффузный рак желудка ). У людей с мутацией в гене CDH1 пожизненный риск диффузного рака желудка оценивается от 67% до 70% для мужчин и от 56% до 83% для женщин к 80 годам. Женщины с мутацией в гене CDH1 имеют также к 80 годам примерно от 39% до 52% риска развития дольчатого рака молочной железы.

Обычно каждая клетка имеет по 2 копии каждого гена: 1 унаследован от матери и 1 унаследован от отца. HDGC следует аутосомно-доминантному типу наследования, при котором мутация происходит только в 1 копии гена. Это называется мутацией зародышевой линии. Следовательно, ребенок, у которого есть родитель с мутацией, имеет 50% шанс унаследовать эту мутацию.

Мутация супрессорных генов Р53, МСС, АРС регистрируется у 30-65% больных раком желудка, обычно при кишечной форме. G-17 гастрин – фактор роста, продуцируемый слизистой желудка. Как оказалось, он является транскрипционным активатором гепарин связанного эпидермального фактора роста (Heparin binding epidermal growth factor HB-EGF), который усиливает опухолевую пролиферацию.

Важную роль в канцерогенезе GC принадлежит нарушениям процессов апоптоза и, соответственно, нарушениям в сигнальных путях, его регулирующих, прежде всего пути AKT, который наиболее часто подвержен гиперактивации. Для атрофического гастрита без хеликобактерного инфицирования характерен средний уровень ИА (индекса апоптоза) и низкий уровень экспрессии mTOR, при метаплазии слизистой отмечалось как повышение ИА, так и уровня экспрессии mTOR, а при раке желудка ИА значительно снижался, а экспрессия mTOR оставалась на высоком уровне. Учитывая высокмй уровень биосинтетических процессов в раковых клетках это не удивительно.

albert52
15.10.2020, 16:08
Перед тем, как двигаться дальше, изложу расширенную версию рака толстой кишки (впрочем, всего все равно не охватить).

Нормальная толстая кишка состоит примерно из миллиона крипт Либеркюна, каждая из которых содержит около 2 тыс. клеток, включающих энтероциты, энтерохромаффиноциты, бокаловидные клетки и клетки Панета. Предполагаемые стволовые клетки находятся в узком промежутке вблизи основания крипты. Эти стволовые клетки движутся вниз и дифференцируются в клетки Панета или наверх и превращаются в пролиферативные, которые дают начало 3 типам клеток: энтероцитам (белые), бокаловидным клеткам (коричневые) и энтерохромаффиноцитам (фиолетовые), формирующим кишечную ворсинку.

Клетки эпителия кишечника обновляются примерно 1 раз в 5 дней. Данные стволовые клетки делятся ассиметрично, порождая эпителиальные клетки всех типов. Число длительно живущих стволовых клеток составляет 4–6 на 1 крипту.

В толстой кишке происходит миграция клеток - эпителиальные клетки, делящиеся в нижней половине кишечных крипт, мигрируют на поверхность, откуда они в конце концов выталкиваются в просвет кишки. По мере того как эти клетки мигрируют к устью крипты, они сначала заполняются секреторными вакуолями; однако, еще не достигнув поверхности, они теряют вакуоли и становятся типичными цилиндрическими клетками, микроворсинки которых образуют щеточную каемку. В аноректальном канале, в области границы ректального и анального эпителия, кишечные крипты не обнаруживаются.

Распостраненность рака толстой кишки диктует необходимость выявления их на этапе предраковых изменений. До недавнего времени считалось, что в качестве таковых могут выступать только так называемые диспластические полипы (аденомы тубулярные, тубуло-ворсинчатые, ворсинчатые), причем чем более выражен ворсинчатый компонент, тем интенсивнее выражена дисплазия, а значит, тем выше потенциал злокачественности. Ворсинчатая аденома кишечника может достигать 10 см в диаметре. Впрочем, хотя ворсинчатые аденомы гораздо чаще, чем тубулярные, содержат очаги инвазии, но сам по себе ворсинчатый тип при небольших размерах аденомы не повышает риск развития рака.

Аденомы — это внутриэпителиальные опухоли, варьирующие от маленьких полипов на ножке до крупных плоских образований. Аденомы одинаково часто наблюдаются у мужчин и женщин, их частота коррелирует с частотой аденокарцином толстой кишки, при этом локализация и распределение аденом и аденокарцином в толстой кишке сходна.

Цитологическими признаками дисплазии эпителия в полипах являются гиперхромия ядер, его удлинение и псевдостратификация (псевдослои). Эти изменения лучше всего различимы в поверхностных участках аденомы и часто сопровождаются уменьшением количества бокаловидных клеток.

Представители другой группы новообразований — гиперпластические полипы — считались не способными к перерождению в аденокарциному. Однако сегодня доказано, что они представляют собой гетерогенную группу образований с различным неопластическим потенциалом. Самые опасные — зубчатые образования толстой кишки. Зубчатая аденома имеет характерную поверхность, на которой располагаются зазубренные элементы эпителия. Зубчатость формируется за счет «наползания» пролиферирующих клеток друг на друга, предположительно вследствие угнетения апоптоза.

Аденомы могут образовываться в любом отделе толстого кишечника. Исследования дают следующие результаты частотности локализации аденоматозных полипов: 25 % — прямая кишка; 25 % — сигмовидная кишка; 18 % — нисходящая ободочная; 13 % — восходящая ободочная; 11 % — поперечная ободочная; 7 % — слепая. Данная патология встречается довольно часто, она составляет от 25 % до 40 % от всех новообразований полиповидного типа. Причем 15 – 58 % — это поражение множественными аденомами, процентное содержание которых увеличивается с возрастом.

Если говорить о возрастной группе 50 – 60 – летних людей, поражены этим заболеванием будут 40 % женщин и 50 % мужчин. Люди в возрасте до 30 лет редко сталкиваются с этим заболеванием, поэтому его оправданно считают болезнью пожилого населения. Семейный полипоз, когда количество полипов варьируется в рамках 30 – 100, сегодня выявляется все чаще.

Остановимся поподробнее на полипах.

Гиперпластические полипы (НР): на них приходится от 28 до 42 % всех полипов толстой кишки. Чаще всего они локализуются в левой половине толстой кишки, преимущественно в дистальных отделах, хотя 10—15% располагаются в восходящей и поперечной ободочной кишке, могут носить множественный характер и не имеют клинических проявлений.

Из гиперпластических полипов чаще всего встречается микровезикулярный тип, характеризующийся наличием мелких капель муцина в цитоплазме большинства клеток. Богатый бокаловидными клетками тип встречается несколько реже и преимущественно построен из клеток с обильной светлой цитоплазмой, заполненной муцинами. Пролиферативная зона и зубчатость в нем выражена сравнительно слабо.

В гиперпластическом полипе возможна только минимальная клеточная атипия. Отметим, что микровезикулярный тип может быть предшественником зубчатой аденомы/полипа на широком основании (sessile serrated adenoma/polyp — SSA/P), а богатый бокаловидными клетками — традиционной зубчатой аденомы. Любой полип, располагающийся проксимальнее селезеночного изгиба и имеющий размер более 1 см, рекомендуется расценивать как SSA/P.

Гистологически SSA/P характеризуется распространением зубчатости на всю глубину крипт вплоть до базальных отделов и деформацией крипт с появлением признаков патологи -ческого ветвления, расширения базальных отделов, горизонтального роста вдоль мышечной пластинки с образованием расширений в виде буквы L или перевернутой буквы Т. Зубчатость, как и в гиперпластических полипах, обусловлена выбуханием апикальной части цитоплазмы в просвет крипты. Зона пролиферации асимметрична, часто расположена на одной из стенок, смещена в среднюю треть крипты.

С 2005 г. диагностическим критерием для SSA/P считалось наличие не менее 10% измененных крипт. Согласно рекомендациям ВОЗ 2010 г., таким критерием признавалось наличие не менее двух измененных желез, а современным рекомендациям — наличие даже одной измененной железы при ее зубчатости. Показано, что 15% SSA/P прогрессировали в колоректальную аденокарциному или дисплазию высокой степени.
Частота встречаемости SSA/P составляет 2—5% колоректальных полипов и 15—25% всех зубчатых образований. Любой полип, располагающийся проксимальнее селезеночного изгиба и имеющий размер более 1 см, рекомендуется расценивать как SSA/P.

Есть предположение, что существует последовательность: HP → SSA/P → SSA/P с дисплазией → рак. Чаще всего этот каскад наблюдается в проксимальных отделах толстой кишки; есть сведения о повышении частоты мутаций CIMP и BRAF по мере продвижения от прямой кишки к проксимальным отделам.

Традиционная зубчатая аденома (traditional serrated adenoma — TSA) в большинстве случаев имеет вид полиповидного образования на ножке (Ip) или на широком основании (Is), также встречаются неполиповидные приподнятые образования (0—IIa). Есть данные, что полиповидные формы более характерны для дистальной части толстой кишки, а неполиповидные — для проксимальной. Частота встречаемости TSA, по данным разных исследований, составляет 1,2—7%. Отметим, что 31,3% TSA имеют в качестве предшественников SSA/P (преимущественно проксимальное расположение) и 52,3% гиперпластические полипы (преимущественно дистальное расположение

Они редко имеют клинические проявления. Морфологически характеризуются ворсинчатым строением, ворсины отечны, булавовидно расширяются на концах; формируются эктотипированные крипты, отходящие от основной под прямым углом и не достигающие мышечной пластинки. Им также присуща специфическая мутация — гиперметилирование гена «починки» ДНК MGMT (O6-methylguanine-DNA methyltransferase, метилгуанин-ДНК метилтрансферазы). ТSA часто прогрессируют в зубчатые карциномы муцинозного или трабекулярного типа. Рост таких карцином более агрессивен по сравнению с карциномами, развившимися из классических аденом.

Под зубчатым полипозом понимают наличие в толстой кишке 5 и более зубчатых образований, расположенных проксимальнее сигмовидной ободочной кишки (2 или более из которых размером более 10 мм), либо наличие любого числа зубчатых образований, расположенных проксимальнее сигмовидной ободочной кишки у лиц, чьи родственники первой линии родства страдают зубчатым полипозом, либо наличие 20 и более зубчатых образований любого размера, локализованных в любых отделах толстой кишки.

Существует два варианта заболевания:
(1) с множеством SSA/P, в том числе и крупных, имеющих тенденцию к проксимальному расположению и
(2) с множеством типичных гиперпластических полипов (5 мм и менее), распределенных по всем отделам толстой кишки. Первый вариант более опасен с точки зрения последующей малигнизации.

Сидячая зубчатая аденома – это сравнительно новый вид полипов толстой кишки. Эти полипы обычно встречаются в правых отделах толстой кишки и не проявляют себя клинически. Обычно сидячая зубчатая аденома достигает больших размеров и имеет уплощенную форму, что затрудняет ее обнаружение при эндоскопическом исследовании (уплощенное, слабо возвышающееся над поверхностью окружающей слизистой, стелющееся образование). Специалисты считают, что примерно треть всех случаев рака толстой кишки берут свое начало из таких зубчатых аденом.

albert52
15.10.2020, 16:08
Продолжим.

Описано 2 различных генетических пути канцерогенеза в толстой кишке. Первый — это путь АРС/b-катенина, который связан с геном WNT и классической последовательностью аденома-карцинома. Второй — путь микросателлитной нестабильности, который связан с дефектом системы репарации ДНК. Оба пути приводят к постепенному накоплению многочисленных мутаций, но вовлеченные гены и механизмы, посредством которых накапливаются мутации, различны.

Классическая концепция развития КРР, предложенная B. Vogelstein, основана на возникновении его из традиционных аденом (тубулярных, ворсинчатых и тубуловорсинчатых) в результате активации Wnt сигнального каскада из-за инактивирующей мутации в гене APC (adenomatous polyposis coli), приводящей к активации генов KRAS/BRAF или активирующей мутации в гене, кодирующем β-катенин. Впрочем, активирующие мутации в онкогенах KRAS/BRAF могут быть первичными и появляться независимо от гена APC. Этот механизм канцерогенеза характерен для органов с интенсивным делением клеток. Для развития аденомы обе копии гена АРС должны быть функционально неактивными как вследствие мутации, так и из-за эпигенетических воздействий. При утрате функции АРС ß-катенин накапливается и переносится в ядро, где активирует транскрипцию генов MYC и циклина D1, которые активируют пролиферацию.

Wnt-сигнальный путь активирует транскрипционные факторы ядерного комплекса β-катенина и TCF/LEF (T cell factor/lymphoid enhancer factors), которые регулируют транскрипцию большого числа генов, вовлеченных в поддержание гомеостаза тканей, эмбриональное развитие. Также Wnt-сигнальный путь участвует в формировании нормальной слизистой оболочки толстой кишки.

Последующие дополнительные мутации, включая активирующие мутации гена Kras, приводят к активации роста и препятствуют апоптозу клеток. Мутация Kras является последним событием в цепи канцерогенеза. Это подтверждается тем, что эти мутации присутствуют только в 10% аденом диаметром менее 1 см, но обнаруживаются в 50% аденом диаметром более 1 см и в 50% инвазивных аденокарцином.

Прогрессирование опухоли также сопровождается мутациями других генов-супрессоров опухолей — SMAD2 и SMAD4, которые являются эффекторами сигнального пути TGF-ß. Поскольку сигнал TGF-ß в норме подавляет клеточный цикл, утрата этого гена может приводить к неконтролируемому клеточному росту.

Отметим еще фермент СОХ-2, высокая экспрессия которой определяется в 90% карцином толстой кишки и в 40-90% аденом толстой кишки. СОХ-2 необходима для выработки простагландина Е2, который стимулирует пролиферацию эпителия, особенно после его повреждения. Интересно, что экспрессия СОХ-2 регулируется TLR4, который распознает липополисахариды и также избыточно экспрессируется в аденомах и карциномах.

Мутации гена-супрессора опухолей р53 определяются в 70-80% случаев рака толстой кишки, но редко наблюдаются при аденомах, позволяя предположить, что мутации р53 возникают на поздних этапах прогрессирования опухоли. Причиной утраты функций р53 и других генов-супрессоров опухолей часто являются делеции, указывающие на то, что хромосомная нестабильность (chromosomal instability — CIN) — типичный признак пути АРС/Р-катенина.

Общая доля опухолей толстой кишки, возникших по данному механизму, составляет примерно 60 %. Этот путь характерен и для случаев с наследственным КРР и наследственным аденоматозным полипозом.
У пациентов с нарушением работы системы репарации ошибок репликации ДНК вследствие утраты генов, исправляющих эти ошибки (mismatch repair гены, MMR — MLH1 и MLH2), в микросателлитных последовательностях накапливаются мутации. Такое состояние называют микросателлитной нестабильностью (мутаторным фенотипом); она может быть высокой (MSI-H) или низкой (MSI-L), при ее отсутствии принято говорить о стабильности (MSS). Кстати, геном человека содержит 50-100 тыс. микросателлитов, длина которых увеличивается во время каждой репликации ДНК.

Эти мутации, как правило, являются «молчащими», т.к. микросателлиты обычно расположены в некодирующих участках ДНК. Однако некоторые микросателлитные последовательности располагаются в кодирующем участке или промоторной зоне генов, участвующих в регуляции клеточного роста, например генов рецептора TGF-ß II типа и проапоптотического белка ВАХ. TGF-ß, как я уже yпоминал, подавляет пролиферацию эпителиальных клеток толстой кишки, утрата его, а также ВАХ может повышать выживаемость генетически аномальных клеточных клонов. Здесь также часто определяются мутации онкогена BRAF, и сайленсинг (подавление транскрипции) различных групп генов вследствие гиперметилирования островков CpG.

Такие нарушения часто выявляют в плоских зубчатых аденомах, обычно в проксимальных отделах кишки; некоторые из них могут быстро прогрессировать в рак (малигнизироваться), несмотря на то, что размер их остается небольшим. При отсутствии аденоматозного строения такие образования считаются раком «de novo», а их патогенез называют «зубчатым путем канцерогенеза».

В целом такой метиляторный фенотип выявляется у 47—60% гиперпластических полипов, 75—77% SSA/P и 31—80% TSA. Микросателлитная нестабильность определяется у 64% гиперпластических полипов, 23—54% SSA/P и 30—56% TSA. В опухоли, развивающейся из TSA дистальной части толстой кишки, начальной является мутация гена KRAS, что встречается у 13—31% гиперпластических полипов, 3—12,5% SSA/P и 24—55% TSA. Следует отметить, что мутации в генах KRAS и BRAF являются взаимоисключающими.

Карциномы толстой кишки с мутацией BRAF имеют худший прогноз, чем Kras-мутантные, а колоректальные карциномы, развившиеся по зубчатому пути, требуют особого режима химиотерапии.

Такие опухоли, так же как и опухоли с метилированием островков CpG, часто локализуются в проксимальном отделе ободочной кишки. Но в целом общие гистологические характеристики аденокарцином дистального и проксимального отделов толстой кишки сходны. Большинство опухолей состоят из высоких цилиндрических клеток, напоминающих диспластичный эпителий, обнаруживаемый в аденомах.

Проведено иммуногистохимическое исследование аденокарциномы толстой кишки. При этом клеточный состав опухоли условно можно разделить на 4 популяции:
1) стволовые непролиферирующие (ALDH1+, Ki-67–);
2) стволовые пролиферирующие (ALDH1+, Ki-67+);
3) амплифицирующиеся (ALDH1–; Ki-67+);
4) дифференцирующиеся (ALDH1–; Ki-67–).
Соотношение данных популяций в среднем составляет 9:1:60:30.
Преобладающей популяцией являются амплифицирующиеся клетки (медиана 60%), а наименьшей — пролиферирующие стволовые раковые (медиана 1%). Кроме того, часть клеток имеет экспрессию рецептора хемокина CXCR4, который в литературе при изучении других локализаций показывал связь с развитием метастазов.

Внутрислизистая карцинома развивается в том случае, когда диспластические эпителиальные клетки проникают через базальную мембрану в собственную или мышечную пластинку слизистой оболочки. Поскольку в слизистой оболочке толстой кишки отсутствуют лимфатические сосуды, внутрислизистая карцинома обладает очень низким метастатическим потенциалом, поэтому тотальная полипэктомия является эффективным методом лечения.

Низкодифференцированные опухоли и опухоли с муцинозной дифференцировкой имеют н***агоприятный прогноз, определяемый двумя наиболее значимыми факторами — глубиной инвазии опухоли и наличием метастазов в лимфоузлах. Инвазия в мышечную оболочку и метастазы в лимфатических узлах значительно снижают выживаемость.

albert52
15.10.2020, 19:08
Канцерогенные свойства определенных внешних факторов могут быть связаны исключительно с индукцией ими локального повреждения тканей и активации восстановления клеток, тем самым ускоряя клеточную пролиферацию, которая способствует трансформации клеток (см. выше). В этой модели риск рака органов определяется сочетанием факторов: врожденной пролиферативной способностью популяции стволовых клеток, инцидента локального повреждения тканей, вызывающего клеточную пролиферацию, и восприимчивости этих клеток к мутациям, которые могут трансформировать их в рак.

Как и нормальные стволовые клетки, раковые стволовые клетки (CSC) обладают мультилинейным потенциалом дифференцировки и дают начало иерархично организованной клеточной популяции. Увеличение популяции самих CSC осуществляется благодаря преобладанию их симметричного деления (приводящему к образованию 2 дочерних клеток) над ассимметричным (в результате которого образуется 1 дочерняя CSC и 1 дифференцированная клетка). CSC демонстрируют высокий уровень экспрессии белков, принадлежащих семейству мембранных ABC транспортеров, вовлеченных в обеспечение резистентности к химиотерапии (ХТ).

По аналогии с теориями возникновения CSC (или нормальная стволовая клетка, или нормальная дифференцированная клетка) существуют 2 возможные теории развития рака толстой кишки: «восходящая» и «нисходящая». Первая предполагает развитие КРР из стволовой клетки, находящейся в базальном отделе крипты, в результате аномальной дифференцировки в направлении CSC. В пользу этой теории говорит идентификация специфических генов, характерных для кишечных стволовых клеток, в предшествующих аденомах.

Сторонники «нисходящей» теории руководствуются гистологическими проявлениями аденомы толстой кишки, такими как дисплазия/неоплазия эпителия и повышенная экспрессия Ki-67, наблюдаемыми в вершине ворсинок при интактных клетках базальных отделов. Маркер Ki-67 свидетельствует об интенсивности пролиферативных процессов.

РНК-связывающий белок Msi-1 был первой молекулой, обнаруженной в предполагаемых кишечных стволовых клетках. Показано, что Msi-1 подавляет экспрессию генов, специфичных для клеток Панета, в кишечных стволовых клетках, причем его сигнальный путь отличен от Wnt и Notch – главных путей, участвующих в дифференцировке клеток Панета. Эти данные указывают на то, что роль Msi-1 может заключаться в поддержании кишечных стволовых клеток в недифференцированном состоянии.

В 1990 г. в Y-хромосоме впервые был обнаружен фактор, детерминирующий развитие яичка у млекопитающих. Ген Sry, кодирующий данный фактор, содержит домен HMG (high-mobility group), который обеспечивает точное узнавание и связывание ДНК. Белки, содержащие HMG-домен, с аминокислотной последовательностью, повторяющей как минимум на 50 % последовательность HMG гена Sry, называют Sox-белки. Функции этих белков разнообразны: включают регуляцию эмбрионального развития и поддержание гомеостаза стволовых клеток во взрослом состоянии.

Sox2 играет ключевую роль в поддержании пула стволовых клеток и является необходимым фактором для репрограммирования соматических клеток по пути плюрипотентности. Sox2 участвует в развитии большого количества типов злокачественных новообразований и является маркером CSC. Для рака пищевода и легкого наличие Sox2 служит прогностическим маркером.

Реакция Sox2 в норме имеет ядерную локализацию. В нормальной слизистой оболочке толстой кишки экспрессия Sox2 чаще всего отсутствует. Вообще-то Sox2 играет большую роль в развитии верхнего, но не нижнего отдела пищеварительного тракта. Sox2 уменьшает экспрессию Е-кадгерина на плазматической мембране, что приводит к снижению связывающей способности адгезивного комплекса к β-катенину. Подавление транскрипции Sox2 приводит к ингибированию Wnt-сигнального пути у пациентов с КРР (раком толстой кишки).

Подавление транскрипции Sox2 приводит к достоверному снижению активности белка MMP2 (матриксная металлопротеиназа 2) и, как следствие, уменьшению клеточной миграции и подвижности. У больных раком толстой кишки с сильной реакцией Sox2 процент метастазов в печень и регионарные лимфатические узлы (ЛУ) был вдвое выше, чем у пациентов с отрицательной реакцией Sox2.

Альдегиддегидрогеназа 1 (aldehyde dehydrogenase 1, ALDH1) – детоксифицирующий фермент, который окисляет внутриклеточные альдегиды и превращает ретинол в модулятор пролиферации – ретиноевую кислоту. Гиперэкспрессия ALDH1 обеспечивает устойчивость к алкилирующим агентам и защиту стволовых клеток от окислительного стресса, способствуя увеличению их существования. Наблюдалась корреляция между высоким уровнем экспрессии изоформы ALDH1 и н***агоприятным прогнозом.

CD24 – маленькая, сильно гликозилированная муциноподобная адгезивная молекула, состоящая из 27 аминокислот. Она заякоривается на клеточной мембране и в норме экспрессируется в развивающейся поджелудочной железе и мозге, пре-B-лимфоцитах, регенерирующей мышце, нормальных кератиноцитах и почечных канальцах. CD24 экспрессируется большим количеством злокачественных солидных опухолей, в том числе клетками рака толстой кишки. Есть данные о повышенной экспрессии CD24 РНК при КРР в опухолевых клетках по сравнению со слабым уровнем в окружающей интактной слизистой оболочке.

Белок CD44 – член семейства трансмембранных белков, насчитывающий как минимум 20 вариантов, образующихся из одного гена в результате альтернативного сплайсинга и посттрансляционных модификаций. CD44 является адгезивным белком, который участвует во взаимодействиях клетка–клетка и клетка–межклеточный матрикс посредством своего лиганда – гиалуроновой кислоты.

CD44 считается маркером CSC некоторых солидных опухолей, в том числе молочной железы, поджелудочной железы, головы и шеи, гепатоцеллюлярного рака печени, немелкоклеточного рака легкого и КРР. Установлено, что только CD44-положительные клетки способны запоминать морфологические и фенотипические свойства опухоли, из которых они были выделены.

CD44 необходим для поддержания «стволовости» колоректальных CSC. Маленькие кластеры инвазивных клеток в аденокарциномах часто активно экпрессируют CD44, что свидетельствует об их недифференцированном состоянии.

albert52
26.10.2020, 22:34
Вернемся к молекулярной биологии клетки. TOR - это внутриклеточный белок, на котором сходятся многие сигнальные пути от рецепторов, расположенных на поверхности клетки. Молекулярный комплекс mTOR называется мишенью рапамицина у млекопитающих и относится к протеинкиназам. В клетке он существует как субъединица внутриклеточных мультимолекулярных сигнальных комплексов mTORC1 и mTORC2.

Эта система работает в ответ на появление питательных веществ, ростовых факторов, цитокинов и прочих важных для клеток молекул и в ответ на все это регулирует размножение клетки, ее форму, движение, выживание, синтез белков и другие функции. Нарушение регуляции mTOR приводит к развитию различных заболеваний, в том числе и различных типов рака.

Подавление сигнального пути mTORC1 приводит к активации регуляторных белков СКН-1 и DAF-16; эти белки контролируют экспрессию генов, защищающих от метаболического и протеотоксического стресса, а также от стресса, вызванного воздействием факторов окружающей среды. Вообще в целом существует гомеостатическая связь между синтезом белков и защитой от стресса: если синтез белков снижается, защита от стресса усиливается.

Опосредованный TOR механизм известен как своего рода «топливный датчик», реагирующий на доступность питательных веществ изменением эффективности синтеза белков. В частности TOR регулирует ответ клетки на наличие или отсутствие аминокислот — одного из важных компонентов нашей пищи. Питательные вещества передают сигнал mTORC1 через ассоциированные с лизосомами Rag GTPases и их многочисленные регуляторы, а также цитозольные и лизосомальные сенсоры питательных веществ.

Многие из негативных эффектов, ассоциируемых со старением, являются результатом избыточных клеточных функций. Другими словами, наши клетки и наши внутренние системы работают слишком хорошо. Или слишком интенсивно. Очевидным примером этого является рак: вместо того чтобы умереть, раковые клетки растут и делятся до бесконечности – благодаря гиперактивированным путям TOR.

Также многие аспекты старения вызываются не ослаблением, а неконтролируемой активностью клеточных функций. «Мы запрограммированы на то, чтобы функционировать на максимальных уровнях, поскольку это дает массу преимуществ в начале жизни. После того как рост завершен, "автомобиль" покидает автостраду и заезжает на парковку, где ему следует плавно притормозить и остановиться. Однако этого не происходит – он продолжает носиться по парковке со скоростью 100 км/ч и в результате разрушает сам себя. Старение не запрограммировано, это лишь "квази-программа": бесполезное продолжение программы развития.

В прошлом это не имело большого значения, поскольку подавляющее большинство людей умирали в возрасте до 50 лет, не доезжая до «парковки». Теперь до нее добираются очень многие, и гиперфункция становится реальной проблемой. Именно из-за гиперфункции у 25 % женщин старше 70 лет развивается рак молочной железы (по сравнению всего с 2 % у женщин младше 40 лет). Именно из-за гиперфункции у женщин старше 50 продолжают накапливаться жировые отложения, предназначенные для вынашивания и кормления детей, которых немолодые женщины больше не могут иметь.

И именно из-за гиперфункции у мужчин в пожилом возрасте продолжает расти предстательная железа, что является главной причиной трудностей с мочеиспусканием и рака простаты. Именно из-за гиперфункции с возрастом волосы начинают расти у нас в ушах, а не на голове. И именно из-за гиперфункции на клеточном уровне наши клетки продолжают расти, стареть и отравлять все вокруг себя.

Продукты питания имеют разное влияние на активность mTOR. Есть нейтральные продукты, которые стимулируют mTOR пропорционально числу калорий, а есть «быстрые» продукты, которые стимулирую mTOR намного сильнее. Постоянно увеличивающееся сигнализирование mTORС1 признано основной движущей силой развития mTORС1-зависимых болезней цивилизации. Клетка реагирует на многие стимулы (факторы роста, питательные вещества, гормоны и др.), в итоге активируется ферментный комплекс mTOR.
Основные пути активации (не все!).
1. Гормоны и факторы роста: тестостерон, орексин, инсулин, ИФР-1 (IGF-1 – инсулиновый фактор роста) и др.
2. Нутриенты (пищевые элементы) и режим питания: общая калорийность, частота приемов пищи, углеводная нагрузка, сахар, аминокислоты (БЦАА и метионин). Коровье молоко - это чрезвычайно мощная эволюционная программа быстрого роста, которая может перманентно индуцировать чрезмерную стимуляцию mTORC1 у людей, употр***яющих молоко.
3. Физические упражнения. mTOR активируется в мозгe, мышцах и сердце, ингибируется в печени и жировых клетках, что несет пользу для организма.
4. Воспаление (избыток омега-6 жирных кислот, нарушенная микрофлора и др.)
5. Определенные вещества, например фосфорная кислота.

Быстрые продукты содержат нутриенты, которые максимально сильно стимулируют mTOR pазными механизмами: через глюкозу, через ИФР-1, через режим кормления (Чем чаще ест, тем сильнее вырабатывается ИФР-1 даже при одинаковом числе калорий), через действие лейцина и множеством других механизмов. Классическим быстрым продуктом является молоко и продукты из него (сыр, творог, сухое молоко и др.).

Самая быстрая аминокислота – лейцин. Лейцин (сокр. Leu или L; 2-амино-4-метилпентановая кислота; от греч. leukos — «белый»), входит в состав всех природных белков. Лейцин является одной из незаменимых аминокислот, которая не синтезируется клетками организма, поэтому поступает в организм исключительно в составе белков натуральной пищи. Его можно найти в молочных продуктах, мясе, пшенице, бобовых, орехах, коричневом рисе и продуктах из цельного зерна. Лейцин составляет около восьми процентов всех аминокислот в организме и это четвертая аминокислота по концентрации в мышечных тканях.

Лейцин обладает уникальным свойством напрямую стимулировать активность mTOR. Кроме того, лейцин стимулирует выделение инсулина и ИФР-1, которые также стимулируют mTOR. mTOR весьма чувствителен к концентрации лейцина, который оказывает приблизительно в 10 раз большее влияние на образование новых белков, чем любая другая аминокислота!

albert52
29.10.2020, 18:20
Продолжим.

Как mTORC1, так и mTORC2 содержат несколько общих компонентов: киназу mTOR, которая действует как центральный каталитический компонент, каркасный белок mLST8, регуляторная субъединица mTOR DEPTOR и комплекс Tti1 / Tel2, который важен для сборки и стабильности комплекса mTOR.

Кроме того, каждый комплекс содержит отдельные субъединицы, которые способствуют субстратной специфичности, субклеточной локализации и сложной специфической регуляции. mTORC1 определяется его ассоциацией с Raptor, каркасным белком, важным для сборки, стабильности, субстратной специфичности и регуляции mTORC1, и PRAS40, фактором, который блокирует активность mTORC1 до тех пор, пока передача сигналов рецептора фактора роста не снимет опосредованное PRAS40 ингибирование mTORC1.

Недавно обнаруженная структура mTORC1 показывает, что он действует как димер в форме ромба, причем киназные домены находятся в непосредственной близости друг от друга в центре структуры, а Raptor и mLST8 связываются на периферии.

mTORC2 также разделяет киназу mTOR, mLST8, Tti / Tel2 и DEPTOR, но содержит уникальные компоненты Rictor и mSin1. Рапамицин является известным аллостерическим ингибитором mTORC1, тогда как ингибиторы киназы TOR (TOR-KI) подавляют активность обоих комплексов. mSin1 является ключевым негативным регулятором активности киназы mTORC2 до тех пор, пока передача сигналов, производных от рецептора фактора роста через фосфатидилинозитол-3-киназу (PI3K), не привлекает mSin1 / mTORC2 к плазматической мембране, где опосредованное Sin1 ингибирование mTORC2 не снимается.

Активный mTORC2 тесно связан с плазматической мембраной и был обнаружен в связи с рибосомными мембранами, где он может взаимодействовать со своими ключевыми субстратами, киназами AGC, включая AKT1-3, serum-glukokortikoid-regulierte kinase или serine/threonine-protein kinase (SGK), и члены семейства протеинкиназы C (PKC). Напротив, mTORC1, по-видимому, связан с эндосомными и лизосомальными мембранами, где он взаимодействует со своими эффекторами 4EBP1 и S6K1.

Некоторые стимулы передают сигнал через комплекс туберозного склероза (TSC; включая TSC1 и TSC2). TSC представляет собой GTPase-активирующий белок (GAP) для небольшой протеaзы RHEB (Ras homolog enriched in brain) и отрицательно регулирует mTORC1, способствуя гидролизу RHEB_GTP, превращая RHEB в его неактивное состояние.

Прямые доказательства активности mTORC1 в канцерогенезе исходят от туберозного склероза, заболевания, вызванного потерей TSC1 или TSC2, что приводит к гиперактивации mTORC1 и приводит к широко распространенному, но доброкачественному образованию опухоли. Ограниченное прогрессирование этих опухолей может быть связано с опосредованной mTORC1 отрицательной обратной связью по субстрату рецептора инсулина (IRS) -1, сильно подавляющей передачу сигналов PI3K ниже большинства рецепторных тирозинкиназ (RTK).

mTORC1 является основным регулятором рибосомного биогенеза и синтеза белка посредством фосфорилирования и активации S6K, а также фосфорилирования и инактивации репрессоров трансляции мРНК 4EBP1. Впрочем S6K1 (фосфорилирует S6 -рибосомный белок 40S S6, усиливая трансляцию мРНК ) также может активироваться TOR-нечувствительными сигнальными путями, такими как PDK1, MAPK и SAPK (стресс-активируемая протеинкиназа), но все три сайта фосфорилирования могут блокироваться ингибиторами mTOR.

Имеются данные о том, что mTORC1 регулирует аэробный гликолиз за счет увеличения трансляции фактора, индуцируемого гипоксией (HIF -1α), фактора транскрипции, который управляет экспрессией нескольких гликолитических ферментов. Шунтирование промежуточных продуктов гликолиза в синтез нуклеотидов также частично контролируется mTORC1. mTORC1-обусловленное фосфорилирование S6K1 стимулирует синтез пурина и пиримидина, который необходим для раковых клеток , чтобы быстро дублировать их ДНК.

mTORC1 активирует синтез липидов из промежуточных продуктов гликолиза посредством фосфорилирования Lipin1 и S6K1, таким образом активируя фактор связывания регуляторного элемента транскрипции (SREBP -1), управляя транскрипцией генов, участвующих в липогенезе. Потеря mTORC1-опосредованной активации SREBP1 в клетках рака молочной железы блокирует липогенез, препятствуя пролиферации клеток и росту опухоли.

mTORC1 также негативно регулирует лизосомную деградацию внеклеточного белка, поглощаемого макропиноцитозом, и косвенно регулирует аутофагию, контролируя биогенез лизосом посредством фосфорилирования фактора транскрипции EB (TFEB), который управляет транскрипцией нескольких генов, специфичных для лизосом и аутофагии. mTORC1 и TFEB совместно локализуются на лизосомной мембране, где mTORC1-обеспечиваемое фосфорилирование способствует цитоплазматической секвестрации TFEB.

albert52
30.10.2020, 05:24
Вставка 6

У эукариотических клетках лизосомы являются пищеварительными центрами, где биологические макромолекулы разрушаются в результате фагоцитоза и аутофагии, тем самым поддерживая способность клеток к самообновлению и снабжение энергией. Лизосомы также служат в качестве сигнальных узлов для мониторинга внутриклеточных уровней питательных веществ и энергии, выступая в качестве платформ для сборки множества сигнальных путей, таких как мишень рапамицина 1 (mTORC1) у млекопитающих и активирующую AMP киназу (AMPK). Лизосомная дисфункция связана с различными заболеваниями человека.

Лизосомы представляют собой однослойные мембранные органеллы, окруженные липидной мембраной толщиной 7–10 нм. Лизосомная мембрана состоит как из первичных лизосом, секретируемых Гольджи, так и из везикул плазматической мембраны и эндоцитарного пути. Недавно синтезированные белки, нацеленные на лизосомы, могут транспортироваться либо непосредственно в лизосомы через сеть транс-Гольджи или косвенно попадает в просвет путем эндоцитоза.

H + -ATPase мембранного вакуолярного типа (V-ATPase) является отличительной характеристикой лизосом и может непрерывно перекачивать H + в лизосомы для поддержания кислой среды. LAMP ( лизосом-ассоциированные мембранные белки ) составляют 80% белков лизосомальной мембраны, защищая лизосомальную мембрану от кислотного переваривания через их сильно гликозилированные внутриполостные части. Лизосомные транспортеры необходимы для транспортировки конечных продуктов в цитоплазму для дальнейшего метаболического использования .

В условиях обогащения питательными веществами Rag GTPases, гетеродимеры, образованные RagA/B и RagC/D, активируются и привязываются к лизосомной мембране, дополнительно рекрутируя mTORC1. Rag GTPases могут активироваться Ragulator и ингибироваться комплексом GATOR1. Ragulator - это каркасный белок; белковые каркасы в клетке включают в себя самые разнообразные наборы ферментов, взаимодействие которых необходимо для функционирования клетки. Ragulator активируется SLC38A ( предполагаемым натрий-зависимым аминокислотно / протонным антипортером ) и лизосомальной V-АТФазой, которые в свою очередь стимулируются аргинином и лейцином соответственно в просвете лизосом, в то время как комплекс GATOR1 ингибируется GATOR2, который стимулируется аминокислотами в цитоплазме (комплексы GATOR1 и 2(Gap Activity TOward Rags) участвуют в восприятии аминокислот). Затем mTORC1 активируется GTPases Rheb, стимулированной GF (фактором роста ) посредством ингибирования TSC.

При дефиците глюкозы каркасный белок аксин вызывает диссоциацию и инактивацию mTORC1 посредством ингибирования Ragulator. Кроме того, аксин рекрутирует AMPK, взаимодействуя с LKB1, и вызывает активацию AMPK, образуя комплексы с V-ATPase и Ragulator.

Аутофагия характеризуется везикулами, поглощающими цитоплазматические белки или органеллы и последующим слиянием с лизосомами для деградации содержимого, что важно для внутриклеточного метаболического гомеостаза и обновления определенных органелл. Как правило, аутофагия подразделяется на макроаутофагию, микроаутофагию и шаперон-опосредованную аутофагию (CMA).

В отличие от макроаутофагии, которая называется генерализованной аутофагией, аутофагосомы не образуются во время микроаутофагии; вместо этого лизосома непосредственно поглощает микроаутофаги через углубление, выпуклость или разделение лизосомных мембран. При CMA шаперон связывается и транспортирует целевой белок в лизосомы для деградации. Белок теплового шока (Hsp70), молекулярный шаперон, который играет критическую роль в CMA, способен узнавать и связывать субстраты для деградации лизосом.

Кроме того, Hsp70 способствует мультимеризации LAMP типа 2a, лизосомального рецептора, участвующего в CMA, с образованием комплекса транслокации, в котором дополнительно формируется канал транслокации, через который разрешается проходить только развернутым субстратам. Точно так же в CMA требуются другие молекулярные шапероны, в том числе Hsp90, который регулирует стабилизацию транслокационного комплекса, Hsp40, Hsp70-взаимодействующий белок (Hip) и Hsp70-Hsp90-организующий белок (Hop), который облегчает процесс транслокации.

Лизосомный контроль качества (LQC) включает лизосомную репарацию, лизофагию и лизосомную регенерацию и быстро запускается в ответ на повреждение лизосом для поддержания структурной целостности лизосом и функционального гомеостаза. Поврежденную лизосомную мембрану можно восстановить с помощью Hsp70 и ESCRT. При лизофагии поврежденные лизосомы в конечном итоге транспортируются в нормальные лизосомы для деградации через фагосомы, образованные фагофорами. Ингибирование mTORC1 за счет потери лизосом может позволить TFEB связываться с CLEAR и способствовать образованию лизосом.

Эндосомальные сортировки комплексов, необходимые для транспортировки (ESCRT), имеют решающее значение для ремонта поврежденных лизосомальных мембран. ESCRT - это высококонсервативная транспортная система, запрограммированная на транспортировку убиквитинированных белков в лизосомы. ESCRTs могут восстанавливать небольшие перфорации в лизосомальной мембране на ранней стадии лизосомного повреждения и рекрутируются всего за несколько минут.

Подобно селективной аутофагии, убиквитинирование поврежденных лизосом является основным фактором, управляющим и модулирующим лизофагию.

В физиологических условиях количество лизосом постоянно поддерживается за счет динамического гомеостаза, сбалансированного между образованием и деградацией. Промоторные области многих лизосомных генов содержат один или несколько повторов мотива из 10 пар оснований (GTCACGTGAC), известных для координации лизосомальной экспрессии и регуляции (CLEAR) элементов. TFEB, член семейства MiT / TFE, напрямую связывается с элементом CLEAR и дополнительно способствует обновлению лизосом. Вообще, TFEB вносит вклад в уровни экспрессии большого количества генов, участвующих в лизосомной функции, включая экзоцитоз, фагоцитоз, эндоцитоз и аутофагию.

Ингибирование mTOR делает возможным дефосфорилирование и транслокацию TFEB, что затем увеличивает экспрессию генов, кодирующих лизосомные белки, такие как V-ATPases, лизосомные трансмембранные белки и гидролазы.

В настоящее время широко признаны два основных пути, опосредующих
апоптоз, а именно экзогенный апоптоз через рецепторы смерти на поверхности клеток и внутренний апоптоз, зависящий от вовлечения митохондрий. Лизосомное повреждение запускает апоптоз по эндогенному пути, при этом утечка лизосомальных ферментов из поврежденных лизосом имеет решающее значение для апоптоза в митохондриально-зависимом пути. Интересно, что высвобождение H2O2 из поврежденных митохондрий также объясняет фрагментацию лизосомных мембран. Кроме того, катепсины лизосом способны расщеплять Bcl-2, тем самым приводя к ускорению апоптоза.

Лизосома является одним из основных мест хранения железа и важна для поддержания уровней внутриклеточных АФК и железа. При воздействии H2O2 свободное железо в лизосомах увеличивает производство ROS, которые затем могут высвобождаться через нестабильную лизосомную мембрану, чтобы запустить активацию путей гибели клеток. Большая часть железа находится в форме, подходящей для связывания с ферритином в цитоплазме, который может расщепляться путем лизосомальной аутофагии, вызывая высвобождение активного железа.

Общепринято, что лизосомы имеют решающее значение для инициации и рецессии воспалительных реакций. Так, при гиперурикемии мочевая кислота перенасыщается в моче и образует кристаллы мочевой кислоты, которые транспортируются в лизосомы за счет эндоцитоза эпителиальных клеток почечных канальцев, разрушая лизосомальную мембрану и вызывая разрыв лизосомы, в свою очередь, приводя к воспалению почек. Точно так же сосуществование лизосом и пищеварительных ферментов в ацинарных клетках поджелудочной железы считается ранним событием при остром панкреатите.

albert52
30.10.2020, 13:15
Из всех злокачественных опухолей наиболее показательной в отношении значения TOR пути является меланома. Меланома кожи является результатом неопластической трансформации меланоцитов – клеток, продуцирующих различные вариации пигмента меланина. Эти клетки происходят из меланобластов, судьбу которых сложно назвать предопределённой: данный элемент впоследствии может развиться в нейрон, лейомиоцит, а в случае высокого уровня меланоцит-глиального потенциала – и в компонент глии. После дифференцировки в меланоците выделяют тело (сому) и отростки, которые располагаются в базальном и шиповатом слоях эпидермиса соответственно .

Под действием меланоцитстимулирующих и адренокортикотропного гормонов, а также солнечного света в меланосомах синтезируется (эу)меланин (и феомеланин), функцией которого является защита ядерного аппарата клетки от повреждения УФ-излучением. Синтезированный меланин транспортируется в шиповатый слой эпидермиса по отросткам меланоцита, далее в кератиноциты эпидермиса, придавая коже загар . Спустя некоторое время данный полимер гидролизируется в лизосомах, а коже возвращается её привычный оттенок.

На сегодняшний день заболеваемость меланомой увеличивается во всех странах мира; медиана выживаемости при меланоме составляет не более 8-ми месяцев, а эффективность радикального хирургического лечения не превышает 5-6%. Средний возраст заболевших меланомой кожи составляет примерно 45 лет, однако за последние годы меланома стала всё чаще возникать у совсем молодых людей (15-25 лет). Эта опухоль встречается у мужчин и женщин, причём у женщин в 1,5-2 раза чаще. По статистике, на каждые 100.000 здоровых человек приходится 14 больных с меланомой.

Согласно статистике ВОЗ, чернокожие в 4 раза реже страдают от меланомы, чем европеоиды, то есть чем выше природное количество меланоцитов в коже, тем ниже риск возникновения меланомы, следовательно, низкий уровень пигментации является фактором риска. Другим фактором риска является наличие большого количества веснушек на коже, которые обусловлены скоплением пролиферирующих меланоцитов в базальном слое эпидермиса и эпителии наружных отделов волосяных фолликулов.

При меланоме наиболее заметным является МАРК (mitogen-activated protein kinase) кластер, к которому относятся внутриклеточные сигнальные пути самых разнообразных функций . Критерием для включения в МАРК-группу является наличие митоген-активируемых протеинкиназ в модуле, в котором, помимо киназ, содержатся протеинфосфатазы и белки-сборщики белковых вспомогательных комплексов (каркасные белки - см. выше).

Среди множества киназ, задействованных при передаче сигнала, в кластере МАРК существуют так называемые Raf-киназы. Raf- – это семейство серин-треонин зависимых протеинкиназ, название которых является акронимом от Rapidly Accelerated Fibrosarcoma. Из них наибольший интерес здесь представляет B-raf (BRAF), который кодируется одноименным геном; возникающая под действием чрезмерного УФ-облучения в данном гене V600 мутация, заключающаяся в замене валина на лейцин (V600L), лизин (V600K) или глутаминовую кислоту (V600E) в 600-ой позиции, служит стартером неопластической трансформации в меланоме кожи, а также является мишенью для действия лекарственных средств, объединенных в группу ингибиторов BRAF V600L. Это так называемые «-нибы»: иматиниб, сорафениб, вемурафениб и т.п.

При использовании этих лекарств надо помнить, что если при верифицированном мутированном BRAF-статусе пациента низкомолекулярные ингибиторы BRAF приводили к торможению развития меланомы, то потр***ение «-нибов» пациентами, мутации BRAF у которых вызывали сомнения либо отсутствовали, приводило к мутации другого каскада - RAS-RAF-MEK-ERK, патологически активируя его и инициируя неопластическую трансформацию. Впрочем при мутации V600E в любом случае происходит усиление сигналинга ERK в результате димеризации мутантной киназы (здесь помогает препарат вемурафениб (зелораф); в основе его действия лежит ингибирование димеризации BRAF).

В январе 2014 г. зарегистрирован новый таргетный препарат дабрафениб, который действует не только при замене V600E, но и при мутации V600K. К сожалению, практически у всех пациентов, ответивших на вемурафениб, с течением времени появляется устойчивость к терапии.

МЕК (mark-epk-kinase) также является серин-треониновой киназой МАРК-кластера и интегрирует сигналы от различных факторов роста с последующей активацией пролиферации. МЕК участвует в регуляции активности транскрипционных факторов (ТФ), таких как, например, C-myc. Белок Myc, кодируемый одноимённым геном и являющийся протоонкогеном, является не только «каноничным» примером ТФ, но и контролирует структуру хроматина, регулируя ацетилирование гистонов, что в свою очередь влияет на активность экспрессии генов. Мутантный ген Mус, находящийся в 8-ой хромосоме, обнаруживается во многих видах опухолей; классическим примером является транслокация t (8;14), приводящая к возникновению и развитию лимфомы Бёркитта .

N-RAS (Neuroblastoma-Ras) – ген, кодирующий одноименный белок, входящий в так называемое суперсемейство Ras – малых ГТФ-аз . Наряду с NRAS в данное семейство входят гены K-Ras, H-Ras (вызывающие неопластическую трансформацию при заражении вирусом саркомы Кристен и Харви соответственно) и др. На сегодняшний день функция NRAS определена как передача пролиферативных сигналов от рецепторов факторов роста. N-RAS, как и все суперсемейство, задействованы в сигнальном пути МАРК.

Последним рассматриваемым здесь звеном МАРК-каскада является ген c-KIT. Последним, но не по значению: мутации этого гена, являющегося протоонкогеном, белок которого является рецептором факторов роста стволовых клеток, выявляются в каждом третьем случае меланомы различных локализаций: как кожи, так и слизистых. Отметим, что Kit-мутация успешно ингибируется уже известными по таргетной терапии BRAF-положительных меланом «-нибами».

albert52
30.10.2020, 18:57
Следующим компонентом пролиферативных сигнальных путей, патологически активированных в клетках меланомы, является PI3K – фосфоинозитол-3-киназный путь, нередко обозначаемый в литературе как «сигнальный путь PI3K/AKT/mTOR», также активируемый белком Ras. Его активация наблюдается примерно в 40-70% случаев меланомы, и наиболее часто это происходит в результате нарушения функционирования каскада, регулируемого супрессором фосфатаз PTEN (phosphatase and tensin homolog).

Это каскад реакций, основные события которого разворачиваются вокруг следующих ферментов: фосфоинозитид-3-киназы (PI3K), семейства протеинкиназ В, компонентами которого являются серин-треонин киназы АКТ 1, 2, 3, и ещё одной серин-треонинспецифичной киназы, обозначаемой как mTOR. В контексте канцерогенеза в клетках меланомы кожи наибольший интерес представляют компоненты AKT и PTEN.

PTEN представляет собой фосфатазу липидов, ферментативная активность которой служит прежде всего для удаления фосфатных групп из PI3К/Akt. Это обычно ограничивает рост и продукцию сигналов выживания клеток. Утрата опухолью супрессорной активности PTEN, выявляемая в значительном числе меланом, ведет к инактивации супрессорных биохимических каскадов, постоянной активации противоапоптотической протеинкиназы В/Аkt и в итоге - к блокированию апоптоза и неконтролируемой пролиферации опухолевых клеток. Инактивация PTEN обнаруживается во многих опухолях, поскольку приводит к неконтролируемому делению с утратой дифференцировки, сбоям в метаболизме клетки и извращённому синтезу. Инактивирующие PTEN мутации обнаруживаются в 10-30% меланом.

Семейство АКТ представляет собой группу киназ, которые путём присоединения остатков фосфорной кислоты к различным белкам цитозоля контролируют их активность. Данное семейство выполняет как классические функции, например, регуляцию пролиферации, дифференцировку и изменение цитоскелета, так и щекотливые в контексте канцерогенеза функции ангионеогенеза, ухода от апоптоза и приобретения резистентности к цитостатикам.

В семейство АКТ входит 3 подвида протеинкиназ: АКТ-1, АКТ-2 и АКТ-3, являющихся продуктами соответствующих генов:
- Akt1 - α-серин/треониновая протеинкиназа – ингибирование апоптоза, биосинтез белка (в сторону «плюс-ткани», гипертрофия миоцитов и т.п.).
- Akt2 - ß -серин/треониновая протеинкиназа- участвует в метаболизме инсулина, индуцирует транспорт глюкозы, осуществляемый ГЛЮТ-4.
- Akt3 - γ- серин/треониновой-протеинкиназы – функция достоверно неизвестна.
Различные виды АКТ гиперэкспрессированы в 45-70% меланом.

Что касается mTOR (см. выше), то несмотря на то, что молекула TOR является неделимым производным двух её субъединиц, последние обладают совершенно разными полномочиями. Повреждение первого комплекса не несёт каких-либо катастрофических последствий для клетки, а нарушение TOR2 приведёт через несколько делений к так называемому «аресту» (прекращению) клеточного цикла на этапе фазы G2/M фазе . Если пострадают обе субъединицы, то клетка «замрёт» в фазе G0 в следующем поколении.

Следующим компонентом системы контроля клеточного цикла является система циклинзасимых киназ CDKN2A, CDK4 и CDK6. Мутации, делеции, гиперметилирование промотора являются нарушениями, обнаруживаемыми в 50% (CDKN2A) и 10-12% (CDK4) случаев меланомы, а наследуемые герминальные мутации в генах предрасположенности могут обусловливать возникновение семейной меланомы в 15% случаев.

CDKN2A (cyclin-dependent kinase Inhibitor 2A) – ген, локализованный в коротком плече 9 хромосомы и кодирующий два белка, которые являются онкосупрессорами: р14 и р16. При помощи данных белков регулируется активность, пожалуй, самого известного онкосупрессора р53 и белка ретинобластомы (RB). В случае мутации CDKN2A (дупликация кодона R112) оба продукта данного гена подвергаются поломке. Мутации данного гена обнаружены в 30-40% случаев меланом, особенно часто они встречаются в контексте семейной меланомы. Спорадические соматические мутации CDKN2A встречаются в 50% случаев меланомы кожи, реализуемой либо путём деактивации р16, либо путём метилирования промотора (10%). Белковый комплекс циклина-D и CDK4 регулирует экспрессию RB, влияющего на активность клеточного цикла и пролиферацию клеток.

CDK4 (сyclin-dependent kinase 4) – фермент, кодируемый одноимённым геном и являющийся частью семьи циклинзависимых киназ. Будучи звеном единой системы контроля клеточного цикла, CDK4, как и CDK6, связан с соответствующими протеинами и белком ретинобластомы. В контексте канцерогенеза данные элементы выступают в роли рычагов управления клеточным циклом, неконтролируемая активность которого может быть результатом тех или иных нарушений в управляющих ферментах.

Ингибиторы циклинзависимых киназ блокируют активность соответствующих ферментов как самостоятельно, так в комплексе «фермент+циклин»; действуют данные препараты, как правило, в фазе G1 клеточного цикла.

В ядрах клеток меланомы наблюдается гиперэкспрессия фактора транскрипции NF-κB, который участвует в передаче сигнала как в МАРК-, так и в PI3K-сигнальных каскадах . В цитоплазме нормальных клеток, находящихся в стационарном состоянии, белок NF-κB не присутствует в свободном виде. Он связан с ингибиторным белком I-κB. Но при стрессовых воздействиях или поступлении внешних сигналов белок IκB фосфорилируется и высвобождает NF-κB, который перемещается в ядро и запускает транскрипцию более 100 генов, производящих белки, необходимые для реакции на стресс и выживания клетки.
Освободившийся ингибиторный белок IκB подвергается убиквитинированию и последующей деградации в протеосомах. В клетках меланомы нарушена протеасомная функция, и это приводит к пролиферации клеток меланомы и ингибированию про-апоптотических реакций при химиотерапии.

В выживании клеток меланомы также участвует противоапоптотический путь, опосредованный белком Bcl-2. Повышенная экспрессия Bcl-2 вовлечена в выживание меланомных клеток и инвазию опухоли. Преклинические исследования показали, что гиперэкспрессия Bcl-2 связана с повышенной продукцией сосудистого эндотелиального фактора роста VEGF и ангиогенезом. Избыточная экспрессия Bcl-2 может обуславливать резистентность к цитотоксической химиотерапии.

albert52
01.11.2020, 18:52
Продолжим с меланомой.

Давно известно, что любое воспаление или систематическая травматизация могут приво -дить к запуску онкогенеза по схеме «воспаление - метаплазия – дисплазия – атипизм разной степени или разного уровня – полная потеря дифференцировки» и кожные новообразования – не исключение. Существуют ли абсолютно доброкачественные невусы – вопрос риторический, поскольку наличие скопления меланина на коже повышает риск его малигнизации уже по факту одного лишь существования. Наружная локализация, частое соприкосновение с предметами одежды и нижнего белья, подверженность влиянию солнечной радиации, всё это приводит к тому, что риск перехода безобидного невуса в одну из самых агрессивных опухолей из ныне описанных, довольно-таки высок.

В случае повреждения или полного удаления образования рекомендуется по возможности проконсультироваться с врачом, а также наблюдать за «поведением» кожи на месте невуса: сильная кровоточивость, зуд, боль, долго не проходящее покраснение являются доводами в пользу как можно более раннего обращения к доктору.

Ультрафиолетовые лучи бывают нескольких типов:
УФ-A (UVA в международной классификации) относятся к лучам длинноволногового диапазона (315-400 нанометров),
УФ-B (UVB) - лучи средневолнового диапазона (280-315 нм) и
УФ-C (UVC) - коротковолнового диапазона (100-280 нм).
Большая часть ультрафиолета, получаемого нами от природных источников, представляет собой UVA. UVA лучи могут проникать в толщу дермы, и хотя энергия их фотонов (а значит, и мутагенное действие) мала, при избытке инсоляции всё равно наблюдаются явления ультрафиолетового мутагенеза. Наиболее опасные UVC и большая часть UVB в норме поглощаются озоновым слоем атмосферы, а UVB, легко вызывающий ожоги, не способен пройти даже через оконное стекло. Кремы с SPF, защищающим от ультрафиолета фильтром SPF (Sun Protection Factor) защищают лишь от UVB-повреждений, которые вызывают ожоги (буква B в данном случае свидетельствует об этом, «burn»). При этом физические фильтры, в состав которых входят микрочастицы цинка и титана, работают как экран, не давая ультрафиолету проникать в глубокие слои кожи.

Отметим, что согласно методу Шульца, который позволяет рассчитать уровень SPF-фильтра, разница между SPF 100 и 50 составляет статистическую погрешность. Фактическое время защиты кожи – это время, в течение которого вы можете находиться на солнце без солнцезащитного средства без появления ожогов. Как правило, оно варьируется от 5 до 30 минут в зависимости от типа кожи. Это время, умноженное на значение солнцезащитного фактора, равно времени, которое вы можете провести на солнце после применения солнцезащитного средства без получения ожогов. Пользоваться средствами защиты от УФ-излучения следует за 10-15 минут до начала солнечных ванн и обновлять слой средства после каждого нахождения в воде.

Меланома представляет собой генетически и фенотипически гетерогенную группу опухолей. Кстати, она не может носить название «рак», поскольку «рак» - это злокачественные опухоли эпителиального происхождения , а меланома произрастает из меланоцитов, клеток нервного гребня. Важнейшим аспектом классификации меланомы кожи является определение фазы роста: горизонтальной, являющейся по сути своей поверхностным распространением опухоли, и вертикальной, с инвазией опухоли в подлежащие ткани, что является менее благоприятным вариантом, так как обусловливает высокую вероятность метастазирования.

Спектр хромосомных нарушений и активирующих мутаций, формирующих различные молекулярные портреты опухоли, отличается в меланоме различной локализации. В меланоме поверхности кожи доминируют мутации в генах BRAF (50 %), NRAS (20 %), причем мутации NRAS характерны для опухолей на участках кожи, подверженных инсоляции. Активирующие мутации KIT выявляют в 20-30 % случаев меланомы акральной или мукозальной локализации, а также в меланоме, возникшей в результате ультрафиолетового повреждения кожи. В 25 % случаев меланома кожи развивается из предсуществующего невуса.

Большинство злокачественных меланом в своей прогрессии проходят 2 стадии роста: длительно существующую (от 2 до 10 лет, чаще всего в пределах 3–5 лет); стадию ***шки (bljashki), или фазу радиального роста, когда хирургическое иссечение дает блестящий результат и фазу вертикального роста, в результате которого обычно образуется массивный узел и возникает риск развития отдаленных метастазов.

Процесс прогрессии меланомы кожи согласно модели Кларка:
- доброкачественный меланоцитарный невус: контролируемая пролиферация нормальных меланоцитов.
- атипичный/диспластический невус: аномальный рост меланоцитов, характеризующийся клеточной атипией. Факультативный предрак. Характеристики – радиус более 5 мм, неровные кроя, вариабельная пигментация
- фаза радиального роста: меланоциты начинают прорастать в кожу горизонтально, отмечается тканевая атипия (меланома in situ). Е-кадгерин способствует более глубокому распространению меланоцитов, однако лишь небольшой их процент проникает за папиллярный слой дермы.
- фаза вертикального роста: многочисленные мутации Е-кадгерина и экспрессия Н-кадгерина (ЕМП - см. выше) позволяет атипичным меланоцитам прорывать нижележащие барьеры, пролиферируя вертикально в дерме. Образование начинает представлять собой узел с высоким метастатическим потенциалом.
- метастазирование: меланоциты с признаками тяжёлой атипии распространяются по всему телу, сначала в близкие к коже метастатические узлы, затем в подкожно-жировую клетчатку и мягкие ткани, лёгкие и головной мозг. Общая пятилетняя выживаемость пациентов с метастатической меланомой составляет 10 %, а десятилетняя – 2–5 % .

Меланома кожи быстро и неуловимо распространяется путем инфильтрированного роста и проникновения в межтканевые щели, кожные и подкожные лимфатические пути, а также путем перемещения клеточных агрегатов по лимфатическим и кровеносным сосудам. Это связано со слабой адгезией меланобластов, их универсальной способностью легко размножаться в разных органах и тканях и с обилием сосудов, снабжающих опухоль. При этом примерно у половины больных даже при первой стадии к началу лечения уже имеются клинически не определяемые метастазы, которые интенсивно прогрессируют после хирургического лечения.

В опухолях толщиной больше 3 мм в 50% рецидивы развиваются через 12 месяцев, а в 90% — в пределах 5 лет. Тонкие меланомы имеют низкую степень вероятности развития рецидивов, при этом безрецидивный период может продлиться более 10 лет после установления первичного диагноза. Впрочем, наличие, по крайней мере, одного митоза на 1 мм² может повысить тонкую меланому до более поздней стадии с высоким риском развития метастазов.

Гистологическая классификация позволяет выделить эпителиоидноклеточную, веретеноклеточную, смешанно-клеточную и невусоподобную меланому.

albert52
05.11.2020, 21:13
Цвет кожи определяется содержанием меланина в кератиноцитах, представляющих собой клетки-рецепторы меланинсодержащих органелл, формируемых меланоцитами и названных меланосомами.

Локализующиеся в эпидермисе на границе с дермой меланоциты представляют собой отростчатые клетки, функционально связанные с некоторыми кератиноцитами, каждый меланоцит и соответствующие ему 36 кератиноцитов составляют эпидермальную меланиновую единицу, обеспечивающую направленный транспорт меланосом к кератиноцитам.

Меланосомы, эти эллипсоидные органеллы, формируются в зоне эндоплазматического ретикулума и аппарата Гольджи; вначале они представляют собой не содержащие меланина сферические структуры, которые по мере накопления пигмента темнеют, уплотняются и приобретают овальную форму.

Меланосомы локализуются в меланоцитах преимущественно изолированно друг от друга в виде отграниченных мембраной дискретных органелл. В кератиноцитах же они могут существовать и в виде агрегатов по три и более частиц в одной органелле, снабженной мембраной. Эти органеллы напоминают меланосомосодержащие органеллы макрофагов, известные под названием лизосом.

Представляется, что меланосомы эпидермальных кератиноцитов постепенно разрушаются. В значительно пигментированной коже, однако, интактные меланосомы располагаются и в роговом слое. Скорость транспорта меланосом к кератиноцитам может влиять на количество синтезируемых меланосом. Халоны (и гормоны - МСГ) могут также изменять активность аденилатциклазы и скорость деления меланоцитов и кератиноцитов.

Эпидермальные клетки и роговой слой очень пигментированной кожи заполнены мириадами меланосом. В них содержится около 30% меланина, в связи с этим из-за своей плотности и высокой способности к поглощению УФР они могут обеспечить защиту от повреждающего действия солнечных лучей. Локализация меланосом в околоядерной зоне эпидермальных клеток уже сама по себе способна защитить легко повреждаемое, содержащее ДНК, ядро за счет уменьшения прямого воздействия фотонов.

Связанный с микрофтальмией фактор транскрипции (MITF) является основным регулятором развития и дифференцировки в меланоцитарной линии (см. мастер-гены). При меланоме MITF также играет критическую роль в фенотипе клеток и строго контролирует транскрипционную активность и репрессию большого количества генов.

Низкие и высокие уровни MITF были связаны с различными глобальными паттернами экспрессии генов. Низкие уровни MITF управляют дедифференцировкой в ​​клетках меланомы, о чем свидетельствует эффект истощения MITF, приводящий к увеличению экспрессии маркеров стволовых клеток при одновременном снижении экспрессии маркеров дифференцировки меланоцитов. Параллельно с дедифференцированным фенотипом было показано, что истощающийся MITF уменьшает рост клеток и вызывает их старение и/или апоптоз.

Модель реостата предполагает, что разные уровни MITF определяют различные клеточные фенотипы. Низкие уровни MITF вызывают дедифференцировку, что приводит к фенотипу, подобному стволовым клеткам, промежуточные уровни MITF способствуют пролиферации клеток, а более высокие уровни MITF приводят к старению, опосредованному дифференцировкой меланоцитов.

Текущие клинические стратегии, включающие целевое лечение, обычно нацелены на популяции клеток меланомы, которые «зависимы» от гиперактивного пути MAPK для выживания и быстрого деления клеток (см. выше). Однако все больше данных свидетельствуют о том, что меланомы в низком MITF-опосредованном дедифференцированном состоянии имеют «перемонтированные» сигнальные каскады, которые перераспределяют онкогенную передачу сигналов по нескольким путям, включая пути не-MAPK, в дополнение к пути MAPK. Другими словами, вместо полной зависимости от одного регулирующего рост пути, дедифференцировка позволяет использовать несколько путей для придания лекарственной устойчивости.

Так, передача сигналов WNT5A происходит через неканонический путь WNT и вызывает дедифференцировку путем подавления уровней MITF, стимулируя клеточный фенотип старения. Но клетки, экспрессирующие высокие уровни WNT5A, были способны повторно войти в клеточный цикл, указывая на то, что они не были действительно старящими (таким образом называются старческиe). Передача сигналов WNT5A может быть функционально связана с врожденной резистентностью.

WNT5A-экспрессирующие клетки с задержкой роста обладают повышенной инвазивностью при увеличении терапевтической дозы - ингибиторы BRAF таким образом способствуют метастазированию. У них выявлены высокие уровни маркеров раковых стволовых клеток, таких как CD271, JARD1B и фибронектин.

Кроме того, передача сигналов EGFR и усиленная экспрессия EGFR индуцируют медленно циклический фенотип и повышенные уровни ингибиторов клеточного цикла, включая p21 Cip1 (CDKN1A), p27 Kip1 (CDKN1B), а также активированный гипофосфорилированный белок ретинобластомы. Было показано, что пути передачи сигнала EGFR являются частью той же транскрипционной программы, что и WNT5A.
При колоректальном раке (CRC) устойчивость к вемурафенибу при лечении BRAF-мутантной CRC опосредуется экспрессией EGFR, которая является следствием эпителиального происхождения CRC.

После ингибирования BRAF передача сигналов EGFR делает возможным повторную активацию обратной связи пути MAPK и активацию пути PI3K-AKT. EGFR-опосредованная резистентность при меланоме связана с глубокими изменениями паттернов экспрессии генов, которые коррелируют с дедифференцировкой, что определяется снижением уровней MITF вместе со снижением нижестоящих мишеней MITF и других важных регуляторов меланоцитов, таких как SOX10, PAX3 и LEF1.

Активация NF-κB также играет важную роль в повышении устойчивости к лечению в клетках с низким уровнем MITF. Клетки с высоким NF-κB и низкой экспрессией MITF были по своей природе устойчивы как к ингибированию одним агентом в нескольких точках пути MAPK, так и к ингибированию комбинации BRAF / MEK.

albert52
09.11.2020, 18:31
Даю частично измененный и дополненный вариант предыдущей заметки.

Для меланомы характерен высокий уровень мутаций, значительно выше, чем у других опухолей (меланома, таким образом, как бы чемпион по мутациям). Это связано с тем, что меланома находится как бы посредине между раком и саркомой - с одной стороны, у меланомы нет характерной для эпителиальных тканей так наз. "строевой дисциплины", подавляющей большинство мутаций в зародыше. С другой стороны, меланоциты находятся на поверхности тела и подвергаются воздействию такого мощного мутагенного фактора, как ультрафиолетовые лучи.

В связи с этим так важно значение мастер-генов (см. выше) - основных стражей идентичности клеток. Для меланоцитов таким мастер-геном является MITF (связанный с микрофтальмией фактор транскрипции), который является основным регулятором развития и дифференцировки в меланоцитарной линии. Впрочем, в эмбриогенезе важную роль играют белки пути Wnt, включая Wnts, такие как Wnt6 и Wnt8, которые контролируют экспрессию множества ключевых белков, включая Slug и Snail.

Wnt1 и Wnt3A также способствуют развитию клеток нервного гребня в пигментные клетки. Когда в клетках истощаются эти два белка, они становятся нейрональными, а не пигментированными клетками. Wnt1 передает сигнал меланобластам паракринным образом, чтобы увеличить количество меланоцитов, тогда как Wnt3а и β-catenin могут определять клетки нервного гребня в направлении меланоцитов. Супрессором MITF является DKK1 (Dickkopf), и фибробласты, секретирующие DKK1, могут ингибировать продукцию меланина в соседних меланоцитах.

Отметим, что передача сигналов Wnt5а может противодействовать передаче сигналов Wnt1 / 3а. Это может указывать на то, что там, где каноническая передача сигналов Wnt важна для позиционирования и дифференцировки меланобластов, неканоническая передача сигналов Wnt, возможно, посредством подавления β-катенина, может вызывать дедифференцировку меланоцитов и других типов клеток до состояния, более похожего на стволовые клетки.

Это подтверждается данными и гематопоэтической системы, показывающими, что Wnt5A поддерживает гемопоэтические стволовые клетки (HSC) в состоянии покоя, тем самым увеличивая как краткосрочную, так и долгосрочную репопуляцию HSC. Каноническая передача сигналов Wnt необходима для дифференцировки этих HSCs, и Wnt5а противодействует каноническим путям передачи сигналов Wnt для поддержания плюрипотентности HSCs.

Отметим кстати, что в коже стволовые клетки можно найти в трех основных областях - выпуклости волосяного фолликула, в межфолликулярном эпидермисе и в сальных железах. Фактические данные указывают на то, что каждая из этих популяций стволовых клеток имеет различные характеристики. Стволовые клетки, обнаруженные в волосяном фолликуле, представляют собой недифференцированные меланобласты. Коммитированные предшественники меланоцитов от фолликула распостраняются по эпидермису.

Поддержание стволовых клеток меланоцитов (MSC) зависит от тонкого взаимодействия между факторами MITF, Pax3, SOX10 и DCT, и регуляция стволовых клеток довольно сложна. Например, Pax3 играет двойную роль в регуляции транскрипции ниже MITF: обычно действует как репрессор, но в присутствии канонической передачи сигналов Wnt Pax3 может передавать сигнал для активации MITF и вызывать увеличение транскрипции DCT(L-дофахром таутомеразы) и усиление дифференцировки MSC.

Отметим, что строго регулируемый выход из клеточного цикла и повторный вход в него зависят от баланса передачи сигналов Wnt, о чем свидетельствует способность канонической передачи сигналов Wnt управлять транскрипцией MITF, а также высокие уровни ингибиторов Wnt, которые присутствуют в стволовых клетках меланоцитов. Поскольку Wnt5а может подавлять каноническую передачу сигналов Wnt, вполне возможно, что Wnt5а участвует в поддержании покоя MSC, так же как он важен для поддержания HSC.

Пациентов с меланомой можно разделить на высокометастатическую когорту на основе высокого Wnt5а, низкого профиля MITF и менее метастатическую когорту с высоким профилем MITF и низким Wnt5а, то есть между MITF и Wnt5а в зрелых клетках существуют антагонистические отношения. Поэтому активизация неканонического пути Wnt ( и Wnt5а соответственно) приводит к резкому снижению пигментации клеток меланомы, что, возможно, позволяет этим клеткам ускользать от раннего обнаружения врачами, как это часто бывает с амеланотическими меланомами.

Отметим, что усиление канонической передачи сигналов Wnt в меланоцитах ведет к их повышенной пролиферации и клоногенному выживанию. Важно отметить, что β-катенин способствует уходу меланоцитов от старения посредством инактивации p16, что приводит к их иммортализации. В целом, хотя мутации ß-катенина редки при меланоме, активация ß-катенина является ключевым этапом в начальном превращении меланоцитов в меланому.

Таким образом, каноническая передача сигналов Wnt важна на ранних стадиях развития опухоли во время превращения меланоцитов в меланому в радиальной фазе роста (RGP), но его продолжающаяся экспрессия на более поздних стадиях, таких как меланома в вертикальной фазе роста (VGP) и метастазы, из-за его продвижения дифференцировки, может подавлять метастазирование.

Передача сигналов Wnt5а, с другой стороны, отсутствует на ранних стадиях опухоли, и обработка меланоцитов с помощью Wnt5а вызывает их апоптоз, а не трансформацию. Также в других видах рака Wnt5а может действовать как опухолевый супрессор. Однако после трансформации меланоцитов активация Wnt5A снижает уровень β-катенина и способствует метастазированию.

Кстати, невусы экспрессируют довольно высокие уровни Wnt5а. Подавляющее большинтво пигментированных невусов имеют мутантный B-Raf, также парадоксально (сильная пигментация) подавляющий экспрессию MITF. Как и Wnt5а, экспрессия B-Raf высока в невусах, снижена в меланоме на стадии RGP и повышена в VGP, как и в других метастатических опухолях.

При колоректальном раке (CRC) устойчивость к вемурафенибу при лечении BRAF-мутантный CRC опосредуется экспрессией EGFR, которая является следствием эпителиального происхождения CRC. Усиленная экспрессия EGFR индуцирует повышение уровня ингибиторов клеточного цикла, включая p21 Cip1 (CDKN1A), p27 Kip1 (CDKN1B), а также активированный белок ретинобластомы(RB). Было показано, что пути передачи сигнала EGFR являются частью той же транскрипционной программы, что и WNT5a.

Вернемся к MITF. Клиницистами выдвинута модель реостата, предполагающая, что разные уровни MITF определяют различные клеточные фенотипы. Низкие уровни MITF вызывают дедифференцировку, что приводит к фенотипу, подобному стволовым клеткам, промежуточные уровни MITF способствуют пролиферации клеток, а более высокие уровни MITF приводят к старению, опосредованному дифференцировкой меланоцитов. Низкая активность MITF придает устойчивость к ингибиторам MAPK-пути в клеточных линиях BRAF- мутантной меланомы, в том числе и к вемурафенибу (см. выше).

Более того, WNT5а-экспрессирующие клетки с задержкой роста опухоли при лечении вемурафенибом обладают повышенной инвазивностью. Это и не удивительно: метастазирующим клеткам не до размножения. Вот когда опухолевые клетки освоятся на новом месте, тогда можно и размножаться.

albert52
13.11.2020, 01:44
Вставка.
Wnt сигнальный путь

Wnt-путь — один из важнейших молекулярных сигнальных путей, который регулирует эмбриональное развитие и дифференцировку клеток. Весь путь назван по имени одного из лигандов, который активирует путь в клетках — Wnt. На сегодняшний день известно, что Wnt-путь регулирует развитие многих органов во время эмбриогенеза и отвечает за билатеральную симметрию организма. Его функции — все то, что формирует из массы эмбриональных клеток целостный организм. У взрослых особей нарушения Wnt-пути ведут к повышенному риску раковых заболеваний. Также недавние работы показали важную роль компонентов Wnt в пролиферации и дифференциации стволовых клеток.

Гликопротеины Wnt — это семейство секретируемых клетками сигнальных молекул, которые участвуют в координации поведения клеток в организме. Каждый из этих сигнальных белков несет информацию, отличную от других членов семьи, и стимуляция несколькими членами семьи может давать результаты, отличные от любого одного входного сигнала, подразумевая, что члены семьи могут влиять на интерпретацию сигналов друг друга. Такие взаимодействия обеспечивают возможность значительной тонкости и сложности передачи сигналов Wnt.

Секретируемые Wnts связаны с клеточными поверхностями и внеклеточным матриксом, и многие из них тесно связаны с семейством рецепторов Frizzled.

Структура белков семейства Wnt напоминает кисть руки; присоединение к большому пальцу остатка жирной кислоты называется ацилированием и оно необходимо для распознания белками аппарата Гольджи — трансмембранным рецептором GPR177 (широко известным как Wntless (Wls)), «белками-грузчиками» p24, которые переносят Wnt от эндоплазматического ретикулума на поверхность клетки и транспортным белком Swim, который поддерживает растворимость и сигнальную активность компллекса Wnt/Wls.

Таким образом молекулы Wnt в процессе созревания в эндоплазматическом ретикулуме подвергаются гликозилированию, а затем ацилированию. Затем в сопровождении белка Wntless из аппарата Гольджи они попадают в секреторные везикулы, внутри которых пересекают плазматическую мембрану, после чего секретируются. Wntless извлекается из отработанных секреторных везикул и переносится обратно в аппарат Гольджи с помощью комплекса Retromer.
В каноническом пути Wnt-сигнализации «рабочим телом» является β-катенин: в неактивном состоянии его мало, а в активном — много, и он активирует транскрипцию в ядре. Неактивное состояние: в отсутствии взаимодействия между Wnt и рецептором LRP5/6 количество цитоплазматического β-катенина малó ( (за исключением адгезивных соединений, где β-катенин существует в связанном с кадгерином пуле на клеточной мембране) за счет «деградационного комплекса», состоящего из белков APC, казеинкиназы и гликоген-синтезы-киназы GSK3, расположенных на «платформе» белка Аксин. С помощью этого комплекса цитоплазматический β-катенин фосфорилируется, а затем подвергается убиквитилированию белком β-TrCP, что приводит к его деградации с помощью протеасомы.

Активированное состояние: Wnt-сигнал начинается с образования комплекса Wnt с LRP5/6 и рецептором Frizzled, что приводит к активации белка Dishevelled. Этот белок ингибирует «деградационный комплекс» и «выключает» убиквитилирование β-катенина. В результате накапливающийся в цитоплазме свободный β-катенин проникает в ядро, где β-катенин, захватив ядерные белки BCL9 и Pygopus, взаимодействует с белками TCF/LEF и активирует транскрипцию с помощью транскрипционных факторов TCF/LEF и ряда других.

Канонический (β-катенин—зависимый) путь в конечном счете контролирует программы генной экспрессии, связанные с определением судьбы клетки и морфогенезом, а неканонические (β-катенин—независимые) пути регулируют полярность клетки, стимулируя реорганизацию цитоскелета и метаболизм кальция.

Регуляция пути Wnt: с секретируемыми молекулами Wnt непосредственно связываются их антагонисты: Wnt-ингибирующий фактор (WIF) и Frizzled-узнающий белок 1 (sFRP). Кроме того, для предотвращения образования комплекса Frizzled—Wnt—LRP, c белками LRP5/LRP6 могут связаться DKK и склеростин. Белки Shisa, захватив рецептор Frizzled, мешают ему выйти на поверхность клетки.

Если Wnt образует комплекс с LRP5/6 и Frizzled, сигнализация активируется. Белок R-spondin 2 (RSPO), стабилизируя рецепторы Frizzled и LRP5/6, повышает сигнализацию по пути Wnt. В эндоплазматическом ретикулуме для созревания LRP5/6 необходим сопровождающий белок MESD.

Помимо этих рецепторов Wnt может связываться с рецепторными тирозинкиназами Ror и Ryk. Ror, связавшись с Wnt5a, фосфорилирует белок Dishevelled и таким образом контролирует морфогенез тканей, тогда как Ryk, фосфорилируя мембранный белок Vangl2, контролирует полярность клетки.

Передача сигналов WNT / β-catenin регулирует клеточный метаболизм в опухолях. Так, метаболический сдвиг от митохондриально-зависимого производства энергии к аноксическому расщеплению глюкозы включает скоординированную активацию переносчиков глюкозы и ферментов гликолиза онкогенами, такими как c-Myc и протеинкиназа B (Akt). При глутаминолизе анаплеротический поток катаболизма глутамина к α-кетоглутарату, как источнику углерода для цикла TCA, способствует синтезу аминокислот, нуклеотидов и липидов (см. выше). Было показано, что c-Myc является ключевым регулятором глутаминолиза в опухолях. Глютамин попадает в клетку с помощью переносчиков аминокислот, таких как переносчик SLC1A5.

Цитрат, полученный из глюкозы из цикла TCA, при этом экспортируется в цитозоль, где он далее превращается в ацетил-КоА для синтеза липидов или в оксалоацетат для синтеза аминокислот.

В клетках тройного негативного рака молочной железы WNT5B способен контролировать экспрессию генов, связанных с OXPHOS - цитохрома с 1 и субъединицы γ-АТФ-синтазы через канонический путь WNT. В CRC также каноническая передача сигналов WNT способствует аэробному гликолизу. Кроме того, лактатный транспортер 1 монокарбоксилата (MCT-1) также активируется, облегчая секрецию лактата, и эта усиленная секреция оказывает влияние на микроокружение в опухолевой ткани, стимулируя ангиогенез.

В других моделях каноническая передача сигналов WNT была тесно связана с ангиогенезом опухоли путем непосредственного регулирования экспрессии проангиогенного эндотелиального фактора роста (GF).

albert52
15.11.2020, 00:29
Продолжим.

Функции метаболической регуляции опухолей включают контроль экспрессии c-Myc, сопутствующую регуляцию самих сигнальных путей WNT метаболическими ферментами и питательными веществами, а также перекрестную связь с передачей сигналов активных форм кислорода (ROS). Так, продукция ROS из дыхательной цепи митохондрий может изменить связывание β-catenin с TCF / LEF и способствовать связыванию с факторами транскрипции FOXO. Транскрипция гена FOXO активирует гены, которые борются с окислительным стрессом и, следовательно, способствуют выживанию клеток.

При раке молочной железы смещение связывания β-катенина с TCF на FOXO3a изменило клеточную судьбу от пролиферативного фенотипа раковых стволовых клеток к более дифференцированному состоянию, уменьшив плюрипотентность и туморогенез.

Сигнальный путь WNT также связан с c-Myc посредством транскрипционной репрессии c-Myc секретируемых ингибиторов Wnt DKK1 и SFRP-1 в раковых клетках. Это обеспечивает петлю положительной обратной связи между передачей сигналов WNT и c-Myc. Myc регулирует транскрипцию генов в растущих клетках, где он активно контролирует множество метаболических процессов для облегчения роста и пролиферации.

Критически опосредованные c-Myc транскрипционные изменения также способствуют гликолизу и выработке энергии в трансформированных клетках. Так, β-катенин - опосредованная экспрессия c-Myc приводит к усилению экспрессии ряда ограничивающих при их недостатке скорость гликолитических генов, включая гены для переносчика глюкозы 1 (GLUT-1), LDH и изоформы M2 пируваткиназы (PKM2; фермент, который катализирует конечную стадию гликолиза с образованием АТФ и пирувата). Кстати, AMPK может ингибировать этот путь на уровне активности DVL (Dishevelled).

В целом, каноническая стимуляция WNT c-Myc предоставляет раковым клеткам сопутствующее моделирование глутаминолиза и гликолиза для поддержки повышенного синтеза нуклеотидов и жирных кислот, тем самым стимулируя биосинтез de novo во время пролиферации.

c-MYC (далее именуемый MYC), как и члены его семейства N-MYC и L-MYC, является фактором транскрипции, который димеризуется с MAX для связывания ДНК и регуляции экспрессии генов. Последовательность ядерной локализации - ДНК-связывающий домен, домен димеризации спиральная петля-спираль (HLH) и транскрипционный регуляторный домен лежат в основе этой функциональной способности.

Из-за своего онкогенного потенциала протоонкоген MYC жестко регулируется в нормальных клетках на уровне транскрипции и посттранскрипции. Посттранскрипционно он регулируется микроРНК и трансляцией своей мРНК. Онкогенные KRAS и ERК (extracellular-signal-regulated kinase) могут регулировать Myc частично за счет повышенной стабильности белка (как и длинные некодирующие РНК). Многие стимулирующие рост сигнальные пути трансдукции вниз по течению от сцепления с лиганд-мембранными рецепторами, такие как Notch и EGFR, сходятся на MYC , подчеркивая центральную роль MYC в регуляции роста клеток.

c-Myc связывает последовательности энхансер-бокса (Е-бокс - CACGTG) генов-мишеней для регуляции экспрессии ряда генов, многие из которых участвуют в контроле клеточного цикла, в том числе для циклинов, циклин- зависимых киназ (CDK) и ингибиторов CDK. При недостатке питательных веществ или гипоксии трансляция MYC, стабильность белка и димеризация MYC / MAX ингибируются. Чрезмерная же активация MYC активирует контрольные точки ARF и p53, что приводит к гибели или аресту клеток, в то время как ARF (фактор аденозилибозилирования - белок, который принадлежит к небольшому семейству GTPase) может ингибировать функцию MYC. Ниже AKT белки FOXO3a противодействуют активации MYC.

В раковых клетках конститутивная активация фактора роста и передачи сигналов mTOR, потеря контрольных точек, вовлечение атипичных энхансеров или амплификация или транслокация MYC может увеличивать уровни MYC до надфизиологических уровней независимо от факторов роста, вызывая связывание MYC / MAX с сайтами связывания ДНК с более низкой аффинностью и энхансерами в дополнение к сайтам с высокой аффинностью. Потеря контрольных точек ARF или p53 обеспечивает неконтролируемый рост клеток.

Предложено, что MYC является общим фактором транскрипции , который усиливает экспрессию генов , которые уже выражены на начальном уровне, казалось бы без какой - либо специфичности ( «общее усиление» модели). Общая модель амплификации, однако, не учитывает способность MYC репрессировать гены, такие как гены вышеупомянутых ингибиторов Wnt DKK1 и SFRP-1.
Поэтому вопреки этой общей точке зрения усилителя появилась гипотеза, что мишени MYC в значительной степени определяются доступностью хроматина, которая позволяет MYC связывать гены-мишени и взаимодействовать с другими факторами транскрипции для селективной активации или подавления экспрессии генов («селективная амплификация»). То есть степень, в которой MYC стимулирует экспрессию гена, зависит от других факторов транскрипции, связанных с геном и / или с близлежащими энхансерами.

Сверхэкспрессия MYC может, в свою очередь, регулировать модификаторы хроматина для дальнейшего изменения доступности хроматина. Кроме того, высокие уровни дерегулированного онкогенного MYC нарушают транскрипцию, вторгаясь в энхансерные последовательности, вызывая нелинейную амплификацию экспрессии гена-мишени и поддерживая накопление конститутивной биомассы в раковых клетках.

С моей точки зрения все вышесказанное позволяет предположить, что mTOR1 является как бы прорабом в клетке, организуя анаболические процессы по программам, которые предлагает ему клетка. MYC и другие подобные ему факторы транскрипции являются его помощниками - бригадирами, подключающими ДНК и формируя комплексы фкрментов для решения поставленных прорабу задач.

В нормальных клетках, если энергии для решения поставленной задачи недостаточно, АМФК тормозит активность mTOR1 (я уже писал об этом), пока клетка не соберет достаточно энергии. Такому взаимодействию способствует их соседство: излюбленная локализация активного mTOR1 на поверхности лизосом (см. выше), а АМФК внутри лизосом.

В раковых клетках это взаимодействие нарушается и mTOR1 продолжает оставаться активным даже при нехватке энергии. В результате со временем активность мастер-генов тормозится и имеющиеся ресурсы все более перенаправляются на базовые программы клетки, позволяющие ей сохранять свою жизнедеятельность. С этой точки зрения, например, эффект Варбурга это просто частный случай приспособления метаболизма клетки к изменившейся клеточной стратегии. Морфологически такой начавшийся процесс ракового перепрограммирования клетки выражается дисплазией эпителия и других видов клеток, когда происходит сшибка программ дифференциации и в клетке начинается цветная революция.

albert52
19.11.2020, 11:13
Продолжим раком легких.

Эпителий легкого возникает с вентральной стороны передней энтодермы передней кишки, где формируются первичные почечные легкие. После обширного разветвления проксимальных проводящих дыхательных путей, включая трахею, бронхи и бронхиолы, клетки на кончиках дистальных ветвей дифференцируются в альвеолярные клетки типа 1 (AT1) и 2 (AT2), которые составляют газообменные альвеолы.

В развивающихся и взрослых легких множественные региональные типы эпителиальных клеток могут служить пулами клеток-предшественников. В трахее и основных бронхах базальные клетки дают секреторные и реснитчатые клетки просветного слоя, тогда как в бронхиолярном эпителии клубные клетки (ранее известные как клетки Клары) могут самообновляться и генерировать ресничные клетки. В дистальных дыхательных путях клетки AT1 и AT2 возникают непосредственно из бипотентного предшественника во время эмбриогенеза.

В постнатальных легких клетки AT2 также приобретают функции, подобные предшественникам, чтобы генерировать клетки AT1. После тяжелой травмы и воспаления дистальная эпителиальная регенерация также может происходить из предполагаемых стволовых клеток. Известно и предсказано влияние клетки происхождения c онкогенной мутацией в формировании различных подтипов рака легкого.

Мелкоклеточный рак легкого (SCLC)
Поскольку SCLC возникает в центральных дыхательных путях и экспрессирует маркеры NE, уже давно постулируется, что этот тип рака легких происходит от легочных эндокринных клеток (NE). Эти предшественники редки и обычно группируются в виде NE элементов в бронхиолах. Большинство человеческих SCLCs содержат инактивирующие мутации в опухолевых супрессорах TP53 и генов ретинобластомы 1 ( RB1 ). Прогрессирование SCLC может быть ускорено дополнительной потерей Pten. Отметим еще, что путь Notch направляет дифференцировку клеток-предшественников по не-нейроэндокринному пути. Такие клетки начинают очень медленно расти, что согласуется с подавляющей опухоль функцией Notch. Но в то же время эти клетки не только становятся медленно растущими, резистентными к терапевтическим средствам, но и активно продуцируют и секретируют фактор роста белок мидкин (Midkine), которым они «питают» нейроэндокринные клетки, способствуя их ускоренному делению и прогрессии опухоли.

Плоскоклеточный рак легких (LUSC)
LUSC экспрессирует маркеры базальных клеток (включая KRT5, p63 и SOX2) и часто встречается в проксимальных дыхательных путях. Во время нормального развития SOX2 необходим для фиксации таких базальных клеток, поэтому было предложено, что LUSC возникает из базальных предшественников.

Аденокарцинома легкого (LUAD)
На NSCLC (немелкоклеточный рак легкого) приходится около 85% всех диагнозов рака легких, причем большинство пациентов с аденокарциномой легкого (LAC). KRAS мутации являются основным фактором LAC и тесно связаны с курением сигарет, в отличие от мутаций рецептора эпидермального фактора роста (EGFR), которые возникают у никогда не курящих.

Вообще, большинство НМРЛ являются генетически сложными опухолями с множеством потенциальных активирующих событий. Их мутантные мишени включают FGFR1, PTEN, MET, MEK, PD-1 / PD-L1 и NaPi2b. В свете множества новых биомаркеров и целевых агентов стратегии мультиплексного тестирования будут иметь неоценимое значение при определении подходящих пациентов для каждой терапии и позволять направлять целевые агенты пациентам, наиболее вероятно получающим от них пользу.

В дистальных эпителиальных клетках другой член семейства SOX, SOX9, отмечает кончики ветвей растущих легких и функционирует ниже по ходу передачи сигналов рецепторной тирозинкиназы для подавления преждевременной альвеолярной дифференцировки. SOX9 сверхэкспрессируется в человеческом LUAD, и его экспрессия коррелирует с плохой выживаемостью пациентов.

У человека KRAS чаще всего мутирует в тканях энтодермального происхождения, включая эпителий легкого. Гомеобокс NK2 1 (NKX2-1), также известный как TF-1 (тиреоидный фактор), экспрессируется в клетках AT2 и подгруппе бронхиолярных клеток. NKX2-1 необходим для морфогенеза легких и дифференцировки альвеолярных клеток. Он может взаимодействовать с множественными ДНК-связывающими транскрипционными репрессорами или активаторами, чтобы расширить или ограничить диапазон генов-мишеней.

Белок TF-1 является биомаркером рака тимуса и LUAD. Около 15% LUAD содержат амплификацию NKX2-1, что коррелирует с плохим исходом и требуется для жизнеспособности опухолевых клеток.

albert52
19.11.2020, 12:01
Продолжим.

Опухоли, вызываемые мутантным KRAS, являются одними из самых агрессивных и невосприимчивых к лечению. Но раковые клетки, которые становятся зависимыми от метаболических адаптаций, управляемых KRAS, чувствительны к ингибированию этих метаболических путей, открывая новые терапевтические возможности вмешательства. В целом, мутантный KRAS способствует росту опухоли, сдвигая метаболизм раковых клеток в сторону анаболических путей.

Влияние мутаций KRAS на метаболическую адаптацию может различаться для разных типов опухолей в зависимости от ткани происхождения. Это было выявлено путем сравнения метаболических адаптаций немелкоклеточной карциномы легкого (NSCLC) и протоковой аденокарциномы поджелудочной железы (PDAC), вызванных мутациями Kras и делецией Trp53.

Эти два типа рака, несмотря на общие генетические изменения, по-разному используют аминокислоты с разветвленной цепью. В то время как NSCLC включают свободные аминокислоты с разветвленной цепью в тканевый белок и используют их в качестве источника азота, поглощение этих аминокислот и экспрессия ключевых ферментов, ответственных за их катаболизм, снижены в PDAC.

Раковые клетки, несущие мутант Крас используют тесную связь с микросредой опухоли, обмен цитокинов, факторы роста и метаболиты для адаптации метаболизма и преодоления низкой доступности питательных веществ.

KRAS способствует гликолизу, в том числе повышенной экспрессией переносчика глюкозы GLUT1. Механически активация MAPK с помощью Kras активирует Myc-направленную транскрипцию. В свою очередь, это увеличивает экспрессию гликолитических ферментов, которые способствуют поглощению и потр***ению глюкозы, а также фермента PPP RPIA. RPIA (Ribose 5-Phosphate Isomerase A) катализирует превращение рибозо-5-фосфата в рибулозо-5-фосфат, тем самым подпитывая биосинтез нуклеотидов.

При PDAC сверхэкспрессия параоксоназы 2 (PON2), мишени репрессии транскрипции супрессором p53, как было обнаружено, объединяет усилия с мутантом Kras для повышения гликолиза. PON2 увеличивает захват глюкозы, связываясь с GLUT1, предотвращая взаимодействие последнего с ингибирующим белком STOM.

Мутации KRAS стимулируют такие процессы, как макропиноцитоз и аутофагия, которые могут поглощать питательные вещества из внешнего и внутреннего компартментов соответственно, для поддержания выживания раковых клеток в условиях дефицита питательных веществ.
Оба эти пути поглощения образуют везикулы, макропиносомы и аутофагосомы, которые в конечном итоге сливаются с лизосомами, высвобождая свои грузы для деградации. В лизосомах распад питательных веществ обеспечивает клетку пулами свободных аминокислот, липидов, нуклеотидов и глюкозы, которые могут использоваться анаболическими путями для синтеза новых макромолекул.

Интересно, что как при мутантном Kras рака легких, так и при раке поджелудочной железы лизосомный компартмент подвергается расширению благодаря повышенной активности факторов транскрипции Tfeb / Tfe3, которые ответственны за биогенез лизосом.

При NSCLC, управляемом Kras, глюкозное голодание активирует AMPK, который способствует дефосфорилированию и ядерной транслокации Tfeb и Tfe3. Соответственно, активность Tfe3 необходима для роста опухолей легких, и повышенная экспрессия лизосомных генов коррелирует с ускоренным рецидивом заболевания у пациентов с аденокарциномой легких человека. Точно так же повышенная регуляция и повышенное пребывание в ядре Tfe3 поддерживает рост опухоли поджелудочной железы.

Следует отметить, что сверхэкспрессия Mitf, который принадлежит к этому семейству факторов транскрипции, способствует прогрессированию мутантных повреждений PanIN в PDAC, указывая на то, что повышенная лизосомная активность играет роль драйвера в мутантных опухолях Kras.
Макропиноцитоз - это неселективный актин-зависимый эндоцитозный процесс, который захватывает питательные вещества из внеклеточной среды в большие внутрицитоплазматические везикулы. В опухолях макропиноцитоз работает как питательный механизм для преодоления высокой потребности в питательных веществах и поддержки метаболической гибкости и адаптации. Было показано, что мутации KRAS стимулируют макропиноцитоз, что способствует большему поглощению альбумина, наиболее распространенного сывороточного белка, который расщепляется в лизосомах, увеличивая внутриклеточный пул аминокислот. Распад альбумина дает аминокислоты, которые питают центральный углеродный метаболизм и, среди них, глутамин, активно используется Kras трансформированными клетками для анаплероза и производства нуклеотидов.

В мутантных по Kras клетках рака поджелудочной железы глутамин является основным источником углерода и потр***яется неканоническим путем, когда глутамат используется митохондриальной аспартаттрансаминазой GOT2 для производства аспартата и α-кетоглутарата. Аспартат транспортируется в цитоплазму, где он превращается в оксалоацетат аспартат -трансаминазой GOT1, затем в малат и пируват, таким образом повышая соотношение НАДФН / НАДФ + , что, в свою очередь, поддерживает окислительно-восстановительный потенциал клетки. Генетическая делеция любого фермента в этом пути повышает продукцию активных форм кислорода, снижает количество восстановленного глутатиона и приводит к подавлению роста PDAC.
Kras управляет альтернативным путем потр***ения глутамина, регулируя транскрипцию GOT1 и снижая экспрессию GLUD1 (глутаматдегидрогеназу - см. выше). Нокаут GOT1 в резистентных клетках снижает их пролиферацию, что свидетельствует о том, что метаболическое перепрограммирование потр***ения глутамина, опосредованное Kras, способствует приобретенной устойчивости к препаратам на основе платины.

При НМРЛ мутант Kras активирует путь PI3K / AKT, который в условиях низкого уровня глутамина способствует экспрессии мРНК фактора транскрипции ATF4 через фактор NRF2. Кроме того, NRF2 также является ключевым регулятором генов, участвующих в антиоксидантной реакции - см. выше. Следует отметить, что повышающая регуляция глутатиона специфически связана с увеличением числа копий мутантного гена, что подчеркивает эффект «дозы» и предполагает терапевтическую уязвимость.

В условиях депривации аспарагина путь GCN2-eIF2 вызывает трансдукцию мРНК ATF4 в белок, который, в свою очередь, активирует транскрипцию переносчиков аминокислот и ферментов, потр***яющих глутамин. Среди них аспарагинсинтетаза ASNS катализирует синтез аспарагина из глутамина. Уровни аспарагина и ASNS по своему контролируют пролиферацию, активацию mTORC1 и подавляют апоптоз.

albert52
25.11.2020, 12:19
Опухолевые клетки процветают в окружающей среде, которая была бы враждебна их нормальным клеточным аналогам. Выживание зависит от выбора клеточных линий, которые содержат модификации двух регуляции генов, тех, которые сдвигают баланс между клеточным циклом и апоптозом, и тех, которые включают пластичность метаболического механизма.

В естественных условиях клетки метазоа окружены обилием питательных веществ. Однако, в отличие от прокариот или одноклеточных эукариот, клетки животных не являются автономными клетками для поглощения питательных веществ. Вместо этого клетки метазоа конкурируют за ограничение уровней факторов роста, которые направляют поглощение питательных веществ. Чтобы выжить в таких условиях, дифференцированные клетки применяют катаболический метаболизм, направленный на максимизацию эффективности продукции АТФ из ограниченных питательных веществ.

Напротив, когда факторы роста в изобилии, клетки увеличивают потр***ение питательных веществ и принимают анаболический метаболизм. Это наблюдается, например, в условиях хронического воспаления, когда воспалительные клетки разных типов выделяют многочисленные цитокины и другие стимулирующие метаболизм вещества. Здесь главную роль играет RAS (обычно KRAS). В сигнальном каскаде RAS связывание GTP или GDP с RAS служит переключателем «включено» или «выключено» для передачи сигналов RAS соответственно. В нормальной клетке RAS связан с GDP и неактивен, если внеклеточные стимулы не вызывают образование активной GTP-связанной молекулы. Впоследствии RAS инактивируется посредством гидролиза его GTP до GDP, главным образом за счет функции белков, активирующих GTPase (GAP).

При мутации его внутренняя активность GTPase теряется, и GAP неспособны связывать RAS, в результате чего RAS в первую очередь связывается с GTP и, следовательно, постоянно активируется. Так как KRAS действует как переключатель всех тирозиновых рецепторов, то его постоянная активность в свою очередь постоянно активирует все идущие от этих рецепторов сигнальные пути, в частности RAF (путь киназы MAP), PI3K (путь AKT / MTOR), ERK, RLIP и RALGDS.

Активация пути PI3K / Akt, возможно, является наиболее распространенным явлением при спонтанном раке человека. Активированный PI3K / Akt приводит к усиленному усвоению глюкозы и гликолизу (см. выше). Ключевым моментом в этой индукции является повышение экспрессии транспортера глюкозы на клеточной поверхности, активация гексокиназы для захвата глюкозы внутриклеточно посредством фосфорилирования и индуцированная Akt фосфофруктокиназа-2-зависимая аллостерическая активация фосфофруктокиназы-1 для фиксации глюкозы в гликолитическом метаболизме.

Тем не менее, путь PI3K / Akt также способствует потоку углерода глюкозы в пути биосинтеза, которые зависят от функционального метаболизма митохондрий. В целом несколько основных потоков, включая аэробный гликолиз, биосинтез липидов de novo и глютамин-зависимый анаплероз, образуют стереотипную платформу, поддерживающую пролиферацию различных типов клеток.

Управление активностью ферментов гликолиза в основном является аллостерическим (если не считать АТФ - его высокий уровень в цитоплазме подавляет гликолиз). Здесь важную роль играет цитрат; при его избыточной продукции лишнее переправляется в цитоплазму и с помощью АТФ-цитрат-лиазы (ACL) преобразуется обратно в ацетил-КоА (я уже писал об этом). Сам цитрат является основным отрицательным аллостерическим регулятором гликолиза.

Cверхэкспрессированные ферменты этих путей сами подвергаются селекции и, как следствие, в опухолевых клетках в основном представлены только определенные изоформы. HK (гексокиназа) является примером. Быстрорастущие клетки экспрессируют в основном изоформу HK-II. Предположительно, эта изоформа была выбрана в связи с тем, что HK-II связывается непосредственно с митохондриями и, таким образом, способна захватывать вновь синтезированный АТФ, происходящий из системы АТФ-синтазы, в качестве субстрата.

Пируваткиназа: увеличивая или понижая свою активность, вырабатывает больше или меньше пирувата соответственно. Зрелые клетки обычно содержат конституционно активную тетрамерную PyK M1. Большинство опухолевых клеток содержат изоформу пируваткиназы PyK M2, которая встречается в виде тетрамера (высокоактивный) или димера (менее активный). Когда клеткам требуется энергия, преобладает тетрамерный PyK M2. Напротив, димерный PyK M2 становится активным, когда клетки вступают в пролиферативную стадию с преобладанием анаболизма. Контроль экспрессии гена PyK M2 происходит на альтернативном уровне сплайсинга.

Важным игроком в усилении анаболизма, как я уже писал, является с-Mуc, который как Фигаро вмешивается везде, где только можно. Также длительная активация сигнальных путей с сопутствующим фосфорилированием протеинкиназами всего, что попадается по пути, может привести к тому, что I каппа-B-киназа (IKK) фосфорилирует супрессор NF-κB IκBα по двум N-концевым серинам, вызывая его убиквитинирование и протеасомную деградацию; это приводит к ядерной транслокации комплексов NF-κB, преимущественно димеров p50 / RelA и p50 / c-Rel.

Факторы NF-κB связаны с несколькими аспектами онкогенеза, включая стимулирование пролиферации раковых клеток, предотвращение апоптоза и повышение ангиогенного и метастатического потенциала опухоли. Мутации в NF-κB пути с его постоянным активированием способствуют канцерогенезу.

Активизация этих и других факторов транскрипции приводит к тому, что в клетке накапливаются мРНК, требующие своей трансляции в рибосомах. А это уже епархия mTOR1 - см. выше. Напоминаю, что S6K1 и 4E-BP1 - главные регуляторы трансляции мРНК - являются единственными широко описанными субстратами mTORC1. Комплекс eIF3 способствует mTORC1-зависимому фосфорилированию S6K1 и 4E-BP1, функционируя в качестве каркаса, который опосредует взаимодействия фермент-субстрат.

Фосфорилирование S6K1 по Thr389 с помощью mTORC1 необходимо для его активации и фосфорилирования S6 (рибосомный белок 40S S6), усиливая трансляцию мРНК с помощью 5'-концевого олигополипиримидина (5'-TOP). Вообще мишени S6K1 включают рибосомные белки, факторы элонгации и фактор роста инсулина 2.
В покоящихся клетках или при низких уровнях факторов роста нефосфорилированный 4E-BP1 ингибирует инициацию трансляции белка путем связывания и инактивации eIF4E (эукариотический фактор инициации трансляции 4E). mTORC1 фосфорилирует 4E-BP1 в нескольких сайтах, способствуя диссоциации eIF4E от 4E-BP1 и запуская eIF4E-зависимую инициацию трансляции.

albert52
26.11.2020, 12:59
Продолжим описание рака легкого.

Отметим, что аденокарцинома – наиболее распространенный тип рака легкого на сегодня. Предположительно рост заболеваемости связан с популярностью сигарет с низким содержанием смолы и сигарет с фильтром, при курении которых человек делает более глубокий вдох, и, как следствие, табачный дым оседает в периферических дыхательных путях, где чаще всего и развивается аденокарцинома.

В новой классификации ВОЗ выделяется два подтипа аденокарциномы, которые отсутствовали в предыдущих версиях: аденокацинома in situ и минимально инвазивная аденокарцинома.
Первый подтип, аденокарцинома in situ (AIS), представляет собой локализованную (≤3 см) аденокарциному, рост которой ограничен поверхностным ростом вдоль альвеолярных структур (со стелющимся типом роста, «lepidic»), без признаков инвазии. В большинстве случаев AIS – немуцинозные опухоли. Проспективные исследования свидетельствуют, что при полной резекции AIS выживаемость приближается к 100% (97%).

Минимально инвазивная аденокарцинома (МИА) – также небольшая одиночная опухоль размером ≤3 см, однако, в отличие от AIS, со стелющимся типом роста и минимальной инвазией, не превышающей 5 мм. Большинство опухолей не вырабатывают муцин. Безрецидивная выживаемость в течение 5 лет у пациентов, по данным наблюдений, также должна достигать 97% при условии полной хирургической резекции.

Опухоли, которые раньше классифицировались как бронхоальвеолярные, теперь причисляются к одной из нескольких категорий: AIS, минимально инвазивная аденокарцинома или атипическая аденоматозная гиперплазия. Последняя рассматривается как преинвазивное поражение аденокарциномы легких, не превышающее 5 мм.

Гистологическое строение аденокарцином вариабельно: от хорошо дифференцированной опухоли с явными элементами железистой дифференцировки, формирования папиллярных структур, напоминающих таковые у других папиллярных карцином, до солидных опухолей с незначительным количеством муцинпродуцирующих желез и клеток.

Инвазивная муцинозная аденокарцинома бывает коллоидной, фетальной, кишечного типа и аденосквамозной. Аденосквамозная карцинома определяется как опухоль, состоящая более чем на 10% из злокачественных железистых и плоскоклеточных компонентов. По всей вероятности, смешанная гистология отражает гетерогенность этой карциномы легкого. Частота встречаемости аденосквамозной карциномы находится в диапазоне от 0,4% до 4% всех случаев бронхогенного рака. Этот подтип опухоли более агрессивен, чем аденокарцинома или плоскоклеточная карцинома, и, соответственно, сопряжен с худшим прогнозом.

Большинство аденокарцином экспрессируют тиреоидный фактор транскрипции 1, а также 80% опухолей содержат муцин. В легких TTF-1 активирует транскрипцию генов, кодирующих сурфактант в пневмоцитах 2 типа и секреторный протеин клубных клеток.

Предполагают, что аденокарцинома легкого проходит те же стадии развития, что и аденокарцинома толстой кишки: атипическая аденоматозная гиперплазия прогрессирует до неинвазивной карциномы, которая затем трансформируется в инвазивную. Это подтверждается тем фактом, что атипическая аденоматозная гиперплазия является моноклональной и имеет многие молекулярные аберрации, например мутации ECFR, характерные для аденокарцином. Отметим, что нарушения репарации ДНК из-за эпигенетических изменений, которые уменьшают или заставляют молчать экспрессию генов репарации ДНК, встречаются гораздо чаще при раке легкого, чем классические мутации.

Плоскоклеточная карцинома чаще наблюдается у мужчин и коррелирует с курением. Гистологически опухоль характеризуется кератинизацией и/или наличием межклеточных мостиков. При ороговении образуются скопления эпителиальных клеток с гомогенного вида цитоплазмой, называемые «раковыми жемчужинами», или эти клетки располагаются отдельно. Эти особенности хорошо видны в высокодифференцированных опухолях, слабо выражены в умеренно дифференцированных опухолях и могут быть очаговыми в низкодифференцированных опухолях. Митотическая активность выше в низкодифференцированных опухолях.

Плоскоклеточная карцинома характеризуется самой высокой частотой мутаций р53 среди всех гистологических типов карциномы легкого. Усиление экспрессии белка р53 и, реже, мутации гена р53 могут предшествовать метастазированию. В 15% случаев плоскоклеточной карциномы обнаруживают потерю экспрессии белка гена-супрессора опухолей RB1. Инактивация ингибитора циклин-зависимой киназы гена pl16/INK4a приводит к потере его белкового продукта в 65% опухолей.

Мелкоклеточная карцинома состоит из клеток характерного вида: клетки имеют относительно небольшие размеры, узкий ободок цитоплазмы, плохо определяемые границы, мелкогранулированный ядерный хроматин, ядрышки могут отсутствовать или быть незаметными, митотическая активность высокая. Клетки круглые, овальные или веретенообразные, с относительно выраженными ядрами, часто образуют кластеры и не имеют признаков ни железистой, ни плоскоклеточной дифференцировки. Часто развивается обширный некроз.
Часто в ткани опухоли обнаруживают мутации генов-супрессоров р53 и RB1 (50-80 и 80-100% соответственно). Иммуногистохимическое исследование демонстрирует высокий уровень экспрессии антиапоптотического белка BCL2 в 90% опухолей и низкий уровень экспрессии проапоптотического белка ВАХ. Этот тип рака легкого чаще всего ассоциируется с эктопической продукцией гормонов.

Карцинома легкого может вызвать анатомические изменения в легком дистальнее пораженного бронха. Частичная обструкция бронха опухолью может привести к значительной очаговой эмфиземе, а полная обструкция — стать причиной ателектаза. Нарушение дренажа дыхательных путей является частой причиной тяжелого гнойного или язвенного бронхита либо бронхоэктазов. Латентные карциномы иногда иногда могут манифестировать абсцессами легких. Сдавление или прорастание опухоли в верхнюю полую вену может индуцировать венозный застой и отек тканей головы и верхних конечностей и в результате — синдром верхней полой вены. Распространение рака в перикард и плевру может вызвать перикардит или плеврит с накоплением значительного количества экссудата.

albert52
07.12.2020, 21:00
Вернемся еще к раковому метаболизму.

То, что считается раковым метаболизмом, не так ясно, как считалось ранее. Различные ткани и даже специализированные клетки внутри ткани могут иметь уникальные метаболические свойства. Кроме того, периоды особых энергетических потребностей приводят к дальнейшим уникальным метаболическим фенотипам, таким как во время эмбрионального развития или заживления ран. Этот набор метатипов образуется из-за различий в скоростях потока и соотношениях потока через различные метаболические пути. Все эти пути доступны раковым клеткам для их собственной пользы, которую они делают в зависимости от тканевого контекста, в котором они растут, или стадии заболевания - инициации, прогрессирования и метастазирования. Это создает уровень гибкости, который ставит под сомнение предположение, что есть один, определяющий раковый метаболизм.

Крупномасштабное производство лактата из глюкозы распознается в здоровых тканях и обычно совпадает с делением клеток или процессами, требующими высокой энергии. Например, кишечник, одна из наиболее активно пролиферирующих тканей у взрослых млекопитающих, давно известен как чистый продуцент лактата, что указывает на аэробный гликолиз. Эмбриогенез одинаково отмечен широко распространенной пролиферацией, совпадающей с крупномасштабным аэробным гликолизом. Этот тип метаболизма вовлечен всеми пролиферирующими тканями в физиологию и патологию.

Большинство выявленных мутаций драйвера при раке играют аналогичную роль в нормальных пролиферативных процессах, и практически все они имеют прямое участие в метаболической модуляции. Например, онкоген c-Myc (Myc), который редко мутирует, но является одним из наиболее часто усиливающихся или афферентно активируемых транс -крипционных факторов при раке, ответственен за прямую транскрипционную активацию ряда гликолитических генов и управляет вышеупомянутый биосинтетический метаболизм. В равной степени известно, что Myc увеличивает зависимость опухоли от глютамина как источника энергии и биосинтеза и активирует PPP, а также цикл Кребса, хотя последние два регулируются в основном состоянием оксигенации опухоли.

Существует ряд других путей, которые обычно задействованы ниже стимулов роста и которые часто координируются с Myc, которые периодически мутируют при раке, но также обнаруживаются в областях физиологической пролиферации. Наиболее заметными являются Ras и ось PI3K / AKT / mTOR. Сверхэкспрессия этих путей приводит к таким же метаболическим состояниям, что и у Myc, и обычно может быть классифицирована как биосинтетическая с аэробным гликолизом, глутаминолизом, повышенным ППС и биосинтезом липидов.
До сих пор может показаться, что опухоли просто используют четко определенные метаболические пути для своих целей путем активации онкогенов и ингибирования опухолевых супрессоров. Однако сумма этих путей, по-видимому, отличается в нормальных тканях и опухолях. Например, лактат, оригинальный идентификатор для злокачественного метаболизма, достигает уровней в опухолях (до 40 мМ и более), которые выше, чем в любой нормальной ткани в физиологических условиях (1–5 мМ в зависимости от тканей) или даже в ранах (5– 15 мМ).

Отдельные клетки, продуцирующие или потрeblяющие лактат на любой данной стадии во время онкогенеза, могут не отличаться от отдельных клеток, участвующих в метаболизме этого типа в других частях тела, но в физиологических условиях производство и потр***ение поддерживаются в динамическом равновесии, в то время как при раке это равновесие нарушается и приводит к накоплению лактата и других конечных продуктов в опухоли.

Кстати, лактат имеет плазменную концентрацию около 1 мМ даже у отдыхающих и, как таковой, представляет собой второй по величине пул углерода, связанный с кровью. Вообще, значительная часть углеводов доставляется в здоровые ткани в форме лактата. Эти более свежие данные, похоже, возвращают баланс в сторону глюкозы как основного фактора цикла Кребса.

В гораздо меньших масштабах, вероятно, происходит обмен углеродом через лактат между клетками одного и того же органа. Наиболее изученный пример обнаружен в мозге, где, как считается, астроциты направляют лактат в нейроны после аэробного гликолиза. Точно так же симбиотические отношения были предложены в органоидных культурах между Lgr5-позитивными кишечными стволовыми клетками и окружающими панетическими клетками, где последние, как полагают, участвуют в аэробном гликолизе и передают углерод в форме лактата стволовым клеткам, которым это необходимо для правильной дифференцировки. Опухоли также могут потр***ять лактат, но в целом в них происходит чистое производство лактата.

Таким образом, одно из основных различий между метаболизмом рака и его здоровым аналогом заключается не в основной программе, а в ее недостаточной регуляции. Наиболее распространенные онкогенные факторы вовлекают раковые клетки в непрерывное пролиферативное состояние и, таким образом, удерживают опухолевые клетки в метаболическом состоянии «всегда включено». Это препятствует тому, чтобы раковые клетки реагировали на экзогенные и эндогенные сигналы, такие как избыток питательных веществ, оксигенация, перфузия, окислительно-восстановительное состояние и подкисление, так же, как это делают нормальные ткани.

Эта сумма отдельных компонентов этого преувеличенного и постоянного состояния активации является уникальной для метаболизма опухоли. Результаты этого метаболизма действительно настолько драматичны, что на более поздних стадиях развития рака эффект может стать системным.
Многие опухоли участвуют в метаболических процессах, которые являются уникальными для опухолевых клеток. Эти реакции часто возникают в результате усиления функциональной мутации, которая позволяет ферментам продуцировать новые соединения, или потери фермента, которая приводит к накоплению соединений, которые обычно существуют только на низких уровнях. Некоторые такие онкометаболиты играют активную роль в прогрессировании и, возможно, даже в инициации опухоли.

Вероятно, наиболее известным онкометаболитом является (R) -2-гидроксиглутарат (2-HG), продуцируемый мутированными формами изоцитрат-дегидрогеназы (IDH) 1 и 2, которые преимущественно восстанавливают 2-кетоглутарат до 2-HG. Этот метаболит обычно присутствует только в исчезающих количествах, но его концентрация значительно увеличивается в опухолях, в которых он препятствует ряду путей, таких как активация фактора гипоксии (HIF) или метилирование гистонов.

Важно, что было обнаружено, что 2-HG может ингибировать трансаминазы Bcat1 и 2, таким образом влияя на обмен аминокислот с разветвленной цепью и уменьшая количество глутамата, продуцируемого этими аминокислотами. Это исключает основной источник глутамата, и, следовательно, клетки с мутантной IDH оказались исключительно чувствительными к ингибированию глутаминазы CB-839, так как эта реакция представляет собой второй основной источник глутамата. Интересно, что избыточная экспрессия Myc при раке молочной железы может привести к накоплению 2-HG даже без мутации IDH из-за поразительного увеличения глутаминазы, которая может направлять глутамин в этот путь.

Другие онкометаболиты включают промежуточные звенья цикла Кребса, такие как succinat и фумарат, которые накапливаются из-за мутаций в ферментах, которые обычно их превращают, а именно succinat-дегидрогеназа и фумаратгидратаза. Мутация первого имеет широкие эффекты, включая повышенную зависимость от карбоксилирования пирувата с помощью пируваткарбоксилазы, таким образом потенциально повышая уязвимость опухоли. Он имеет ряд других последствий, таких как нарушение передачи сигналов HIF и ведет к гиперметилированию CpG, которые заметно влияют на транскриптом и метаболизм опухоли.

Накопление фумарата также имеет свои последствия. Было показано, что он стимулирует EMT путем ингибирования антиметастатического кластера miRNA mir-200ba -429, активирует неканоническую передачу сигналов NF-kB и инактивирует путь mTOR.
Специфический для рака метаболизм часто является конечным результатом основного ландшафта вождения онкогенов и метаболических изменений, которые опухолевые клетки претерпевают во время стрессовых реакций.

Опухолевые клетки сталкиваются с давлением с двух сторон. С одной стороны, по меньшей мере, часть клеток в опухоли застряли в пролиферативной петле, из которой они не могут легко выпасть, и в то же время не могут генерировать достаточное количество микроокружения для поддержки такого роста. Это наиболее очевидно в отсутствие однородного кровоснабжения по опухолям, что приводит к гипоксии, а также к чрезмерному подкислению, недостатку питательных веществ и, в конечном итоге, к некрозу со всеми его воспалительными побочными эффектами.

Хотя плохая васкуляризация является существенной первоначальной проблемой, некоторые опухолевые клетки адаптируются к выживанию в этих областях и становятся трудными для лечения из-за недостатка доставки лекарств. Общий результат в метаболизме опухоли может достигаться совместной активностью онкогенов-драйверов и генов ответа на стресс.

Отметим, что стрессовая реакция на гипоксию позволяет клеткам сохраняться в нeblагоприятных условиях и формирует общий метаболизм опухоли, но также создает наведенную летальность, которая не влияет на нормоксические клетки. Однако долгосрочная адаптация к этим условиям, по-видимому, подталкивает эволюцию опухоли к более агрессивным и метаболически адаптивным фенотипам, которые участвуют в прогрессировании и резистентности опухоли.

albert52
15.12.2020, 03:22
Продолжим рассказом о мелкоклеточном раке легкого.

Эндокринные клетки дыхательного эпителия сходны с одноименными клетками в различных органах пищеварительной системы. Они являются частью диффузной эндокринной системы, предположительно выполняют хемо- и барорецепторную функции и относятся к нескольким типам. В их базальной части находятся секреторные гранулы, в которых содержится ряд пептидных гормонов и биоаминов, влияющих на тонус мышечных клеток в стенке воздухоносных путей и активность секреторных клеток.

Эндокринные клетки выявляются с помощью специальных окрасок или иммуногистохимическими методами. Их относительное содержание в эпителии воздухоносных путей нарастает в дистальном направлении. В воздухоносных путях, в особенности в их дистальных участках, эндокринные клетки располагаются в составе нейроэпителиальных телец - внутриэпителиальных компактных овальных образований, в которых они окружены нервными волокнами.

Легочные нейроэндокринные клетки (PNEC) - это специализированные эпителиальные клетки дыхательных путей, которые встречаются в легких в виде отдельных клеток или кластеров, называемых нейроэпителиальными тельцами (NEB).

Легочные нейроэндокринные клетки также известны как клетки Кульчицкого или К-клетки. Они расположены в респираторном эпителии верхних и нижних дыхательных путей. PNEC и NEB существуют на стадии плода и новорожденного в дыхательных путях легких. Эти клетки имеют форму бутылки или колбы и простираются от базальной мембраны до просвета . Их можно отличить по профилю биоактивных аминов и пептидов, а именно серотонина , кальцитонина , пептида, связанного с геном кальцитонина (CGRP), хромогранина А , гастрин-высвобождающего пептида (GRP) и холецистокинина .

Функция PNEC могут играть роль с хеморецепторами в обнаружении гипоксии. Лучше всего это подтверждается наличием чувствительного к кислороду калиевого канала, связанного с сенсорным белком кислорода в просветной мембране кролика. Они также гипотетически участвуют в регуляции локализованного роста и регенерации эпителиальных клеток через паракринный механизм , посредством чего их сигнальные пептиды высвобождаются в окружающую среду. Кроме того, они содержат нейроактивные вещества, которые выделяются из базальной цитоплазмы. Эти вещества индуцируют вегетативные нервные окончания или сосудистую сеть в глубокой собственной пластинке .

Эти клетки могут быть источником нескольких типов рака легких, прежде всего мелкоклеточной карциномы легкого и карциноидной опухоли бронхов. По сравнению с немелкоклеточным раком легкого (НМРЛ), МРЛ характеризуется быстрым временем удвоения и ранними, широко распространенными часто гематогенными метастазами. Следовательно, у большинства пациентов (60–70%) на момент постановки диагноза будет заболевание обширной стадии (ЭС) (определяемое как рак, распространившийся за пределы ипсилатерального легкого и регионарных лимфатических узлов, и который не может быть включен в одно поле излучения.

Действующая система классификации рака легких Всемирной организацией здравоохранения (ВОЗ, 2004 г.) признает 3 злокачественных рака легких нейроэндокринного (NE) происхождения. К ним относятся SCLC, комбинированный SCLC (который содержит области NSCLC) и крупноклеточный рак NE (LCNEC) (подмножество NSCLC). NSCLC-подобные области характеризуются наличием мутаций типа NSCLC, включая KRAS, STK11, KEAP1 или MAP2K1.

SCLC располагается вдоль спектра NET в легком и является опухолью высокой степени злокачественности. Также в этом спектре находятся LCNEC, типичные карциноиды низкой степени злокачественности (TC) и атипичные карциноиды средней степени злокачественности (AC). Хотя этиология до сих пор полностью не выяснена, карциноиды, по-видимому, возникают из другой клетки-предшественника, чем SCLC и LCNEC.

SCLC характеризуется почти универсальной потерей генов ТР53 (75% -90% пациентов) и ретинобластомы 1 ( RB1 ) (приближается к 100%) - см. выше. Также RBL2 (член семейства РВ) служит вторичным опухолевым супрессором во время развития SCLC. Подобно тому, как RBL2 обеспечивает избыточность в RB-дефицитных клетках, гомологи P53 TP73 и TP63 вызывают остановку клеточного цикла и апоптоз благодаря своей способности активировать экспрессию генов-мишеней P53. Эти члены семейства P53 часто существуют в нескольких изоформах, в том числе с укороченными N-концевыми доменами. Эти усеченные формы имеют доминантно-негативную активность , которая ингибирует дикий тип семейства P53.

Также выявлены новые мутации (например, в эпигенетических регуляторах) и мутации-драйверы с четко установленной ролью в нескольких типах рака (например, генов семейства MYC , BCL2, PTEN , CREB-связывающий белок [ CREBBP ] и FGFR1 ). Усиленный биогенез рибосом и синтез белка были наиболее значительными молекулярными изменениями во время L-Myc-управляемой трансформации предполагаемых клеток-предшественников.

Некоторые мутации онкогенов, такие как KRAS, редки или отсутствуют. Сверхэкспрессия протоонкогенов происходит обычно путем амплификации отдельных хромосомных областей, включая L-myc или C-myc.

Вообще, большинство опухолей SCLC можно классифицировать в одну из трех линий на основе экспрессии POU2F3, ASCL1 или NEUROG1. POU2F3 кодирует член семейства факторов транскрипции POU-домена BRN2, обычно экспрессируемый в редких хемосенсорных клетках нормального эпителия легких (клетки пучка) и желудочно-кишечного тракта. В целом факторы транскрипции домена POU связываются со специфическим октамерным мотивом ДНК и регулируют специфичные для каждого клеточного типа пути дифференцировки.

Пронейральные белки ASCL1 и NEUROD1 стимулируют созревание нейроэндокринных клеток легких и высоко экспрессируются в NE SCLC. Так, избыточная экспрессия ASCL1 и NEUROD1 наблюдается в ~ 70% и ~ 10-20% случаев SCLC, соответственно. Основной фактор транскрипции спираль-петля-спираль (bHLH) ASCL1 считается главным регулятором для большинства NE-рака легких, тогда как NEUROD1 обозначает меньшую подгруппу с промежуточными нейроэндокринными характеристиками.

albert52
15.12.2020, 11:15
Продолжим.

ASCL1 - это фактор транскрипции, который играет ключевую роль в дифференцировке нейронов: действует как пионерный фактор транскрипции, открывая закрытый хроматин, позволяющий другим факторам связываться и активировать нейрогенные пути. Непосредственно связывает мотив E-бокса (5'-CANNTG-3 ') на промоторах и способствует транскрипции нейрональных генов. ASCL1 необходим для установления клонов легочных NE клеток.

NEUROD1 (Neurogenic differentiation 1) действует как регулятор транскрипции, участвует в инициации дифференцировки нейронов и активирует транскрипцию путем связывания с E-боксом. Ассоциируется с хроматином и с регуляторными элементами энхансера в генах, кодирующих ключевые регуляторы транскрипции нейрогенеза (по сходству).

Комбинации трех факторов транскрипции, ASCL1, POU3F2 / BRN2 и MYT1L, достаточно для репрограммирования фибробластов и других соматических клеток в индуцированные нейрональные (iN) клетки. Она также играет роль на ранних стадиях развития определенных нейронных клонов в большинстве областей ЦНС и нескольких клонов в ПНС.

Для мелкоклеточного рака легкого характерны мало действенные мишени онкогенов, что затрудняет таргетную терапию. Главный регулятор нейроэндокринного клона ASCL1 экспрессируется и необходим в опухолях SCLC, но около 20% образцов опухоли экспрессировали низкие уровни нейроэндокринных маркеров CHGA и ASCL1, но все же обладали клеточной морфологией и генетическим профилем SCLC.

Связывание Ascl1 происходит в основном на дистальных энхансерах с активацией транскрипции генов. Так, исследования в областях ДНК, связанных с ASCL1 и NEUROD1, позволила идентифицировать различные мотивы кофакторов, участвующие в конкретных семействах TF, которые могут сотрудничать с факторами bHLH в образовании и / или поддержании опухоли. Были обнаружены мотивы Forkhead и NFI в областях, связанных с ASCL1. Так, из четырех факторов NFI NFIB часто сверхэкспрессируется и генетически амплифицируется в SCLC, и было показано, что он регулирует жизнеспособность и пролиферацию клеток во время образования опухоли. Кроме того, NFIB связан с суперэнхансером в линии ASCL1 High SCLC.

Напротив, связанные с NEUROD1 участки ДНК обогащены мотивом, распознаваемым гомеодоменным фактором OTX2. OTX2 специфически экспрессируется в некоторых клетках NEUROD1 High SCLC, а NEUROD1, по-видимому, напрямую регулирует OTX2. OTX2 необходим для пролиферации клеток в медуллобластомах и в соответствии с этой функцией мы находим сайты NEUROD1, содержащие мотив OTX2, связанный с онкогеном MYC . Таким же образом OTX2 может сотрудничать с NEUROD1 и в поддержании пролиферации клеток в опухолях NEUROD1 High. Отметим, что в клеточных линиях SCLC экспрессия ASCL1 и NEUROD1 взаимоисключается.

Нейроэндокринные опухоли легких имеют тенденцию нести несколько соматических мутаций, таких как генетические амплификации MYCL1, NFIB и SOX2. ASCL1 связывается рядом с этими локусами, что позволяет предположить, что он напрямую регулирует экспрессию этих ключевых онкогенов. Другие цели ASCL1, такие как RET и DLL3 , важны для развития SCLC. Так, RET также является онкогеном при SCLC. Примечательно, что даже при SCLC ASCL1 регулирует компоненты передачи сигналов NOTCH, такие как DLL3 и LNFG, первоначально идентифицированные при развитии нейронов.

Кроме того, противоапоптический BCL2 , по-видимому, сильно экспрессируется и необходим для нескольких нейроэндокринных опухолей легких человека с высоким уровнем ASCL1. Этот белок подавляет активность каспаз, предотвращая высвобождение цитохрома с из митохондрий и / или связываясь с фактором, активирующим апоптоз (APAF-1).
Таким образом, хотя нет сообщений о генетических изменениях в локусах ASCL1 при SCLC, ASCL1 является активатором транскрипции, непосредственно нацеленным на известные онкогены для SCLC. Потеря ASCL1 как драйвера этих онкогенных факторов может частично объяснить потребность в ASCL1 для выживания опухоли.

Секретируемый белок IGFBP5 коррелирует с клетками NE-рака легких, экспрессирующими ASCL1. Более того, IGFBP5 идентифицирован как прямая транскрипционная мишень ASCL1. Поскольку IGFBP5 является мощным ингибитором передачи сигналов IGF-1, терапевтичес -кое воздействие на ASCL1 приводит к подавлению IGFBP5, что, в свою очередь, вызывает гиперактивацию пути передачи сигналов IGF-1, служащего компенсаторным механизмом для поддержания жизнеспособности и пролиферации клеток в этих условиях. Отсюда совместное нацеливание на передачу сигналов ASCL1 и IGF-1R, пока in vitro, приводит к выраженным синергетическим эффектам ингибирования роста в ASCL1 High SCLC.

Также клетки ASCL1 High SCLC очень чувствительны к ингибиторам BET (например, JQ-1). ВЕТ (Bromodomain and extraterminal domain) состоит из повсеместно экспрессируемых BRD2, BRD3 и BRD4 и ограниченного семенниками BRDT и в основном распознает ацетилированный лизин гистона 4. Отметим, что белки BET действуют как каркасы для рекрутирования других белков, локализованы на промоторах и особенно на энхансерах активных генов, участвующих в комплексе Mediator, в качестве основных факторов элонгации (продления) транскрипции.

Клетки человека содержат десятки тысяч активных промоторных областей и энхансерных областей, которые сильно зависят от типа клеток, и несколько сотен суперэнхансеров, которые представляют собой кластеры энхансеров, характеризующихся очень высоким связыванием медиаторных комплексов и основных факторов транскрипции. Транскрипты, ассоциированные с суперэнхансерами, содержат ключевые гены клеточной идентичности и экспрессируются на более высоких уровнях, чем гены, ассоциированные с нормальными энхансерами.

Воздействие на опухолевые клетки ингибиторов BET снижает уровни BRD4 в энхансерах и промоторах на уровне всего генома, но снижение более заметно у суперэнхансеров, и гены, связанные с суперэнхансерами, подвергаются более сильному и быстрому подавлению, чем гены, регулируемые стандартными энхансерами. Эти соединения ингибируют экспрессию ASCL1, нарушая взаимодействие между BRD4 и энхансером ASCL1. Отметим, что JQ-1 снижает экспрессию ASCL1, но не NEUROD1.

albert52
18.12.2020, 23:20
Продолжим.

Курение сильно связано с SCLC и плоскоклеточным раком (SCC). Так, отношение аденокарциномы к SCC составляет при раке легких у курильщиков примерно 0,4 по сравнению с 3,4 у никогда не куривших. Около 20 потенциальных канцерогенов из ~ 3500 химических веществ были обнаружены при курении сигарет. Наиболее известными являются полициклические ароматические углеводороды (ПАУ), в то время как другие включают Ас-арены, дибенз (a, h) акридин, неорганические соединения, такие как кадмий, хром, никель, мышьяк, радиоактивный полоний (Po210) и органические соединения, такие как бутадиен. Нитраты в табаке сводятся к NH2 - и NH3 во время курения. Табак воздушной сушки содержит более высокие концентрации ароматических аминов по сравнению с табаком дымовой сушки.

Сигаретный дым содержит высокий уровень акролеина, который токсичен для ресничных ​​клеток легких, а также других агентов, таких как оксиды азота, ацетальдегид, фенолы и формальдегид, которые могут косвенно способствовать легочной канцерогенности у животных и людей.

SCLCs имеет среднюю частоту мутаций 7,4 несинонимичных мутаций на миллион пара оснований - аналогичную другим табачно-ассоциированным раковым заболеваниям легких. Как уже отмечалось, двуаллельная инактивация TP53 и RB1 почти повсеместна при SCLC .

Метилированные промоторы генов были обогащены сайтами связывания нейрогенных факторов транскрипции NEUROD1, HAND1 (Heart- and neural crest derivatives-expressed protein 1), белка цинкового пальца 423 (ZNF423) и фактора транскрипции, подавляющего RE1 (REST), что можно интерпретировать как свидетельство дефекта нейроэндокринной дифференцировки.

В целом наблюдается общее гипометилирование ДНК в образцах первичного SCLC по сравнению с образцами неопухолевого легкого; однако промоторы, содержащие CpG-островки, как было обнаружено, гиперметилированы в SCLC в большей степени, чем в большинстве типов опухолей, включенных в The Cancer Genome Atlas. Гиперметилированные сайты были сконцентрированы локально в сайтах начала транскрипции, тогда как гипометилированные сайты были распределены диффузно по промоторным областям, что предполагает функциональную роль гиперметилирования в молчании специфичных для рака генов. Выделяют 'фенотип метилирования CpG-островков' (CIMP), причем пациенты с CIMP-положительными опухолями имели худший прогноз, чем пациенты с CIMP-отрицательным заболеванием. Эти данные подтверждают, что клинически значимые подтипы SCLC определяются паттернами метилирования ДНК.

По сравнению с NSCLC, SCLC имеют значительно повышенные уровни:
- рецептора фактора роста KIT;
- антиапоптотического белка Bcl-2 и проапоптотических членов семейства Bcl-2 BIM (Bcl-2-подобный белок 11) и BAX (Bcl-2-подобный белок 4);
- повышенную регуляцию гистон-лизин- N- метилтрансферазы EZH2, фактора ремоделирования хроматина;
- тирозинкиназы WEE1 (является важным привратником контрольной точки G2 / M и вызывает остановку G2 посредством ингибирующего фосфорилирования циклин-зависимых киназ 1 и 2).
- тимидилатсинтазы;
- белков репарации ДНК, включая ферменты поли [АДФ-рибоза] полимеразы (PARP).

К настоящему времени описано 17 структурных ферментов PARP. PARP1 - наиболее широко экспрессируемая изоформа у людей, ее функция заключается в обнаружении и маркировке однонитевых разрывов ДНК (SSB) путем связывания с участком повреждения ДНК и синтеза цепей поли-АДФ-рибозы, которые привлекают множество каркасных белков и ферментов репарации ДНК, чтобы исправить разрыв. PARP1 высоко экспрессируется в образцах SCLC как на уровне мРНК, так и на уровне белка.

Помимо репарации ДНК, этот белок является коактиватором фактора транскрипции E2F1 и участвует в различных клеточных процессах, участвующих в онкогенезе, включая дифференцировку, пролиферацию и трансформацию клеток.

В клетках SCLC отсутствует активность G1 / S-контрольной точки в результате потери p53 и белков (Rb), а WEE1 регулирует контрольную точку клеточного цикла G2 / M, которая необходима для обеспечения целостности генома в таких раковых клетках, и, таким образом, ингибирование этой киназы может привести к митотической катастрофе и апоптозу, особенно в сочетании с терапией, повреждающей ДНК.

EZH2 может предотвращать химиорезистентность и пролиферацию клеток за счет противодействия эпигенетическому молчанию генов, в частности SLFN11. Продукт этого гена является предполагаемой ДНК / РНК-геликазой, принадлежащей к семейству белков Шлафена, которые вызывают остановку клеточного цикла (от немецкого слова Schlafen: «спать»). Она функционирует как контрольная точка клеточного цикла и вызывает летальную остановку S-фазы в ответ на повреждение ДНК. Следует отметить, что экспрессия SLFN11 коррелирует с чувствительностью к повреждающим ДНК агентов (таких как иринотекан, этопозид и цисплатин) в других злокачественных опухолей.

Репрессорный комплекс polycomb 2 (PRC2) представляет собой мультибелковый модифицирующий хроматин комплекс, который ингибирует экспрессию генов, способствуя локальному метилированию гистонов. EZH2 представляет собой ферментативную субъединицу гистон-лизин N -метилтрансферазы PRC2 и опосредует диметилирование и триметилирование гистона H3 лизина 27 (H3K27me2 и H3K27me3).

EZH2 не часто мутируют в SCLC, но уровень их экспрессии в SCLCs выше, чем в любом другом типе опухоли, включенном в Атлас генома рака. Экспрессия гена EZH2 находится под прямым контролем семейства транскрипционных факторов E2F, включая E2F1 (для которого PARP1, сам сверхэкспрессируемый в клетках SCLC, действует как коактиватор).

В целом мелкоклеточный рак как в легких, так и в других органах является интересным примером минимизированных опухолевых клеток, близких по поведению вышеупомянутым мной "лангольерам", и изучение создаваемых им программ функционирования опухолевых клеток интересно с точки зрения механизма и перспектив развития канцерогенеза.

albert52
24.12.2020, 02:31
Продолжим.

NE клетки являются первыми эпителиальными клетками, возникающими в легких, и их больше в легких плода и новорожденного, что указывает на их роль в развитии легких. Они происходят из популяции мультипотентных эпителиальных предшественников, маркированных экспрессией основного транскрипционного фактора спираль-петля-спираль (bHLH) ID2. Они могут давать начало всем основным типам респираторных эпителиальных клеток, включая PNECs. Имеющиеся данные свидетельствуют о том, что спецификация судьбы PNEC контролируется перекрестным взаимодействием между генами активатора и репрессора bHLH. Недавние исследования показывают участие множества NOTCH рецепторов в поддержании экспрессии Hes1 и в регуляции размера компартментов NE.

В легких мыши ASCL1 активирует дифференцировку NE, в то время как HES1 репрессирует этот путь, ингибируя образование комплекса ASCL1 / TCF3 и снижая транскрипцию Ascl1. Сообщалось о гиперплазии PNEC после патологических и индуцированных форм повреждения, таких как оксидантный стресс, курение и ожоговые травмы.

NEBs могут обеспечивать уникальное поддерживающее микроокружение для клеток-предшественников. Легкие - это покоящийся орган с очень медленным клеточным обменом, но с устойчивой регенеративной реакцией после травмы. В отличие от классических стволовых клеток, предполагаемые популяции предшественников легких хорошо дифференцированы. Тем не менее, недавние исследования указывают на их замечательную пластичность.

В настоящее время клетки с регенеративной способностью включают базальные клетки, клубные клетки, вариантные клубные клетки, клетки AEC2, BASC и клетки ITGA6 + / ITGB4 + .

Области на плечах хромосом 4p, 4q, 10q, 13q, 16q и 17p демонстрируют высокую частоту потери гетерозиготности (LOH), уникальную для SCLC. RB1 глобально репрессирует сети плюрипотентности в соматических клетках посредством прямого связывания с известными генами плюрипотентности, такими как Oct4 и Sox2 ; последний амплифицируется в 27% случаев SCLC. Следовательно, потеря Rb1 ведет к дерепрессии этих факторов и усилению плюрипотентности, делая клетки более поддающимися репрограммированию, то есть усиливает их пластичность. С другой стороны, EZH2 экспрессируется на высоких уровнях в пролиферирующих нервных стволовых клетках и участвует в поддержании нейрональных предшественников и спецификации клонов. В SCLC они пытаются поддержать идущую вкривь и вкось вследствие мутаций предшественников NE дифференциацию. Кроме того, EZH2, как было установлено, регулирует фенотипический переключатель между базальными и секреторными клетками в легких.

58,8% SCLC, 5,2% аденокарциномы (ADC) и 23,5% тканей плоскоклеточного рака были окрашены положительно на Wnt11. Wnt11 контролирует дифференцировку NE, пролиферацию клеток и экспрессию E-кадгерина. Ascl1 и Wnt11 могут использовать механизм взаимодействия для управления биологией SCLC.

Известно, что многие типы лигандов и рецепторов Wnt взаимодействуют друг с другом, чтобы регулировать специфичные для клеток события передачи сигналов Wnt. Так, неканонический путь важен для регуляции дифференцировки NE и экспрессии E-cadherin и Snail. Он активирует стресс-киназу Jun N-концевую киназу и Rho-связанный белок, содержащий спираль киназы 1, которая инициирует ремоделирование цитоскелета и, в конечном итоге, изменение клеточной адгезии и подвижности при SCLC.

Повышенная регуляция канонического Wnt7b была обнаружена в клетках ADC, тогда как повышенная экспрессия Wnt5a была обнаружена в первичных SCC. SFRP1 , который ингибирует передачу сигналов Wnt путем связывания белков Wnt, снижается под действием Ascl1.

Как я уже говорил, Ascl1 является пионерским фактором «на мишени», который способен распознавать регуляторные элементы своих нейрональных генов-мишеней, даже если они связаны с нуклеосомами. Эта новаторская активность Ascl1 была связана со структурой его ДНК-связывающего домена, который короче, чем у других белков bHLH (например, Olig2, Neurod1, MyoD и Tal1) и, следовательно, вероятно, контактирует с меньшим количеством нуклеотидов в своем месте связывания, что позволяет Ascl1 связываться с этим сайтом, даже если остальные нуклеотиды заняты. В этой деятельности Ascl1 требует коэкспрессии с Sox2, предполагая, что Sox2 необходим для индукции состояния хроматина, разрешающего связывание Ascl1, или, альтернативно, что Sox2 направляет Ascl1 к важным сайтам-мишеням.

Фосфорилирование множественных сериновых остатков в Neurog2 и Ascl1 действует как реостатный регулятор связывания ДНК, предлагая модель, в которой нейрональные предшественники постепенно подавляют активность пронейрального белка за счет последовательности событий фосфорилирования после выхода из клеточного цикла. Сильно фосфорилированные белки способны связывать и активировать только гены-мишени с открытым хроматином, такие как ген лиганда Notch Dll1, в то время как нефосфорилированные белки (в постмитотических кретках) способны связывать и активировать мишени с менее доступным хроматином, такие как гены дифференцировки Neurod1 для Neurog2 и Myt1 для Ascl1 за счет рекрутирования факторов ремоделирования хроматина.

Sox2 / Ascl1 и Sox2 / Neurog2 недостаточны для обеспечения однозначной идентичности нейротрансмиттеров в iNs (индуцированных). В целом, экспрессия генов, связанных с конкретным нейрональным фенотипом, является только индикатором возможного фенотипа NE ( и не только их). Не забудем, что за транскрипцией должна идти трансляция получившейся мРНК, но будет она или нет, решает mTOR1 (см. выше). Вообще, Neurog2 и Ascl1 могут быть достаточными для индукции про-нейрональной программы во время репрограммирования клонов соматических клеток, но недостаточны для определения специфического фенотипа iN.

Кстати, хотя ТС и Ас карциноиды (см.выше) проявляют отчетливую дисплазию клеток, но их NE дифференциация происходит значительно быстрее, чем при SCLC, так как сравнительно менее поврежденные нейрональные предшественники быстрее фосфорилируют Ascl1 и тормозят его пронейрональную активность (чтобы не увлекался).

albert52
25.12.2020, 11:38
Продолжим.

Нейроэндокринный рак наблюдается и в простате (NEPK), где он является следствием андрогенной депривационной терапии (ADT), являющейся краеугольным камнем лечения запущенного и метастатического рака простаты. Но прежде чем рассмотреть его особенности поговорим вначале собственно о раке простаты.

Предстательная железа (другое название — простата) представляет собой экзокринную железу с трубчато-альвеолярным строением, присутствующую в мужском организме человека и всех остальных млекопитающих. Человеческая простата находится несколько ниже, чем мочевой пузырь. Через нее проходит в своём начале мочеиспускательный канал. Секрет, который вырабатывает железа, выбрасывается в момент эякуляции. Он разжижает эякулят. Контроль работы простаты совершается посредством гормонов гипофиза, андрогенов, эстрогенов, а также стероидных гормонов.

Простата получила прозвище «второе сердце». Корректность её работы определяет и половую функцию, и правильную работу мочевой системы, и психическое состояние мужчины.

Железа покрыта капсулой, от которой вглубь железы отходят соединительнотканные перегородки. Сама железистая ткань состоит из альвеол, которые сгруппированы в 30-50 отдельных долек. Каждая из долек впоследствии переходит в проток, открытие которого происходит в простатическом отделе уретры.

Железки простаты подразделяются на главные или наружные, подслизистые или промежуточные и слизистые, или внутренние. Главные желёзки залегают в основном в периферической зоне, которая составляет ~75% массы предстательной железы. По направлению к уретре однослойный эпителий концевых отделов простатических желёзок постепенно может сменяться переходным эпителием. Местами эпителий концевых отделов желёзок многорядный призматический. В этом случае он может кроме высоких секреторных клеток содержать и мелкие базальные клетки. Среди них могут располагаться отдельные эндокринные клетки.

Короткоживущие секреторные клетки непрерывно обновляются за счет деления плюрипотентных стволовых и частично эмитированных базальных клеток.

Первичный очаг аденомы возникает не в предстательной железе, а в периуретральных железках на границе шейки мочевого пузыря и семенного бугорка. При этом центрально-уретральный отдел предстательной железы и парауретральные железы представляют собой как бы единое целое. Отметим, что эстрогены и андрогены имеют в предстательной железе свои зоны влияния. Для эстрадиола — это центральная-уретральная зона, а зона влияния тестостерона находится на периферии предстательной железы, где обычно и возникает рак предстательной эелезы (РПЖ).

Снижение функции половых желез у мужчин возникает в пожилом или даже среднем возрасте, однако оно является все-таки не столько физиологическим, сколько патологическим процессом. Снижение функции половых желез стимулирует гиперпродукцию гонадотропинов гипофизом. Первое время потеря части половых гормонов, продуцируемых яичками (в норме они составляют 1/3), компенсируется повышенной секрецией половых гормонов коры надпочечников. По мере нарастания дефицита андрогенов яичка возрастает и гиперпродукция гонадотропинов гипофизом. В конечном итоге гормональный баланс нарушается в сторону преобладания эстрогенов.

Циркулирующий с кровью тестостерон превращается в ткани простаты в дигидротестостерон под действием фермента 5-а-редуктазы, располагающегося в ядрах клеток. Сам тестостерон при этом связывается с цитоплазматическим рецептором и проникает в клеточное ядро. После фиксации комплекса на ДНК дигидротестостерон способствует размножению клеток и синтезу белков. В то же время другой фермент — ароматаза—часть тестостерона превращает в эстрадиол, который тоже обладает сильным пролиферативным воздействием и ведет к образованию и росту аденомы. Дисгормональная природа аденомы (ДГПЖ - доброкачественной гиперплазии предстательной железы), таким образом, в большей степени обусловлена снижением функции половых желез и преобладанием эстрогенов в гормональном балансе мужчины.

Образовавшаяся доброкачественная опухоль — аденома — сдавливает собственно предстательную железу, превращая ее в тонкую пластинку — хирургическую капсулу. После аденомэктомии ( операция заключается в удалении (вылущивании) опухоли) прекращается давление на хирургическую капсулу. Ткань ее постепенно восстанавливается, и спустя 6—7 мес при ректальном исследовании определяется предстательная железа нормальных размеров и консистенции.

Гистологическая структура удаляемой доброкачественной опухоли, по данным большинства патологоанатомов, всегда рассматривалась как аденоматозная ткань с включением соединительной ткани и мышечных волокон, выраженным в разной степени. Аналоги таких новообразований имеются и в гинекологии — фибромиома матки, которая так же, как и ДГПЖ может иметь тяжелое клиническое течение, хотя и несколько меньше угрожает жизни больной.

При жизни увеличение предстательной железы, рассматриваемое, как АПЖ, выявляется у каждого 6—7-го мужчины старше 50 лет. При аутопсии мужчин старше 60 лет ДГПЖ обнаруживается в каждом третьем случае.

Заболевание имеет повсеместное распространение, но есть и исключения. Больных с ДГПЖ почти нет в Японии и Китае, у чернокожих африканцев. Существует мнение, что это в какой-то степени объясняется характером питания, преобладанием в этих странах в рационе людей растительных жиров, нелущеного риса.

Размеры АПЖ коррелируют с массой. Малой считается аденома до 30 г, средней — до 70 г, большой — до 250 г. Возможны и гигантские ДГПЖ. Аденома вызывает затруднение мочеиспускания, обусловленное сдавлением предстательной части уретры, часто уже на ранней стадии заболевания.

В отличие от доброкачественной гиперплазии простаты (аденомы предстательной железы), когда признаки достаточно выражены, рак простаты возникает из наружной зоны железы и растет очень медленно, не вызывая никаких жалоб. На запущенных стадиях рака предстательной железы могут возникать боли при мочеиспускании, частые позывы и затруднение мочеиспускания.

Однако, хотя на сегодняшний день считается, что прямой зависимости между ДГПЖ и РП нет, у большинства пациентов пожилого возраста выявляются оба эти заболевания. Случаи рака без ДГПЖ встречаются достаточно редко. Даже если железа не увеличена по данным различных аппаратных исследований (УЗИ, компьютерная или магнитно-резонансная томография), то на микроскопическом уровне всегда определяются признаки гиперплазии.

albert52
28.12.2020, 02:15
Продолжим.

Микроскопические очаги опухоли находят у 30% мужчин от 50 до 60 лет, но заболевание с клиническими проявлениями редко возникает у мужчин до 50 лет (обычно у людей с плохой наследственностью) и вместе с увеличением возраста резко возрастает заболеваемость.

Выявлены три стадии развития РП человека:
(а) интраэпителиальная неоплазия, которая может рассматриваться как предраковое состояние, характеризующееся гиперплазией просветных клеток и прогрессирующей потерей базальных клеток;
(б) аденокарцинома андроген-зависимая (подразделяется на две стадии: латентная аденокарцинома и клиническая), характеризующаяся полной потерей базальных клеток и сильным люминальным фенотипом секреторных клеток с разной степенью клеточной атипии; на этой стадии опухоль является андроген-зависимой, и ее рост можно контролировать с помощью андрогенной депривации;
(в) аденокарцинома, не зависящая от андрогенов (или устойчивая к кастрации), которая представляет собой дальнейшую эволюцию аденокарциномы.

Для клинических целей гистологическая оценка этих опухолей выражается в баллах по шкале Глисона: балльная система, которая оценивает, насколько биоптический образец простаты похож на нормальную предстательную железу (низкий балл, 1 соответствует нормальному состоянию) или является откровенно онкогенным (высокий оценка 5 соответствует отсутствию нормальных желез и наличию пластов откровенно аномальных опухолевых клеток); между этими двумя крайними степенями существуют промежуточные степени, характеризующие переход от нормальной структуры ткани к прогрессирующей потере тканевых желез и приобретению клеточной атипии (не вдаюсь в подробности).

Поздние стадии заболевания характеризуются появлением метастазов, обогащенных маркерами базальных и стволовых клеток, при этом GP4 на 82% схож с метастатическими поражениями. Мутации в пути TP53 наблюдались только в GP4 и метастазах.

Неметастатический рак предстательной железы имеет в среднем 0,7 мутации на мегабазу (Мб), что является относительно низким значением по сравнению с другими опухолями, такими как молочная железа (1,2 Мб / Мб), колоректальный (3,1 на Мб) или меланома (12,1) за Мб. Однако, несмотря на относительно небольшое число мутационных событий, рак предстательной железы характеризуется высоким уровнем нестабильности генома и хромосомных перестроек. Так, гипермутационные опухоли связаны с фенотипической нестабильностью и потерей функции генов репарации несоответствия ДНК MSH2 и MSH6 посредством мутации или эпигенетического молчания.

Впрочем мутации присутствуют на достаточно высоких уровнях в морфологически нормальной ткани, отдаленной от рака, отражая экспансию клонов, что указывает на то, что мутационные процессы, действующие в опухолевых узлах, были также в нормальной ткани. Наиболее очевидным объяснением этого феномена является то, что в ткани предстательной железы создается онкогенное поле, влияющее на нормальную ткань предстательной железы, или что нормальные клетки предстательной железы подвергаются процессу соматического мозаицизма с высокой частотой мутаций.

Полевые эффекты были описаны также для других опухолей, таких как колоректальный рак, рак молочной железы, рак головы и шеи и рак ротовой полости.

Было подсчитано, что у 80% мужчин, перенесших радикальную простэктомию по поводу клинически локализованного заболевания, рак простаты является многоочаговым. Отдельные опухолевые очаги из той же опухоли подвергали полному секвенированию генома, не обнаруживая общих изменений числа копий генов и очень мало общих точечных мутаций между опухолевыми очагами, что подтверждает существование поликлонального заболевания. Обнаружена также значительная внутриопухолевая и межопухолевая гетерогенность.

Эти результаты имеют важные последствия на двух разных уровнях:
(а) диагностический анализ на основе биопсии может пропустить некоторые генетические изменения, что приводит к неправильной классификации опухоли на молекулярном уровне, что исключает оптимальное лечение, особенно с использованием новых целевых агентов;
( б) оценка вклада различных клонов в развитие опухоли.

Протоковая аденокарцинома является гистологическим подтипом рака предстательной железы с большими железами, выстланными высоким столбчатым псевдостратифицированным эпителием. Как правило, он связан с ацинарным раком и встречается у 3–6% случаев рака предстательной железы (только у 0,2% - чистая морфология протоков) и вызывает заболевание, более агрессивное, чем ацинарный рак, и связан с более высокой стадией и риском рецидива и смертности.

На агрессивность рака предстательной железы на молекулярном уровне влияют такие изменения как:
- потеря PTEN, CDH1 и BCAR1 и усиление MYC ( экспрессия CDH1 необходима для эффективного рекрутирования AR на уровне чувствительных генных промоторов );
- мутации зародышевой линии в гене-супрессоре опухоли BRCA2 (наследственная предрасположенность);
- точечные мутации TP53 , SPOP и FOXA1 . Белок SPOP взаимодействует с коактиваторами стероидных рецепторов p160 (SRC-3) и способствует их убиквитинированию и деградации ;
- изменения числа копий генов (амплификация или потеря);
- повышенное метилирование некоторых генов.
Отметим, что только меньшинство опухолевых очагов может быть классифицировано молекулярно, но при этом> 75% мутаций были субклональными.

В заключение, исследования на геномном и молекулярном уровнях определили гетерогенность опухоли как ключевое биологическое свойство рака предстательной железы, способствуя значительной сложности в диагностике, прогнозировании и лечении этих опухолей. Впрочем, с гистопатологической точки зрения, рак предстательной железы достаточно гомогенный, так как подавляющее большинство случаев соответствует ацинарной аденокарциноме, тогда как другие гистотипы (такие как протоковая аденокарцинома и муцинозный рак) редки.

Также метастатический рак предстательной железы, несмотря на его постоянную молекулярную гетерогенность, на уровне одного пациента вначале клонально однороден: то есть, у одного пациента клонально связаны различные метастазы. В этом отношении он напоминает рак предстательной железы ( в нем также достаточно гипоксичных опухолевых клеток).

После начала метастазирования опухолевые клетки претерпевают клональную эволюцию и непрерывно меняют свои свойства в процессе пересева метастаз в первичный очаг и метастаз в метастаз. Эти обмены опухолями способствуют процессу, увеличивающему гетерогенность опухолей и конкуренцию между различными клонами в зависимости от их микроокружения. Приблизительно у 50% субъектов при вскрытии наблюдается поликлональный посев в нескольких метастатических участках, что соответствует процессу, когда несколько генетически различных субклонов колонизируют один метастатический участок. Впрочем гетерогенность опухоли уменьшается, когда формирующийся клон обладает высоким потенциалом для локального и удаленного метастазирования и способен выживать при лечении рака.

Еще добавим, что метастатический процесс не всегда одинаково происходит по индексу Глисона; он может также происходить из небольших вторичных очагов, не связанных с индексом (не были выявлены).

albert52
28.12.2020, 03:24
Продолжим.

Передача сигналов рецепторами андрогенов (AR), опосредованная тестостероном и 5α-дигидротестостероном, является ключевой для развития и прогрессирования РПЖ до запущенной формы заболевания. Развивающаяся опухоль длительное время остаётся способной реагировать на гормональное воздействие аналогично интактному органу.

При раке предстательной железы аномалии генов были обнаружены в виде однонуклеотидных вариантов (SNV), небольших вставок или делеций, перегруппировок, аберрантного метилирования и изменений в количестве копий генов. Специфические мутационные процессы изменялись во время эволюции опухоли с увеличением доли мутаций, связанных с дефицитом гомологичной рекомбинационной репарации; этот факт подтверждается заметным увеличением количества BRCA- мутантных опухолей, наблюдаемых при метастатических поражениях.

Мутации при слиянии SPOP и ETS возникают на ранних стадиях развития рака и являются исключительно клональными; потеря CHD1 и BRCA2, по- видимому, является ранним событием в развитии ETS слитно-негативного рака предстательной железы. Опухоли, инициированные событием слияния ETS, показывают увеличение 8q ( MYC ) и потерю части хромосомы 10, несущей PTEN, как очень ранние события, в то время как опухоли, которые не были инициированы перестройками ETS, показывают как ранние события потерю областей 13 хромосомы ( RB1 и BRCA2 ) .

Хромосомные перестройки активируют членов семейства транскрипционных факторов ETS, таких как ERG. Наиболее частые из этих перестроек создают слитый ген TMPRSS2-ERG , наблюдаемый у ~ 15% интраэпителиальной неоплазии простаты и у ~ 50% локализованного рака простаты: эта генетическая аномалия может представлять собой раннее событие, предрасполагающее к прогрессирование опухоли. Образование этого слитого гена определяет экспрессию усеченного на N-конце белка ERG под контролем андроген-чувствительного промотора TMPRSS2 (трансмембранной изоформы 2 сериновой протеазы).

Частота слияния TMPRSS-ERG значительно различается в разных этнических группах: кавказская (50%), афроамериканская (30%) и азиатская (20%) и связана с активностью рецепторов андрогенов (я о нечто подобном писал раньше). Пациенты с ранним началом заболевания характеризуются более высокой экспрессией AR, и около 90% этих пациентов имели слияния ERG и делеции AR ко-репрессора NCOR.

У пациентов с TMPRSS2-ERG наблюдается повышенная андроген-регулируемая экспрессия генов и измененный внутриопухолевый метаболизм андрогенов, что демонстрируется снижением концентрации тестостерона и повышенным соотношением дигидротестостерона (DHT) / тестостерона.

Другие частые хромосомные перестройки включают другие гены семейства транскрипции ETS, такие как ETV1. В случае гена ETV1 5'-партнеры слияния являются более гетерогенными: TMPRSS2 , SCL45A3 и ACSL3; Эти партнеры по слиянию являются андроген-чувствительными генами.

Предполагают, что ETV1 , а не ERG, усиливает экспрессию генов-мишеней AR и генов, участвующих в биосинтезе и метаболизме стероидов. В любом случае эти молекулярные события активируют онкогенную программу, предрасполагающую клетки простаты к сотрудничеству с другими онкогенными событиями, такими как потеря PTEN , что приводит к более агрессивному развитию опухолей (см. выше).

При метастазах в 85% опухолей обнаружены либо активирующие мутации андрогеновых рецепторов, амплификации андрогенных рецепторов, либо предполагаемые амплификации областей энхансерных рецепторов андрогенов. В целом, мутационная нагрузка была выше у мужчин, получавших терапию андрогенной депривацией, чем у пациентов, не получавших лечение; более того, в метастазах наблюдалось больше хромосомных перестроек, чем в первичных опухолях. Процент измененного генома в этих опухолях варьировался от 7% до 47% (в среднем 23%); средняя частота мутаций составила 4,1 мутации / Мб, что намного выше, чем при первичном раке. Примерно 40% этих опухолей были триплоидными.

Двуаллельная инактивация BRCA2 тесно связана с уровнем делеций, в то время как двуаллельная инактивация CDK12 была связана со значительным увеличением тандемных дупликаций. Кроме того, инактивация TP53 была событием, наиболее значимо связанным с инверсионными перестройками и наличием хромотрипса.

Существующее мнение предполагает, что хромосомные перестройки происходят постепенно с течением времени, но недавние исследования показывают, что в некоторых опухолях многие геномные перестройки, включающие только одну или несколько хромосом, могут происходить при однократном клеточном кризисе, что приводит к раку, вызывающему множественные молекулярные аномалии. Недавние исследования показывают, что это явление, известное как хромотрипс, может возникать при раке простаты. Хромотрипс может рассматриваться как пунктуальное прогрессирование к андрогенной независимости.

Хромотрипсис представляет собой паттерн сложной хромосомной перестройки, на который влияет ряд структурных вариантов точек разрыва, обычно> 100, которые плотно сгруппированы в основном в одном или нескольких хромосомных плечах. Так возникает множество сложных слитых транскриптов, каждый из которых содержит последовательности из трех разных генов, происходящих из разных частей генома.

Статистический анализ показал, что эти сложные перестройки вряд ли происходят независимо и вместо этого могут развиваться из скоординированного и одновременного молекулярного события. Ансамбль этих сложных серий генетических событий был назван «хемоплексией» и, по-видимому, отвечает за скоординированную дисрегуляцию многих генов рака простаты.

По сути, хромоплексия является расширенной версией сбалансированных транслокаций, которые переставляют участки несколько хромосом, а не двух хромосом, как в сбалансированных транслокациях мейоза. Хромоплексирующие механизмы часто разрушают гены-супрессоры опухоли и активируют онкогены путем образования слитых генов, например TMPRSS2-ERG. Распространенность хромоплексии при метастатическом раке предстательной железы составляет ~ 90%.

Общая нагрузка CNA (соматических изменений числа копий), определяемая как процент опухолевого генома, пораженного CNA, была связана с биохимическим рецидивом и метастазированием после операции, независимо от уровня PSA или степени Глисона. Отметим еще, что потери числа копий и события гиперметилирования ДНК являются более клональными, чем прирост числа копий и гипометилирование ДНК (события клонального удаления или гиперметилирования включали известные гены-супрессоры опухолей, такие как PTEN , TP53 или GSTP1 ).

Интересно, что изменение числа копий является прогностическим фактором рецидива и для многих других солидных опухолей.

albert52
29.12.2020, 18:06
Продолжим.

Устойчивость к ADT возникает благодаря множеству механизмов, включая конститутивно активную передачу сигналов AR через варианты сплайсинга AR, лиганд-независимую активацию AR, амплификацию, сверхэкспрессию и / или мутации в гене AR. Кроме того, сообщается, что глюкокортикоидные рецепторы (GR) сверхэкспрессируются у пациентов, получавших антиандрогенную терапию (абиратерон или энзалутамид), и предполагается, что экспрессия GR позволяет обходить блокаду AR из-за его функционального сходства.

Хотя все опухоли простаты изначально зависят от передачи сигналов AR, у большинства пациентов, которым вводят ADT, развивается нечувствительная к андрогенам форма РПЖ, также известная как устойчивый к кастрации рак простаты (CRPC) - признак прогрессирующего заболевания. Опухоли CRPC развивают резистентность за счет фенотипического сдвига от эпителиальных клеток просвета к базально-подобным клеткам, чему способствует пластичность клеток.

FОXA1 является пионерским фактором, который открывает компактный хроматин для облегчения связывания других транскрипционных факторов, таких как AR и рецептора эстрогена. FOXA1 необходим для активации простат-специфической экспрессии генов, и он играет двойную роль в определении транскрипционной программы AR. Так, в среде с низким уровнем андрогенов FOXA1 действует в качестве ключевого подавителя остаточной передачи сигналов AR, а потеря FOXA1 приводит к аберрантной активации AR и прогрессированию CRPC.
На уровне мРНК наблюдается начальное увеличение FOXA1 от доброкачественной формы до первичного ПК, но снижение FOXA1 после того, как заболевание переходит в статус CRPC. При FOXA1-нокдауне наблюдается клеточная трансформация, репрезентативная для эпителиально-мезенхимального перехода (EMT) и дедифференцировки клеток к нейроэндокринному фенотипу. Механистически это вызвано, по крайней мере частично, индукцией IL-8 и SLUG, которые оба являются известными мишенями трансформационного фактора роста β (TGF-β).

Напомню, что путь TGF-β содержит 3 лиганда (TGF-β1, -β2, -β3), которые связываются с TGF-β-рецептором 2 киназы рецептора клеточной поверхности (TGFBR2). После активации TGFBR2 рекрутирует и фосфорилирует рецептор TGF-β 1 (TGFBR1); как ген он сильно репрессируется FOXA1. Отметим, что в дополнение к TGFB3 FOXA1 репрессирует многие гены сигнального пути TGF-β.

В ПК TGF-β-индуцированная экспрессия виментина связана с биохимическим рецидивом; в частности, активация TGF-β3 оказывает сильное влияние на миграционное и инвазивное поведение клеток ПК. Такие результаты способствовали сильному интересу к терапевтическому нацеливанию на этот путь при CRPC; так, моногидрат LY2157299 (также называемый галунизертиб), ингибитор киназы TGF-β-рецептора I, ингибирует фосфорилирование SMAD (pSMAD), обращает EMT и снижает подвижность опухолевых клеток, и может быть эффективным также при гепатоцеллюлярной карциноме. При этом наблюдается реэкспрессия E-кадгерина в мембрану, сопровождающаяся восстановлением морфологии эпителия.

Фактор транскрипции GATA2 является главным регулятором, который обеспечивает агрессивность на всех стадиях рака простаты. При AR-экспрессирующем раке простаты GATA2 действует как пионерный фактор транскрипции, который управляет экспрессией андроген-зависимых генов, выполняя трехуровневую роль: во-первых, путем связывания с ARE в ответ на андрогены; во-вторых, физически активируя хроматин в элементах энхансера AR; и, наконец, путем подбора MED1 комплекса, который необходим для построения и поддержания регуляторных петель хроматина между AR энхансерами и промоторами. Более того, GATA2 дополнительно способствует функции AR, обеспечивая его связывание с энхансерами PSA , TMPRSS2 и PDE9A.

Белок, кодируемый геном PDE9A, катализирует гидролиз цАМФ и цГМФ до их соответствующих монофосфатов. Белок играет роль в передаче сигнала, регулируя внутриклеточную концентрацию этих циклических нуклеотидов. Для этого гена было обнаружено множество вариантов транскриптов, кодирующих несколько различных изоформ.

Измененная передача сигналов AR является наиболее заметным механизмом роста и прогрессирования клеток рака простаты на протяжении резистентной к кастрации стадии, а GATA2 непосредственно вносит вклад в прогрессирование CRPC, поддерживая передачу сигналов AR и транскрипционную активность.

В качестве главного регулятора сверхэкспрессия GATA2 связана с устойчивостью к химиотерапии и прогрессированием до летальных стадий заболевания через регуляцию набора критических генов, связанных с раком, включая IGF2 и POM121. Так, GATA2 регулирует экспрессию IGF2 посредством прямого связывания с его промоторами, а инсулиноподобный фактор роста 2 (IGF2) проявляет структурную гомологию с инсулином и может активировать как рецептор инсулиноподобного фактора роста 1 (IGFR1), так и рецептор инсулина (INSR), которые, в свою очередь, активируют передачу сигналов PI3K и MAPK4 и далее вниз по сигнальному пути.

POM121, др. ключевой нижестоящий элемент GATA2, является нуклеопорином, играющим важную роль в структурной конформации комплекса ядерных пор. Аберрантный ядерно-цитоплазматический транспорт долгое время был связан с раком, и несколько нуклеопо -ринов были идентифицированы как драйверы киназ или регуляторы экспрессии генов и хроматина. Действительно, POM121 был идентифицирован как ключевой регулятор ядерно-цитоплазматического транспорта онкогенных факторов MYC и E2F1 и простато -специфичных факторов транскрипции AR и GATA2 при агрессивном раке простаты через его взаимодействие с импортином-β. Важно отметить, что комбинированная терапия доцетакселом и митоксантроном плюс импортазол, фармакологическим ингибитором оси POM121-импортин-β, повторно сенсибилизирует опухолевые клетки к химиотерапии.

Многие другие нижестоящие молекулярные пути влияют на устойчивость к таксанам и гормональной терапии. Напр., преобразователь сигнала и активатор транскрипции 1 (STAT1), фактор транскрипции, который перемещается из цитоплазмы в ядро ​​клетки и опосредует несколько важных клеточных процессов, сверхэкспрессируется в устойчивой к доцетакселу клеточной линии. Повышенные уровни STAT1 коррелируют с увеличением кластерина, который является антиапоптотическим белком, защищающим клетку от проапоптотических триггеров, индуцированных доцетакселом, что предполагает, что STAT1-кластерин-зависимый механизм может опосредовать устойчивость к доцетакселу.

Ряд других путей также, по-видимому, участвует в передаче сигналов при раке простаты. Напр., связанный с рецептором ретиноевой кислоты орфанный рецептор-γ (RORγ) сверхэкспрессируется и амплифицируется в метастатических опухолях CRPC и управляет экспрессией AR. HER2 (также известный как ERBB2; член семейства рецепторов эпидермаль -ного фактора роста (EGFR)) является классическим регулятором роста и пролиферации клеток, в частности, при прогрессировании рака простаты у пациентов с низким уровнем андрогенов; HER2 активирует несколько нижестоящих сигнальных путей, включая MEK, ERK и PI3K – AKT.

Уровни как HER2, так и EGFR1 (также известного как HER1) повышаются по мере прогресси -рования рака простаты и связаны с плохим прогнозом и андроген-независимой активацией AR. Таким образом, лапатиниб, двойной ингибитор EGFR и HER2, используемый для лечения HER2 + метастатического рака груди, был предложен в качестве подходящего кандидата для лечения рака простаты.

Кроме того, существует реципрокная связь между клетками РПЖ и клетками микроокружения опухоли (TME), например тучными клетками, макрофагами, стромальными клетками костного мозга (BMSC) и фибробластами, связанными с раком (CAFs), и эти взаимодействия имеют решающее значение для прогрессирования РПЖ, включая t-NEPC. Как и при других опухолях, при раке простаты наблюдается инфильтрация Т-лимфоцитами; однако общий иммунный ответ нарушен из-за присутствия TGFβ, IL-10 и других иммунодепрессантов.

Классический пример клональной пластичности наблюдается при метастатическом раке простаты, леченном антиандрогенной терапией, который рецидивирует с морфологическими особенностями нейроэндокринной карциномы. Эти опухоли, классифицируемые как нейроэндокринный рак простаты (t-NEPC), характеризуются мелкоклеточной морфологией и положительным окрашиванием на нейроэндокринные маркеры, экспрессией AR от низкой до отсутствующей, а также секрецией нейропептидов и других факторов роста, которые позволяют им выжить и поддерживать плохой ответ на терапию. Считается, что использование более мощных ADT влияет на частоту t-NEPC.

Развитие NEPC происходит у ~ 25% пациентов с мКРРПЖ (кастрационно-рефрактерным раком), получавших антиандрогенную терапию, и нечасто у пациентов с первичными опухолями (~ 1%). Поскольку низкая или отсутствующая экспрессия AR является признаком агрессивного рака простаты, NEPC может возникать в процессе дивергентной эволюции, в которой предшественник с низким содержанием AR выбирается с помощью терапии, чтобы в конечном итоге прогрессировать до нейроэндокринного фенотипа.

albert52
30.12.2020, 23:26
Продолжим.

Существует две концептуальных стадии прогрессирования NEPC: (1) адаптивный ответ на лечение посредством приобретения NE-подобного фенотипа AR-положительной аденокарциномы и (2) инициация клеточной пролиферации. Небольшие очаги злокачественных клеток с NE-подобным фенотипом можно наблюдать почти во всех опухолях аденокарциномы, предполагая, что большинство опухолей способны достичь начальной стадии. Однако вторая стадия, по-видимому, требует отчетливой геномной аберрации, позволяющей злокачественную адаптацию к нейронной нише.

Сравнение молекулярных профилей NEPC и AR-управляемого CRPC с использованием всего экзомного секвенирования показало значительное геномное перекрытие, несмотря на заметные клинические и патологические различия этих типов опухолей, что указывает на дивергентный механизм клональной селекции клонов. Например, потеря RB1 была обнаружена у 70% аденокарцином NEPC и 32% аденокарцином CRPC, потеря TP53 была обнаружена в 66,7% NEPC и 31,4% аденокарциномах CRPC, а одновременная потеря RB1 и TP53 была обнаружена в 53,3% аденокарциномы NEPC и 13,7% аденокарциномы CRPC.

Эти изменения в сочетании с подавлением экспрессии AR могут привести к активации плацентарного гена PEG10, рассматориваемого как потенциальную движущую силу и терапевтическую мишень для NEPC. PEG10 весьма необычен , поскольку обладает двумя стартовыми кодонами и двумя рамками считывания, контролируемыми сигналом сдвига рамки считывания -1 рибосом, позволяющим «пропускать» стоп-кодон. Эта сложность унаследована от предка ретротранспозона, и хотя способность транспозона была потеряна за последние 120 миллионов лет, PEG10 сохраняет способность самоотщепляться, очевидно гомологичным образом, с ВИЧ.

PEG10 необходим для развития плаценты, и в настоящее время наблюдается большой интерес к реактивации плацентарных генов и генов развития при раке, учитывая присущие им «онкогенные» свойства тканевой инвазии и иммунного уклонения плаценты. Раковые клетки в условиях лечебного стресса должны перепрограммировать свой транскриптом, чтобы проявлять новые биологические свойства и адаптироваться к другому микроокружению, и реактивация плацентарных генов (у мужчин) предлагает привлекательное решение.

Эпигенетическая модуляция, вероятно, играет роль в нейроэндокринной трансдифференцировке, а не в линейной прогрессии соматических мутаций. Этот элегантный механизм устойчивости к лекарствам существует в нескольких типах опухолей. В опухолях легких, EGFR-мутантные аденокарциномы, как известно, меняют фенотип и рецидивируют как мелкоклеточные карциномы после терапии анти-EGFR. При меланоме переключение фенотипа также, как полагают, происходит после ингибирования BRAF, что придает опухоли свойства роста и инвазии.

SOX2 является главным регулятором плюрипотентных эмбриональных стволовых клеток и мультипотентных нейральных клеток-предшественников и при раке простаты действует как маркер нейроэндокринной дифференцировки и индукции ЭМП, который поддерживает его роль в качестве движущей силы пластичности. Интересно, что AR прямо репрессирует при раке простаты экспрессию SOX2 и потеря передачи сигналов AR, следовательно, параллельна увеличению экспрессии SOX2, которая, в свою очередь, поддерживает прогрессирование опухоли. EZH2 и SOX2, вероятно, будут работать вместе, чтобы управлять пластичностью клонов в CRPC и переключением фенотипа в сторону NEPC.

Репрессор транскрипции REST (Repressor Element-1 Silencing Transcription factor) является ключевым модулятором нейронального эпигенома. Усиление REST защищает от преждевременного истощения нервных стволовых клеток, гипервозбудимости нейронов, окислительного стресса и дисфункции нейроэндокринной системы. При переходе к клетке-предшественнику REST деградирует до уровней, достаточных для поддержания хроматина нейронального гена в неактивном состоянии, которое, тем не менее, готово к экспрессии. Когда предшественники дифференцируются в нейроны, REST и его корепрессоры диссоциируют от сайта RE1, запуская активацию нейрональных генов.

Потеря REST, вероятно, высвобождает ONECUT2, который, в свою очередь, подавляет FOXA1 и запускает программу транскрипции, независимую от передачи сигналов AR, что в конечном итоге приводит к приобретению нейроэндокринного фенотипа. Так, выявлено 120 генов, активируемых ONECUT2, и 25 из них связаны с путем гипоксии, что указывает на то, что ONECUT2 регулирует индуцированную гипоксией экспрессию генов в клетках NEPC путем регулирования связывания HIF1α с хроматином.

Замечу, что подавление REST обычно наблюдается в NEPC путем активации фактора РНК сплайсинга SRRM4. Примечательно, что SRRM4 является наиболее устойчиво подавляемым фактором сплайсинга во всех типах опухолей, что подразумевает общее преимущество подавления микроэкзона для рака независимо от ткани его происхождения.
Микроэкзоны - это чрезвычайно маленькие экзоны (длиной от 3 до 27 нуклеотидов), которые высоко эволюционно консервативны и играют решающую роль в обеспечении дифференцировки и развития нейронов. Включение микроэкзонов в транскрипты мРНК опосредуется фактором сплайсинга SRRM4, экспрессия которого в значительной степени ограничена нервными тканями. Низкая экспрессия SRRM4 за пределами мозга дополнительно снижается в опухолях, и, как я сказал, SRRM4 является наиболее постоянно подавляемым фактором сплайсинга в опухолях по различным типам тканей (к NEPC это не относится).

BRN2 подобно ONECUT2 является фактором нейральной транскрипции POU-домена; он также экспрессируется в мелкоклеточной карциноме легких, в которой он играет роль в прогрессировании опухоли, действуя как вышестоящий над Ascl1 регулятор, и в меланоме, в которой он обеспечивает инвазивность и миграцию. При раке простаты BRN2 взаимодействует с SOX2 и вместе они действуют как движущие силы нейроэндокринной дифференцировки.

Сигнальные каскады, которые управляют нейроэндокринной дифференцировкой и / или пластичностью клеток, значительно перекрываются. Напр., экспрессия маркеров TROP2 и CD49, которые определяют пластичность базальных клеток, также высока в NEPC. Кроме того, принудительная экспрессия фактора транскрипции SNAIL, индуктора EMT, способствует нейроэндокринному фенотипу в клетках рака простаты.

ЕМТ - это переходный процесс; промежуточные фенотипы, вероятно, будут наиболее связаны со стволовыми признаками, тогда как прогрессирование к дефинитивному мезенхимальному фенотипу вредно для способности клеток инициировать опухоль, а также для их свойств инвазии и пролиферации. Поддержание передачи сигналов AR необходимо для торможения EMT, а депривация андрогенов вызывает EMT, дополнительно снижая способность клеток реагировать на ADT.

STAT3 интегрирует различные сигнальные пути, участвующие в дифференцировке NEPC, индукции EMT и поддержании популяций CSC. В самом деле, активация STAT3 с помощью IL-6 в контексте истощения андрогенов была связана с приобретением стволовых свойств, а также с нейроэндокринной дифференцировкой клеток рака простаты.

Новое перекрестное взаимодействие между AR и сигнальными путями EGF-SRC также было связано с индукцией EMT в опухолях с TMPRSS2-ERG. Этот механизм происходит посредством модуляции miR-30b, супрессора опухолей, который, когда он подавляется, приводит к индукции ERG и EMT, несмотря на отсутствие андрогена.

В эксперименте после кастрации и до рецидива - группа BMI1 + SOX2 + клеток рака простаты претерпевают временное переключение фенотипа в сторону более недифференцированного состояния, которое характеризуется экспрессией базальных маркеров CK14 + и p63 + и сверхэкспрессией SOX2. Отметим, что BMI1 (PCGF4) принадлежит к группе Polycomb и участвует в эпигенетической регуляции генов в ядре клетки .

Все эти процессы, вероятно, могут быть интегрированы в континуум клеточной пластичности, в котором существуют промежуточные фенотипы, что объясняет, почему нейроэндокринные и стволовые фенотипы связаны на молекулярном уровне. Многие из этих процессов, по-видимому, управляются факторами транскрипции, многие из которых также вызывают устойчивость к антиандрогенной и таксановой терапии. В частности примерами таких являются EZH2 и SOX2, которые участвуют в эпигенетическом перепрограммировании.

Обнаружение AR-V7 в циркулирующих опухолевых клетках, цельной крови и внеклеточных везикулах поможет выбрать пациентов, которые не будут реагировать на антиандрогенную терапию и которым могут быть полезны другие варианты терапии, принимая во внимание процесс перестройки клеток при рассмотрении того, какой терапевтический вариант использовать.

albert52
05.01.2021, 10:16
Продолжим.

Распределение нуклеосом вдоль генома определяет доступность факторов транскрипции (ТФ) для конкретных последовательностей ДНК. Хотя большинство ТФ не могут получить доступ к закрытым структурам хроматина, новый класс ТФ, определенных как факторы-пионеры, может распознавать свою целевую последовательность ДНК даже внутри компактного хроматина. Однако пионерные факторы не имеют неограниченного доступа к хроматину; они проявляют характерные для клеточного типа паттерны связывания и исключены из структур хроматина более высокого порядка, таких как гетерохроматин.

Параллельно с факторами-первопроходцами архитектурные белки представляют собой другой класс белков, которые, несмотря на отсутствие внутренней транскрипционной активности, способны модулировать транскрипцию своих генов-мишеней, изменяя структуру хроматина в областях промотора и / или энхансера.

Архитектурные белки обеспечивают плотность нуклеосом для контроля транскрипции. Длина нуклеосомного повтора (NRL) - это параметр, который описывает важный аспект структуры хроматина: плотность нуклеосом. NRL определяется как среднее расстояние между двумя центрами нуклеосом. Хотя NRL различается в разных тканях, кажется, что каждый тип клеток имеет свою собственную сигнатуру NRL.
Линкер гистон H1 влияет на NRL, изменяя плотность нуклеосом и / или расстояние между нуклеосомами, таким образом мотивы для TF маскируются или выставляются, позволяя другим TF получить доступ к открытым регуляторным элементам для активации генов, связанных с раком.

Сами раковые клетки часто лишены сигналов терминальной дифференцировки, указывая тем самым, что специфичные для клонов клеточные программы подавляются. Плохо дифференцированные раковые клетки демонстрируют повышенную экспрессию факторов, связанных с плюрипотентностью. Наиболее хорошо изученными факторами плюрипотентности являются POU5F1 (гомеобокс 1 POU класса 5, также известный как OCT4), SOX2, KLF4 (фактор Крюппеля 4) и MYC; все четыре вместе, известные как OSKM, способны репрограммировать дифференцированные клетки в индуцированные плюрипотентные стволовые клетки (ИПСК). При этом POU5F1, SOX2 и KLF4, но не MyC (OSK), имеют доступ к закрытым сайтам хроматина и могут действовать как пионерные факторы.

OSK-активность опосредуется узнаванием их мотивов-мишеней, которые представлены на поверхности нуклеосомы. Факторы OSK индуцируют H3K4me1 / 2 на целевых энхансерах и H3K4me2 / 3 в сайтах начала транскрипции (TSS). Однако репрограммирование энхансеров iPSC (induzierte pluripotente Stammzelle) требует связывания более чем одного из факторов OSKM, указывая тем самым, что они нуждаются в кооперативном действии, чтобы индуцировать стабильное открытие хроматина.

Пионерские факторы и архитектурные белки опосредуют открытую структуру хроматина в регуляторных элементах генов, которые важны во время эмбриогенеза. Если злокачественная трансформация также требует повторной экспрессии этих основных эмбриональных регуляторов, что отличает раковые клетки от эмбриональных клеток, что приводит к признакам рака?

Локальные гистоны подвергаются метилированию по различным остаткам лизина, что влияет на доступность нуклеосом для факторов транскрипции. Существуют три формы метилирования лизина: моно-, ди- и триметилирование. Метилированные формы гистона 3, лизина 4 (H3K4me1, me2, me3) коррелируют с активацией транскрипции. В частности, H3K4me3 тесно связан с активными промоторами генов, а H3K4me1 - с энхансерами генов, тогда как H3K4me2 присутствует как на промоторах, так и на энхансерах.

Различия между эмбриональными клетками и раковыми клетками могут заключаться в самой структуре хроматина: ESCs несут двухвалентные домены хроматина, которые содержат регуляторные элементы с активирующими (напр., H3K4me3) и репрессивными (напр., H3K27me3) модификациями гистонов. Раковые клетки обнаруживают трехкратное уменьшение бивалентных доменов гистонов с увеличением метилирования ДНК. Это метилирование, по-видимому, является сайт-специфичным. Примечательно, что гиперметилирование промоторных областей может стимулировать использование альтернативных промоторов, которые могут усиливать транскрипцию изоформ, связанных с раком.

Диметилирование активированного хроматина представляет собой мощный механизм репрессии генов. Фермент деметилирования гистонов, лизин-специфическая деметилаза 1 (LSD1), был идентифицирован как член транскрипционно-репрессивного комплекса, который блокирует например экспрессию нейрон-специфичных генов. Во время репрессии гена LSD1 рекрутируется репрессивным элементом 1 замалчивания транзакции (REST) ​​/ репрессивным комплексом coREST в целевой участок ДНК. Когда аминогруппа боковой цепи лизина становится моно- или диметилированной, LSD1 отменяет метилирование лизина посредством реакции окисления амина.

H3K4me3, с другой стороны, метаболизируется группой гистоновых деметилаз, которые содержат домен JmjC, который использует Fe (II) -содержащий белковый кофактор для удаления одной группы метилирования из H3K4me3. Образующийся H3K4me2 может быть далее диметилирован LSD1.

Было показано, что AR репрессирует определенные гены-мишени, в том числе сам себя, путем задействования LSD1-опосредованного диметилирования гистонов. Связанный с лигандом AR конгруирует с LSD1 на ARE-содержащем энхансерном элементе AR зависимого гена. Этот энхансер доставляет корепрессивный комплекс к промотору гена посредством образования петель ДНК. Таким образом активированная лигандом AR рекрутирует REST / coREST / LSD1-зависимый репрессивный комплекс на регулируемые AR энхансеры во время репрессии целевых генов.

Комплекс репрессии Polycomb 2 (PRC2), состоящий из основных субъединиц супрессора zeste 12 (SUZ12), развития эмбриональной эктодермы (EED) и EZH2, играет важную роль в поддержании идентичности эмбриональных стволовых клеток посредством эпигенетического молчания большой когорты онтогенетических регуляторов. EZH2 способствует репрессии транскрипции AR посредством катализа H3K27me3 и является маркером репрессии генов.

EZH2 также играет независимую от поликомб и метилирования роль в активации генов, одной из его мишеней является AR. EZH2 является одним из наиболее активированных генов при агрессивном РПЖ, и его экспрессия обратно коррелирует с клиническими исходами РПЖ.

Рецептор андрогенов (AR) является членом суперсемейства гормональных ядерных рецепторов. Несвязанный AR закреплен в цитоплазме с помощью белков теплового шока. После воздействия своего родственного лиганда андрогена AR, активируется, отделяется от белков теплового шока и перемещается в ядро, где связывается с хроматином в элементах андрогенного ответа (ARE), чтобы инициировать его транскрипционную программу. Эта гормонально-стимулированная передача сигналов AR важна для правильной дифференциации тканей и гомеостаза во время развития и функции простаты. Однако передача сигналов AR перехватывается в опухолях простаты, становясь конститутивной и превращаясь в двигатель постоянного прогрессирования рака.

AR наиболее известен как активатор транскрипции, а простатоспецифический антиген (PSA) (KLK3) является прототипом AR-индуцированного гена. AR задействует несколько коактиваторов и модификаторов хроматина, которые собраны в протранскрипционные комплексы. Эти комплексы способствуют привлечению РНК-полимеразы II к сайту начала транскрипции (TSS) генов-мишеней AR, которые определяются прямым связыванием AR с ARE на их регуляторных элементах.

Для рака простаты AR функционально напоминает MITF при меланоме - чем его больше, тем выраженее пролиферация, а инвазия тормозится. Здесь также можно использовать модель реостата, и есть кому в нем участвовать. Об этом поговорим попозже.

albert52
16.01.2021, 17:43
Продолжим.

Большинство ядерных рецепторов, включая AR, могут как репрессировать, так и активировать гены-мишени при помощи необходимых регуляторных кофакторов. Репрессия генов зависит от общих корепрессоров ядерных рецепторов, таких как корепрессор ядерного рецептора (NCoR) и его гомологичный медиатор подавления ретиноидов и тироидных рецепторов (SMRT).

NCoR и SMRT структурно похожи; оба взаимодействуют с ядерными рецепторами через C-концевые домены, в то время как их N-концевые домены рекрутируют гистоновые деацети -лазы либо посредством прямого связывания с гистондеацетилазой 3 (HDAC3), HDAC4 и HDAC5, либо косвенного взаимодействия с HDAC1 и HDAC2 через адаптерный белок Sin3. Незанятые HDACs являются ферментативно неактивными и требуют стимуляции белок-белковым взаимодействием с кофакторами.

И SMRT, и NCoR несут консервативную N-концевую последовательность, известную как активирующий домен деацетилата (DAD), который взаимодействует с HDAC, стабилизируя их ферментативно активную форму. Затем активированные HDAC удаляют нейтральные ацилы из аминогрупп лизиновых остатков гистонов 3 и 4, вызывая на них положительный заряд. Это увеличивает сцепление гистонов с отрицательно заряженной ДНК и, таким образом, способствует плотному сжатию хроматина, что ограничивает доступность ДНК для транскрипции генов.

SMRT также опосредует репрессию транскрипции генов-мишеней AR посредством рекрутирования HDAC. Сам AR непосредственно связывается с цитоплазматическим HDAC7 и транспортирует его в ядра, при этом HDAC7 способствует управляемой AR репрессии целевого гена.

И, наоборот, ацетилтрансферазы гистонов (HAT) катализируют ацетилирование остатков лизина на хвостах гистонов, тем самым нейтрализуя положительный заряд на лизине и уменьшая электростатическое сродство между гистонами и отрицательно заряженной ДНК. Гены, расположенные рядом с ацетилированными гистонами, следовательно, имеют тенденцию к высокой экспрессии, поскольку они более доступны для аппарата транскрипции.

Можно спросить, когда AR активирует, и когда репрессирует гены-мишени. Естественно AR активирует гены, обеспечивающие функционирование простаты как секреторного органа и делает это, когда необходимо, например, во время полового созревания или при активной половой жизни. Так как AR обычно активирует гены-мишени через дистальные энхансеры, и, чтобы достичь промотора гена нужна петля ДНК, то при достаточной активации рецепторов на ДНК появляется вполне приличная рябь. При этом открываются для транскрипции обширные участки ДНК, в том числе и к генам, транскрипция которых нежелательна. Вот здесь и пригождаются все те репрессорные комплексы, о которых я писал выше.

При раке простаты работа репрессорных комплексов нарушается и могут активироваться непрофильные гены, в том числе и пронейрональные, вызывая нейроэндокринный рак. В отличие от CRPC с интенсивной, хотя и не лигандной активностью AR, для нейроэндокринного рака AR уже не требуется.

Опухоли, расположенные в передней доле, имеют тенденцию иметь более низкую глобальную передачу сигналов AR, что ведет к различиям в молекулярных подтипах AR, размере опухолей и PSA. Интересно, что афроамериканские мужчины с агрессивным РПЖ в основном SPINK1-положительного подтипа демонстрируют более высокую склонность к опухолям, локализованным в передней части, по сравнению с мужчинами европеоидной расы с подобными клинико-патологическими признаками.

Сверхэкспрессия SPINK1 (сериновая пептидаза ингибитора Kazal типа 1) представляет собой существенную ~ 10-25% от общего количества случаев РПЖА исключительно в типе ETS - отрицательного слияния. Экспрессия SPINK1 также положительно коррелирует с EZH2, членом репрессивного комплекса Polycomb 2, который, как известно, индуцирует плюрипотентность и стволовость.

SPINK1 способствуетет эпителиально-мезенхимальному переходу, стволовости и клеточной пластичности. При нормальном физиологическом состоянии, SPINK1 ингибирует преждевременную активацию панкреатических протеаз, но SPINK1 также действует как аутокринный / паракринный фактор и передает онкогенные черты через передачу сигнала EGFR.

Анализ обогащения ДНК-связывающих мотивов гипердоступных областей выявил мотивы обогащения пронейральных ТФ и ТФ гомеодомена Nkx, что, вероятно, является критическим для трансформации в NE-фенотип в разных типах тканей. В свою очередь области хроматина для связывания ТФ семейства p53 (p53, p63 и p73) и TF семейства ETS (ELF3, ELF5 и ERG) были менее доступны в NE-клетках по сравнению с нормальными эпителиальными клетками.

NEPC заболевание связано с низким уровнем сывороточного простатспецифического антигена (ПСА) и прогрессированием до висцеральных метастазов, в отличие от костных метастазов, клинически проявляющихся при традиционной аденокарциноме простаты.

Отсутствие онкобелка ERG в фокусах NE пациентов, несущих слияние TMPRSS2-ERG , подтверждает потерю передачи сигналов андрогенов у этих пациентов . Устранение передачи сигналов андрогенов участвует в повышении регуляции нескольких маркеров EMT, фенотипа, часто связанного с метастазами PCa. Далее, была установлена ​​двунаправленная петля отрицательной обратной связи между AR и ZEB1, которая управляет EMT и сходными со стволовыми клетками особенностями при депривации андрогенов.

Нацеливание на передачу сигналов андрогенов (антиандрогены) и микротрубочек (таксановая химиотерапия) дает преимущества в плане выживаемости для пациентов с метастатическим CRPC (mCRPC), но развивается терапевтическая резистентность, приводящая к летальному исходу. Эта устойчивость возникает в результате пристрастия клеток CRPC к передаче сигналов AR и конститутивной активации вариантов сплайсинга AR.
Химиотерапия таксаном, помимо нацеливания на целостность и стабилизацию микротрубочек, оказывает противоопухолевое действие, нарушая транспорт AR по микротрубочкам, что приводит к цитоплазматической секвестрации AR и ингибированию активности AR в клинических условиях.

Инактивация RB1 и / или TP53 ведет к усилению регуляции ДНК-метилтрансферазы (DNMT) члена семейства DNMT1. По сравнению с аденокарциномой, DNMT1 избыточно экспрессируется в NEPC. Функционально системы метилирования ДНК связаны с активностью белков группы Polycomb (PcG), а именно EZH2, которые служат платформой для рекрутирования DNMTs. Экспрессия как EZH2 и DNMT1 тесно связана с повторной активацией программ транскрипции стволовых клеток в NEPC опухолей.

Помимо потери функции RB1 и / или TP53 , перепрограммирование нейроэндокринных клонов часто связано со сверхэкспрессией и / или амплификацией MYCN , который кодирует N-Myc. Функционально N-Myc зависит от семейства бромодомена и экстра-терминального домена (BET) эпигенетических ридеров, в частности BRD4, для облегчения экспрессии целевого гена. BRD4 распознает и связывает ацетилированные остатки лизина на гистоновых хвостах, что приводит к рекрутированию положительного фактора элонгации транскрипции b (P-TEFb), который, в свою очередь, фосфорилирует РНК-полимеразу II для активации транскрипции гена.

Таким образом, BRD4 поддерживает транскрипцию основных генов стволовых клеток, таких как OCT4 и NANOG, а также набор генов нейрональных клонов, по крайней мере, частично за счет взаимодействия с белками Myc. Так, при мелкоклеточном раке легкого BRD4 активирует экспрессию транскрипционного фактора ASCL1, определяющего клоны нейронов, делая эти опухоли чрезвычайно чувствительными к ингибированию BET.

albert52
13.02.2021, 22:08
Продолжим.

Хотя часто предполагается, что молекулярные пути, лежащие в основе нормального органогенеза, подобны тем, которые нарушаются во время канцерогенеза, существует немного примеров тканеспецифичных регуляторных генов, которые играют центральную роль в обоих процессах. В случае предстательной железы молекулярно-генетический анализ показал, что ген гомеобокса Nkx3.1 играет важную роль в нормальной дифференцировке эпителия предстательной железы и потеря его функции является инициирующим событием канцерогенеза простаты.

Nkx3.1 является членом подсемейства NK гомеобоксов, которые участвуют в процессах спецификации клеточной судьбы и органогенеза у многих видов, при этом Nkx3.1 участвует в основном в развитии простаты, в то время как другие члены семейства Nkx играют роль в формировании мезодермы и генезе др. органов. При этом большинство, если не все, гомеопротеины Nkx действуют как репрессоры транскрипции; так NK-3 взаимодействует как с Groucho, так и с HIP-K2, и эти белки, вероятно, существуют в репрессивном комплексе вместе с гистондеацетилазой HDAC1.

Обзор многих генов гомеобокса показывает, что они соответствуют простому правилу: те, которые обычно экспрессируются в пролиферирующих (недифференцированных) клетках, активируются при раке, тогда как те, которые обычно экспрессируются в дифференцированных тканях, снижены при раке. Напоминаю, что гомеодомен — это структурный домен белков, связывающих ДНК или РНК, а гомеобокс — участок ДНК длиной 180 нуклеотидов, который кодирует гомеодомен. Канцерогенная активность дерегулированных генов гомеобокса связана с их неправильным использованием в несоответствующих клеточных контекстах, а не с приобретением «новых» функций. Все это ведет к изменению клеточного фенотипа, при этом гены гомеобокса могут вносить вклад в тканеспецифические особенности фенотипов рака.

Так, потеря функции гена гомеобокса CDX2 в канцерогенезе толстой кишки имеет много общих черт с геном NKX3.1 при раке простаты. Еще одна интересная параллель обеспечивается геном RUNX3 , фактором транскрипции Runt-домена, который подвергается гемизиготной делеции и эпигенетической инактивации в большинстве случаев рака желудка человека.

Во время развития Nkx3.1 является самым ранним из известных маркеров образования простаты и продолжает экспрессироваться на всех стадиях дифференцировки простаты и во взрослом возрасте. Экспрессия Nkx3.1 выявляет предварительную структуру эпителия урогенитального синуса в виде отдельных простатических и непростатических областей.

Nkx3.1 необходим для нормального развития простаты, потому что его потеря функции ведет к дефектам морфогенеза протоков и нарушению секреции простатического белка. Более того, потеря функции Nkx3.1 также вносит вклад в канцерогенез простаты, потому что, например, мутантные по Nkx3.1 мыши предрасположены к карциноме простаты и потеря функции Nkx3.1 кооперируется с таковой других генов-супрессоров опухолей в прогрессировании рака.

Nkx3.1 действует как репрессор транскрипции посредством рекрутирования корепрессоров Gro / TLE. Активность репрессора транскрипции Nkx3.1 потенциально может модулироваться его взаимодействием с другими белками, такими как PDEF (фактор Ets, полученный из простаты), который является членом семейства факторов транскрипции Ets, экспрессируемых в молочных железах взрослых, слюнных железах и простате. PDEF может транскрипционно активировать промотор человеческого PSA, и совместная экспрессия с Nkx3.1 может противодействовать этой активности.

Nkx3.1 также обладает активностью активатора транскрипции в определенных тканевых контекстах. Так, зачатки эпителия предстательной железы подвергаются обширному протоковому разрастанию и ветвлению в окружающую мезенхиму в течение первых 3 недель постнатального развития. Эти появляющиеся зачатки простаты маркируются экспрессией Nkx3.1, которая усиливается по направлению к дистальным концам отрастающих протоков, соответствующих областям активного морфогенеза. Перед канализацией протоков простаты Nkx3.1 экспрессируется равномерно в эпителиальных клетках, но в дальнейшем экспрессия ограничивается люминальным отделом.

Он экспрессируется только в тканевых рекомбинациях, которые формируют простату, т.о. тканевые рекомбинанты, полученные с помощью индуцирующей простату мезенхимы (UGM) и эпителия мочевого пузыря, экспрессируют Nkx3.1 , хотя Nkx3.1 в норме не экспрессируется в мочевом пузыре. Что касается андрогенов, то во время эмбриогенеза функциональные рецепторы андрогенов располагаются в мезенхиме урогенитального синуса, тогда как постнатально они обнаруживаются как в мезенхиме, так и в эпителии. Рецепторы андрогенов изначально необходимы в мезенхиме для выработки сигналов для индукции и роста простаты, и только позже в эпителии для секреторной функции дифференцированных типов клеток.

Хотя первоначальное проявление экспрессии Nkx3.1 в эпителии предстательной железы предшествует таковому у рецептора андрогенов, последующая экспрессия Nkx3.1 зависит от передачи сигналов андрогенов. Более того, экспрессия Nkx3.1 значительно подавляется после кастрации и в клетках андрогенрезистентного рака простаты. Сам он может регулировать экспрессию определенных секреторных белков в ответ на передачу сигналов рецептора андрогена. Так, отмечено снижение или отсутствие нескольких основных секреторных белков во всех долях простаты.

Также бульбо-уретральные железы (BUG) гомозиготных мутантов Nkx3.1 демонстрируют значительно уменьшенный размер, возможно, из-за уменьшения ветвления протоков, а также почти полной потери продуцирующих слизь клеток и их замены клетками с серозным (протоковый эпителиальный) гистологическим фенотипом. Отметим, что дефект секреторного белка вероятно является следствием измененного состояния дифференцировки бульбоуретрального эпителия. Впрочем, эпителий простаты, но не эпителий BUG, ​​очень чувствителен к гиперпластическому росту и канцерогенезу. Соответственно, потеря функция Nkx3.1 приводит к глубокому изменению клеточного состава, но не к гиперпластическому росту бульбоуретрального эпителия, который практически не подвергается канцерогенезу.

NKX3.1 является ведущим кандидатом на ген, расположенный в минимально удаленной области в 8p21, который подвергается аллельному дисбалансу при интраэпителиальной неоплазии простаты (PIN) и раке простаты. Другие хромосомные области, которые имеют решающее значение, особенно для более поздних стадий заболевания, включают 10q и 12p; ведущими генами-кандидатами в этих областях являются PTEN и p27 kip1 соответственно. PTEN и p27 kip1 являются генами-супрессорами опухолей широкого спектра.

Потеря функции Nkx3.1 может влиять на активацию Akt в контексте активности Pten дикого типа. Гетерозиготы Nkx3.1 (Nkx3.1 +/‐ ) развивают PIN как следствие старения, а гетерозиготы с Pten ( Nkx3.1 +/‐ ; Pten +/‐ ), развивают PIN высокой степени и карциному in situ. С другой стороны, Nkx3.1 - / - ; Pten -/‐ простаты могут моделировать события поздней стадии рака простаты, включая развитие метастатического заболевания и переход к андрогенной независимости.

Один из механизмов, с помощью которого Nkx3.1 может подавлять инициирование рака, заключается в защите от окислительного повреждения. Одним из возможных механизмов этих эффектов является взаимодействие NKX3.1 через его гомеодомен с ДНК-репарирующим ферментом топоизомеразой I. NKX3.1 активирует топоизомеразу I на стехиометрической основе и заметно увеличивает активность фермента за счет ускорения связывания топоизомеразы I с ДНК, что усиливает репарацию ДНК, в то время как потеря экспрессии NKX3.1 может предрасполагать клетки рака простаты человека к дальнейшему повреждению ДНК.

Экспрессия белка NKX3.1 подавляется при большинстве раковых заболеваний человека способом, который коррелирует с прогрессированием заболевания. Отметим, что утрата гетерозиготности NKX3.1 при этом не сопровождается мутацией остаточного контралатерального аллеля, таким образом отклоняясь от парадигмы супрессорных генов двуаллельной инактивации. Nkx3.1 не ведет себя как классический опухолевый супрессор, который требует двух ударов для инактивации.

Следовательно, похоже, что во время канцерогенеза простаты человека один аллель NKX3.1 инактивируется посредством хромосомной делеции, тогда как другой инактивируется эпигенетически из-за потери экспрессии белка. А очевидная гаплонедостаточность Nkx3.1 при прогрессировании рака простаты может быть обусловлена ​​первоначально измененными паттернами экспрессии генов у гетерозигот и значительно усиливается во время старения за счет эпигенетической инактивации аллеля Nkx3.1 дикого типа во время образования PIN.

Остаточные уровни экспрессии белка NKX3.1 при раке простаты на ранней стадии, вероятно, будут оказывать продолжительное влияние на рост клеток, тогда как во время прогрессирования до метастатического заболевания может возникнуть селективное давление на потерю белка, потому что> 80% метастатических очагов потеряли все NKX3.1. Уровни экспрессии NKX3.1 при первичном раке простаты ниже, когда NKX3.1 подвергается аллельной потере и метилированию контралатерального аллеля. Более низкие уровни экспрессии NKX3.1 при первичном раке простаты связаны с более высокой степенью Глисона.

albert52
14.02.2021, 05:01
Продолжим.

Широко известно, что эпителий предстательной железы подвержен повреждению ДНК из-за воспаления в стареющей предстательной железе. Как я уже упоминал, NKX3.1 представляет собой гаплонедостаточный белок супрессора рака предстательной железы ( в его гене оба аллеля должны быть функциональными для экспрессии дикого типа), экспрессия которого снижена в большинстве случаев первичного рака простаты человека. Во время прогрессирования рака простаты происходит нарастающая потеря экспрессии NKX3.1 (см.выше).

Подавление NKX3.1 является результатом генетической потери, метилирования ДНК или того и другого, и, кроме того, оборот NKX3.1 ускоряется убиквитинированием и протеасомной деградацией, вызванной воздействием на клетки воспалительных цитокинов. Таким образом, области воспалительной атрофии могут вызывать как подавление NKX3.1, так и окислительное повреждение, которое сопровождает воспаление .

Ранним шагом в ответе на повреждение ДНК является быстрое накопление белков, сигнализирующих о повреждении, в месте повреждения, соответствующем сенсорному комплексу белков MRE11, Rad50 и NBS1 (комплекс MRN).

ATM (мутация атаксии и телеангиэктазии - один из трех ДНК-зависимых киназоподобных белков PI3) служит ключевым преобразователем сигналов повреждения ДНК в клетках млекопитающих, частично активируясь комплексом MRN, связанным с двухцепочечными разрывами, для передачи сигналов посредством фосфорилирования гстона H2AX и множества других субстратов. Кроме того, АТМ также реагирует на уровни активных форм кислорода и может действовать как клеточный сенсор окислительного потенциала.
После активации повреждением ДНК, ATM подвергается аутофосфорилированию по сайтам, предпочтительным для субстратов ATM. ATM также активируется окислительным стрессом независимо от повреждения ДНК.

NKX3.1 и ATM имеют функциональное взаимодействие, ведущее к активации ATM, а затем к деградации NKX3.1 в строго регулируемом ответе на повреждение ДНК, специфичном для эпителиальных клеток простаты. Так, связывание NKX3.1 с ATM модулируется фосфорилированием ATM, которое происходит во многих сайтах во время ответа на повреждение ДНК. В течение нескольких минут после повреждения ДНК ATM фосфорилируется по S1981 и NKX3.1 по тирозину 222. Обе посттрансляционные модификации способствуют связыванию двух белков, что приводит к активизации ATM и накоплению pATM на участках повреждения ДНК. К 30 мин ATM фосфорилирует NKX3.1 на T166, а затем на T134, в результате чего происходит убиквитинирование и деградация NKX3.1.

Отметим, что NKX3.1 усиливает активацию ATM в большей степени в ответ на окисление, чем на присутствие поврежденной ДНК. Таким образом, важной функцией NKX3.1 является ускорение и усиление активации ATM в простате, ткани, которая подвержена чрезвычайно высокому уровню окислительного стресса из-за воспаления.

Возможно основным механизмом, с помощью которого потеря NKX3.1 влияет на канцерогенез простаты, является нарушение передачи сигналов повреждения ДНК. Даже в воспаленной или стареющей простате потеря NKX3.1 опосредуется воспалительными цитокинами, которые индуцируют фосфорилирование NKX3.1, что приводит к убиквитинированию и протеасомной деградации и, таким образом, к сокращению периода полужизни белка.

NKX3.1 также активирует топоизомеразу I (см. выше), фермент, раскручивающий ДНК; среди множества его эффектов играет роль восприимчивость клетки к повреждению ДНК. NKX3-1, AR, и FoxA1 способствуют выживанию клеток рака простаты также путем непосредственной активации RAB3B, члена семейства RAB GTPase.

RAB GTPases, как недавно было установлено, вовлечены в пути передачи сигналов и во внутриклеточные процессы, включая рост, пролиферацию, дифференцировку, выживание и клеточный цикл. Например, амплификация гена Rab25 способствует пролиферации, выживанию и агрессивности клеток рака груди и яичников, в то время как сверхэкспрессия секреторных белков Rab27 связана с инвазией и метастазированием клеток рака груди и плохим клиническим прогнозом. RAB3B является критическим компонентом пути выживания клеток РПЖ.

Отметим, что программа пространственной и временной экспрессии любого структурного гена обычно диктуется уникальной комбинацией факторов транскрипции, задействованных в регуляторных областях ДНК, которые функционируют вместе, чтобы либо активировать, либо репрессировать транскрипцию. В прошлом были предприняты большие усилия по описанию коактиваторов (например, SRC, p300 / CBP и медиаторов) и корепрессоров (например, NCoR и SMRT), см. выше. Так, установлено, что белок EZH2 Polycomb Group (PcG) является прямой мишенью для ERG и ESE3 и ключевым игроком в подавлении транскрипции Nkx3.1.

Пионерский фактор транскрипции FoxA1, который сверхэкспрессируется в опухолях простаты, связывается в сайтах связывания AR (ARBS) еще до передачи сигналов андрогена. FoxA1 обладает клон-специфическим транскрипционным цистроном, что определяется распределением моно- и диметилированных гистоновых меток H3K4, а также диметилированных гистоновых меток H3K9 как при раке простаты, так и при раке груди. К дополнительным факторам взаимодействия AR относятся также GATA2, ETS1, ERG и пр.

Нарушение регуляции экспрессии факторов ETS с предполагаемыми онкогенными и опухолевыми супрессорными свойствами очень часто, причем до 80% опухолей простаты имеют один или несколько аберрантно экспрессируемых генов ETS. Семейство ETS человека включает 27 членов, которые имеют общий высококонсервативный ДНК-связывающий домен и являются узловыми точками различных сигнальных путей, контролирующих пролиферацию, дифференцировку и выживание клеток. Так, эпителиально-специфический фактор ETS ESE3 часто подавляется при раке простаты, отрицательно влияет на пролиферацию и выживаемость клеток и действует как опухолевый супрессор в эпителиальных клетках простаты.

ESE3 негативно регулирует EZH2, так как он связывается с промотором EZH2, действуя как репрессор транскрипции гена. Однако связывание ESE3 снижено в клетках, экспрессирующих ERG, указывая на то, что прямая конкуренция за занятость промотора EZH2 может объяснять реципрокную регуляцию EZH2 этими двумя факторами ETS.

EZH2 является ключевым фактором в выполнении программ развития и дифференцировки, а также в поддержании плюрипотентности и самообновления стволовых клеток. EZH2 контролирует также гены, вовлеченные в клеточную адгезию, инвазию и миграцию, то есть пути, которые высоко экспрессируются в опухолях ERG high и ESE3 low.

NKX3.1 объединяет множество сигнальных путей, включая PTEN / PI3K / AKT, p53 и AR, которые все играют критическую роль в развитии простаты и онкогенезе . Таким образом, одновременная индукция EZH2 и ослабление Nkx3.1 может объяснить активацию широкой программы дедифференцировки, наблюдаемой в транскриптоме опухолей ERG high и ESE3 low. Отметим, что промотор Nkx3.1 приобретает репрессивную метку метилирования гистона H3K27 ERG-зависимым образом.

ESE3 может быть критическим фактором для поддержания равновесия между конкурирующими стимулами и обеспечения продолжения программ развития и дифференциации. Генетические события или патологические состояния, такие как перестройка генов или хроническое воспаление, может сдвинуть равновесие в пользу онкогенных ETS, таких как ERG и ESE1, и способствовать активации промитогенных программ, программ выживания и дедифференцировки. В этом контексте возможно, что измененная экспрессия факторов ETS, таких как ESE3 и ESE1, которые обычно присутствуют в эпителиальных клетках простаты, может представлять собой раннее событие, которое взаимодействует с перестройками гена ETS или даже предшествует им на ранних стадиях онкогенеза простаты.

albert52
15.02.2021, 17:33
Продолжим.

В немитотических клетках гистоны и ДНК упакованы в нуклеосомы. В каждой нуклеосоме около 150 п.н. ДНК обвивают ядро ​​гистоновых белков, состоящее из тетрамера H3-H4 и двух димеров H2A-H2B. N-концевые хвосты гистонов выступают из основной структуры и могут быть химически модифицированы множеством ферментов. Синергетический эффект этих химических модификаций определяет, будет ли хроматин транскрипционно активным (эухроматин) или неактивным (гетерохроматин) состоянием.

Три основных типа ферментов опосредуют эпигенетическую регуляцию транскрипции через HPTM (посттрансляционные модификации гистонов): «писатели», «ластики» и «читатели». «Писатели» ковалентно добавляют химические группы к гистонам строго регулируемым образом. Три из наиболее охарактеризованных HPTM включают ацетилирование, метилирование и убиквитинирование, которые катализируются соответственно гистоновыми ацетилтрансферазами (HATs), гистоновыми лизин -метилтрансферазами (HKMTs) и убиквитинлигазами E3. Другие HPTM включают сумоилирование, фосфорилирование, ADP-рибозилирование, цитруллинирование и биотинилирование.

Разнообразный набор «писателей»(writers) допускает одновременное существование астрономически большого количества комбинаций HPTM. Интересно, что все эти HPTM обратимы из-за существования «ластиков», которые опосредуют удаление вышеупомянутых химических модификаций. На сегодняшний день гистоновые деацетилазы (HDAC) представляют собой наиболее широко изученные «стиратели», но недавние исследования показали важность лизин-деметилаз (KDM) в SC и биологии рака.

Третий тип ферментов, «ридеры», не модифицируют гистоны напрямую, но распознают определенные HPTM и действуют как стыковочные узлы для других комплексов, которые реконструируют трехмерную структуру хроматина АТФ-зависимым образом. Об одном из них, BRD4 я упоминал выше.

Активность AR может напрямую регулироваться эпигенетическими модификаторами. Разнообразные гистоновые деацетилазы (HDACs), такие как SIRT1, способны деацетилировать AR и тем самым предотвращать ассоциацию с транскрипционным коактиватором p300. Примечательно, что SIRT1 активируется в NEPC.

Репрограммирование клона NEPC в значительной степени обусловлено нарушением регуляции эпигенома и транскрипционных сетей. Так, во время нормального развития эпигенетический аппарат играет центральную роль в установлении уникальных паттернов хроматина, которые определяют фенотип клонов клеток. Этот поток хроматина регулируется RB1 и TP53, которые действуют как привратники, предотвращая, например, нейроэндокринную дифференцировку при раке простаты. Функциональная потеря RB1 и TP53 способствует активации сетей плюрипотентности, частично опосредованной посредством дерепрессии фактора транскрипции плюрипотентности SOX2, а также эпигенетического модификатора EZH2. Это особенно очевидно в локусах генов известных регуляторов решений клеточной судьбы (например, ASCL1 и HES6 ), эпителиально-мезенхимальной пластичности и пронейронального развития.

Аберрантная онкогенная передача сигналов может приводить к фосфорилированию EZH2, которое переключает фермент с репрессора Polycomb на коактиватор транскрипции, функционирующий с AR для поддержки андроген-независимых фенотипов. Так, AR избирательно рекрутируется на промотор гена, кодирующего UBE2C, ингибитор контрольной точки клеточного цикла, который сильно активируется как в андрогенрезистентных опухолях, так и в опухолях NEPC. Подобное перенаправление транскрипционного выхода AR может регулироваться локальной средой хроматина, частично опосредованной взаимодействием AR с EZH2.

В NEPC EZH2 непосредственно образует комплекс с N-Myc, чтобы транскрипционно репрессировать гены, которые обеспечивают состояние аденокарциномы, управляемое AR. С другой стороны AR-отрицательные NEPC клетки не могут быть перепрограммированны обратно в состояние аденокарциномы вслед за ингибированием EZH2; это предполагает, что эпигенетические ингибиторы NEPC могут проявлять наибольшую эффективность в терапевтическом окне до того, как опухоли потеряют экспрессию AR.

AR предпочтительно связывает области, лишенные нуклеосом, поэтому экспрессия пионерных факторов транскрипции FOXA1 и HOXB13, которые даже в сильно уплотненных областях хроматина обеспечивают пермиссивную структуру хроматина и в эпителиальных клетках предстательной железы могут привести к репрограммированию цистрома AR.

Передача сигналов FOXA1 может динамически регулироваться кофакторами; напр., фактор репрограммирования плюрипотентности NANOG перенаправляет комплекс FOXA1: AR для активации сетей, связанных со стволовыми клетками.

Фактором-кандидатом на перепрограммирование AR в NEPC является еще один фактор-пионер Forkhead Box A, FOXA2, который экспрессируется почти исключительно в опухолях NEPC (75% NEPC против 4% аденокарциномы). FOXA2 не только обогащает NEPC, но также коэкспрессируется с редкими синаптофизин-положительными клетками простаты взрослого человека. Экспрессия FOXA2 ограничивается главным образом базальными клетками во время раннего развития простаты, тогда как FOXA1 широко экспрессируется во всем эпителии от раннего развития до зрелости.

Нейробластомы, усиленные MYCN, абсолютно зависят от EZH2 для роста и выживания, предполагая, что взаимодействие между N-Myc и EZH2 управляет активацией нейрональных программ. EZH2 необходим для поддержания бивалентности в генах, связанных с N-Myc, несущих как репрессивные гистоновые метки H3K27me3, так и активные гистоновые метки H3K4me3 (так называемый двухвалентный хроматин).

AR может напрямую привлекать модификаторы гистонов, чтобы влиять на архитектуру хроматина и экспрессию генов. LSD1 является важным регулятором транскрипционной активности AR, облегчая подавление канонических генов-мишеней AR посредством деметилирования H3K4. Интересно, что связывание и трансактивация LSD1 / AR перепрограммируются потерей RB1, что может иметь важные последствия для NEPC.
LSD1 может деметилировать и стабилизировать как гистоны, так и негистоновые субстраты, такие как DNMT1, а также имеет функции, полностью независимые от его ферментативной активности; так при раке простаты LSD1 взаимодействует с ZNF217 для активации генных сетей, участвующих в регуляции фенотипа стволовых клеток, независимо от деметилазы.

HOTAIR действует как каркас для связывания EZH2 и LSD1, которые координированно действуют на домены двухвалентного хроматина, чтобы усилить состояние повышенной пластичности клеток посредством согласованной репрессии онтогенетических генов. Ген HOTAIR содержит 6232 п.н. и кодирует некодирующую молекулу РНК длиной 2,2 т.п.н. , которая контролирует экспрессию гена, чья исходная ДНК расположена в кластере генов HOXC. Эта РНК перемещается с хромосомы 12 на хромосому 2 белком Suz-Twelve. 5 ' конец HOTAIR взаимодействует с PRC2 и в результате регулирует хроматин, что необходимо для подавления гена локуса HOXD. При этом 3' конец HOTAIR взаимодействует с деметилазой гистона LSD1 .

Отметим, что при мелкоклеточном раке легкого ингибиторы LSD1 снижали экспрессию генов нейроэндокринного происхождения и вызывали полную регрессию опухоли в модели мыши, полученной от пациента.

Как EZH2-опосредованное эпигенетическое репрограммирование способствует нейроэндокринной дифференцировке? EZH2 может быть активирован фактором транскрипции 4 (TCF4), ключевым фактором транскрипции в передаче сигналов Wnt / β-катенин, что приводит к отложению репрессивных гистоновых меток H3K27me3 вдоль промотора микроРНК miR-708. Молчание miR-708 снимает ингибирование нейронатина, медиатора нейрональной дифференцировки, а также подобного стволовым клеткам фактора CD44. Повышенная передача сигналов Wnt является признаком опухолей NEPC, а ингибирование TCF4 предотвращало превращение аденокарциномы в NEPC после андрогенной депривации.

Наконец, путь MEK / ERK управляет активацией транскрипции EZH2 и рекрутированием на промотор E-cadherin, тем самым облегчая эпителиально-мезенхимальную пластичность и размножение стволовых клеток / предшественников рака простаты.

albert52
17.03.2021, 11:00
Вставка.
FoxO и клеточный цикл

Факторы FoxO регулируют ряд клеточных процессов, участвующих в принятии решений о судьбе клеток, в зависимости от типа клеток и окружающей среды, включая метаболизм, дифференцировку, апоптоз и пролиферацию. Ключевым механизмом, с помощью которого FoxO определяет судьбу клеток, является регуляция аппарата клеточного цикла, и поэтому клеточные последствия дерегуляции FoxO часто проявляются в нарушении клеточного цикла. Следовательно, нарушение регуляции факторов FoxO вовлечено в развитие множества пролиферативных заболеваний, в частности рака.

Семейство FoxO является продуктом увеличения сложности, необходимой для развития высших организмов. К настоящему времени идентифицированы четыре изоформы FoxO (FoxO1, FoxO3a, FoxO4 и FoxO6) в клетках млекопитающих (у людей было идентифицировано по крайней мере 17 подклассов факторов транскрипции Fox).

Клеточная пролиферация включает в себя вход в клеточный цикл из состояния покоя (фаза G0) и успешное прохождение через G1 (фаза паузы 1), S (синтез ДНК), G2 (фаза паузы 2) и M (митоз) клеточного цикла. Фазовые переходы клеточного цикла находятся под строгим контролем сложного набора регуляторных белков клеточного цикла, а прохождение каждой фазы клеточного цикла контролируется в первую очередь совместной активностью специфических циклин-зависимых киназ (CDK) и их регуляторных функций на субъединицы - циклины. Одной из первых функций, обнаруженных для белков FoxO млекопитающих, была их способность регулировать фазовый переход G1 / S .

Развитие клеточного цикла от фазы G1 к фазе S зависит в первую очередь от активации факторов транскрипции E2F посредством последовательного гиперфосфорилирования белков семейства ретинобластомы (pRB) (то есть pRB, p107 и p130), опосредованного циклин-D / комплекс Е-CDK. Во время ранней фазы G1 уровни экспрессии циклинов D-типа активируются митогенными сигналами, что приводит к повышенным уровням активных комплексов циклин D-типа-CDK4 / 6.
Фактически, циклины D-типа являются первыми компонентами аппарата клеточного цикла, которые индуцируются в ответ на митогенную стимуляцию, тем самым обеспечивая связь между пролиферативными сигналами и клеточным циклом. Эти холоферменты циклин D-CDK4 / 6, как полагают, имеют решающее значение для продвижения клеток через точку рестрикции, место в поздней фазе G1, после которой клетки часто становятся независимыми от факторов роста и невосприимчивыми к подавляющим сигналам.

Было показано, что сверхэкспрессия конститутивно активной ядерной формы FoxO1 или FoxO3a подавляет активность CDK4 и вызывает остановку клеточного цикла в фазе G1. Еще не доказано, что белки FoxO подавляют экспрессию циклинов D-типа посредством прямого связывания с промоторами их генов; однако белки FoxO могут их опосредованно подавлять за счет усиления транскрипции Bcl-6, известного репрессора транскрипции гена циклина D2. Также стоит упомянуть, что сигнальный путь PI3K – АКТ непосредственно участвует как в транскрипции гена циклина D1 , так и в стабилизации белка.
Таким образом, повышенный уровень активности PI3K-AKT в сочетании с сопутствующей инактивацией FoxO будет индуцировать циклин D1 на нескольких уровнях, что приводит к аномально высоким уровням активности циклина D1-CDK4 / 6 и быстрому переходу в S-фазу.

Регуляция фазового перехода G1 / S с помощью FoxO также в значительной степени зависит от ингибиторов циклин-зависимых киназ (CKI). Существует два различных класса CKI: семейство Cip / Kip (то есть p21 Cip1 , p27 Kip1 и p57 Kip2 ) и семейство INK4 (то есть p15 INK4b , p16 INK4a , p18 INK4c и p19 1NK4d ). В то время как члены семейства Cip / Kip образуют ингибирующие гетеротримерные комплексы с циклин-CDK, члены INK4 образуют комплекс только с CDK4 и CDK6.
Было показано, что белки FoxO непосредственно повышают регуляцию транскрипции p21 Cip1 и p27 Kip1 членов Cip / Kip и таким образом, могут ингибировать активность CDK-циклинов A, E и D. Два специфических ингибиторов CDK4 / 6, p15 INK4b и p19 INK4d, также оказались мишенями FoxO в индукции остановки клеточного цикла G1.

Функциональным следствием FoxO-опосредованного нарушения образования комплекса циклин-CDK является снижение фосфорилирования белков семейства pRB и, следовательно, транскрипционной активности E2F. Однако FoxO может также напрямую нацеливаться на членов семейства pRB p107 и p130 (также называемых pRB2); FoxO3a и FoxO4 млекопитающих непосредственно активируют транскрипцию гена p130 , который может побуждать клетки к остановке клеточного цикла и переходу в состояние покоя.

Было показано, что во время вступления в клеточный цикл киназа циклин D-CDK4 / 6 запускает частичное фосфорилирование белка pRB, что приводит к дерепрессии небольшого количества генов E2F, включая циклин E. Затем экспрессия циклина E активирует CDK2 для дальнейшего фосфорилирования белков pRB, что приводит к экспрессии полного набора регулируемых E2F регуляторных генов клеточного цикла. Следовательно, FoxO-опосредованная репрессия циклина D-типа, активация CKI и p130 в конечном итоге приведет к подавлению всех регулируемых E2F регуляторов клеточного цикла, необходимых для входа в клеточный цикл.

Остановка клеточного цикла в контрольной точке G2 / M является критическим компонентом стрессовой реакции в клетке, позволяя восстановить повреждение ДНК. Более того, недостатки в контроле контрольных точек фазы G2 / M часто связаны с геномной нестабильностью и онкогенезом. Факторы транскрипции FoxO, как сообщается, также играют роль в поздних фазах клеточного цикла млекопитающих. Так, активация FoxO3a во время S-фазового перехода будет вызывать остановку клеточного цикла G2 / M. Более того, было показано, что в ответ на повреждение ДНК FoxO3a активирует экспрессию гена остановки роста и ответа на повреждение ДНК GADD45a, чтобы опосредовать остановку клеточного цикла G2 / M и запускать репарацию ДНК .

Суперсемейство цитокинов трансформирующего фактора роста β (TGFβ) регулирует широкий спектр клеточных функций, включая прогрессирование клеточного цикла, и нарушение регуляции этого пути связано с онкогенезом. Например, TGFβ ингибирует пролиферацию первичных злокачественных эпителиальных клеток, вызывая остановку клеточного цикла за счет активации группы факторов транскрипции Smad, которые часто мутируют в опухолях. При этом ключевым компонентом передачи сигналов TGFβ является образование комплекса Smad-FoxO3a, который необходим для индукции экспрессии гена p21 Cip1.
Таким образом, FoxO представляет собой точку конвергенции пути PI3K-АКТ с сигнальным каскадом TGFβ, чтобы регулировать прогрессию клеточного цикла. Интересно, что индукции экспрессии p21 Cip1 комплексами FoxO-Smad противостоит FoxG1, тканеспецифический паттерн экспрессии которого, в первую очередь обнаруживаемый в ткани мозга, указывает на сценарий, при котором клеточное происхождение влияет не только на результат, но и на регуляцию передачи сигналов FoxO (например, в глиомах).

Также экспрессия гена FoxM1 может негативно регулироваться целевым геном FoxO3a Mxi1. Кроме того, индуцированная FoxO3a экспрессия CKI может ингибировать комплексы CDK-циклин, которые необходимы для активации и ядерной локализации FoxM1. FoxM1 выполняет критическую функцию в переходе G2 и M, регулируя экспрессию различных регуляторных генов клеточного цикла G2 / M, включая поло-подобную киназу, циклин B , циклин A , CDC25B и CDC2, а потеря FoxM связана с остановкой контрольной точки G2 / M и потерей целостности митотического веретена. Сверхэкспрессия FoxM1 посредством хромосомной амплификации или активации транскрипции, например, через Gli-1, связана с развитием и прогрессированием многих типов рака, включая рак груди, печени, простаты, мозга и легких.

С точки зрения продолжительности жизни эукариотического многоклеточного организма FoxO вызывает остановку клеточного цикла, но в то же время увеличивает продолжительность жизни клетки. Возможно, самый интригующий вопрос возникает из-за параллелей между p53 и FoxO, оба которых подавляют развитие опухолей, но баланс активности которых может частично контролироваться петлей отрицательной обратной связи между двумя белками. Действительно, p53 может индуцировать экспрессию киназы, фосфорилирующей и исключающей из ядра FoxO3a, а FoxO3a в свою очередь может ингибировать опосредованную p53 репрессию экспрессии SIRT1, которая связывает и деацетилирует p53.

albert52
17.03.2021, 12:25
Рак молочной железы

В настоящее время для определения адекватной тактики лечения используется молекулярно-генетическая классификация рака молочной железы, предложенная в 2000 г. Perou C.M. и соавт. Данная классификация основана на выделении группы из 465 генов, распределяющихся на четыре экспрессионных паттерна, соответствующих люминальному А, люминальному В, HER2/neu позитивному и «трижды негативному» раку молочной железы. Каждый из перечисленных молекулярно-генетических типов характеризуется особенностями ответа опухоли на проводимое лечение и различным исходом заболевания.

Люминальные (А и В) раки молочной железы максимально разнообразны по морфологическому строению опухоли, в то время как трижды негативный тип и новообразования с гиперэкспрессией HER2/neu чаще характеризуются мономорфным строением инфильтративного компонента с редким присутствием в нем высоко дифференцированных тубулярных структур. Кроме того, при трижды негативном раке молочной железы отмечается преобладание паренхиматозного компонента и выраженная воспалительная инфильтрация стромы опухоли.

Люминальный тип А рака молочной железы составляет около 30-45% от всех наблюдений, является эстроген-зависимой группой, диагностируется преимущественно у женщин в постменопаузе. При иммуногистохимическом исследовании обнаруживается позитивная экспрессия рецепторов к половым гормонам (эстрогенам и прогестерону), негативная экспрессия HER2/neu и низкая пролиферативная активность (экспрессия Ki67 менее 20%). Для этой группы, в сравнении с остальными, определяются низкие показатели рецидивирования и высокие - общей выживаемости. Эта гистогенетическая группа рака молочной железы характеризуется высокой чувствительностью к гормональной терапии (тамоксифен, ингибиторы ароматазы).

Люминальный тип В встречается в 14-18% случаев, является эстроген-зависимой опухолью и обнаруживается у более молодых больных. Характеризуется позитивной экспрессией рецепторов к эстрогенам и прогестерону. В зависимости от HER2/neu статуса и пролиферативной активности подразделяется на два варианта: с экспрессией Ki67 более 20% в сочетании с негативным HER2/neu статусом и с позитивной экспрессией HER2/neu, независимо от уровня Ki67 (отметим, что Кi67 экспрессируется во всех фазах клеточного цикла, кроме G0). В сравнении с люминальным А, чаще сопровождается метастатическим поражением лимфатических узлов и рецидивированием. Эти новообразования чаще являются не чувствительными к химио- и гормональной терапии, но в случаях с позитивной экспрессией HER2/neu чувствительны к транстузумабу .

HER2/neu позитивный рак молочной железы встречается в 8-15% случаев (высокое содержание рецептора 2 эпидермального фактора роста человека (HER2 / ErbB2). При иммуногистохимическом исследовании определяется негативная экспрессия рецепторов к половым гормонам, позитивная экспрессия HER2/neu, высокий (экспрессия Ki67 более 20%) пролиферативный индекс. Клинически для таких опухолей характерен большой размер, частое вовлечение в метастатический процесс лимфатических узлов, низкие показатели общей выживаемости. Для этой группы опухолей эффективно назначение транстузумаба в адъювантном режиме, не чувствительны к гормонотерапии.

«Трижды негативный» (ТНР) рак молочной железы, как это следует из названия этой группы, характеризуется отсутствием экспрессии рецепторов к половым гормонам и к HER2/neu. Встречается в 27-39% наблюдений, является эстроген-независимой агрессивной опухолью и выявляется у более молодых женщин. Часто обнаруживаются мутации BRCA1. Гистологически представлен протоковым или метапластическим морфологическим типом опухоли с низкой степенью дифференцировки, ядерным полиморфизмом и некрозами паренхиматозных структур. Иммуногистохимически определяется высокая пролиферативная активность, позитивная экспрессия HER1 (EGFR1), виментина, с-kit.

В зависимости от способности экспрессировать цитокератины 5/6 и/или 14 он подразделяется на базальноподобный и небазальноподобный подтипы. «Трижды негативные» опухоли имеют большие размеры, чаще метастазируют в лимфатические узлы и отдаленные органы, характеризуются более низкими показателями выживаемости.
Только в группе больных с трижды негативным типом рака молочной железы выявлена зависимость гематогенной диссеминации от наличия лимфогенных метастазов и от количества пораженных лимфоузлов. Такие опухоли чувствительны к химиотерапии, включающей антрациклин и таксан-содержащие схемы.
При метастазировании имеет значение и выраженность инфильтративного компонента опухоли. Считается, что инвазивный протоковый рак с преобладанием внутрипротокового компонента метастазирует в регионарные лимфатические узлы редко – в 4,2% наблюдений, инвазивный протоковый рак с преобладанием инфильтративного компонента – много чаще – в 42%. Н***агоприятный прогноз имеет обнаружение инвазивного долькового рака, обладающего выраженным инвазивным ростом, склонного к множественному и двухстороннему поражению, а также обширному метастазированию. Для тубулярного и слизистого инвазивного рака характерен благоприятный прогноз.

Детально исследуются субпопуляции Т лимфоцитов. Показано, что с уменьшением реакции CD4+ Т–хелперов/индукторов и CD8+ супрессоров/цитотоксических клеток достоверно увеличивается частота метастатического поражения регионарных лимфоузлов. Частота отдаленных метастазов и стадия заболевания отрицательно коррелирует с инфильтрацией опухоли субпопуляцией CD8+ Т–лимфоцитов.

Согласно рекомендациям, принятым в Сан–Галлене, при планировании терапии больным раком молочной железы такому параметру, как гистологическая форма новообразования уделяют большое внимание. Так при особых гистологических типах, являющихся эндокриночувствительными (крибриформная, тубулярная и слизистая карциномы) назначается эндокринотерапия, в случаях с эндокринонечувствительными опухолями (апокриновая, железистокистозная и метапластическая карциномы) – цитотоксическая химиотерапия.

Что касается молекулярного патогенеза, то, например, экспрессия bcl–2 прямо пропорциональна экспрессии рецепторов к эстрогенам и прогестерону. Существуют данные об обратной связи между экспрессией bcl–2 и HER2/neu статусом, а также экспрессией p53 в первичном опухолевом узле. Белок bcl–2 тормозит апоптоз, ингибируя высвобождение из митохондрий цитохрома и апоптозиндуцирующего фактора. Взаимодействуя с митохондриями и внутриклеточными мембранами, он ингибирует липидные пероксидазные реакции на мембранах. Гиперэкспрессия bcl–2 в ткани рака молочной железы наблюдается в 25-75% случаев.

TGF–ß в нормальной ткани молочной железы является мощным ингибитором пролиферации протокового и альвеолярного эпителия. На ранних этапах канцерогенеза TGF– ß функционирует как опухолевый супрессор, oднако на более поздних стадиях канцерогенеза, уровни TGF–ß увеличиваются с прогрессией опухоли (см. выше). В целом уровень TGF–ß в злокачественных опухолях был снижен на 20% с сравнении с нормальной тканью или с доброкачественными образованиями. Здесь особенно значим уровень TGF–ß рецепторов III типа; так, у больных без метастатического поражения регионарных лимфоузлов уровень TGF–RIII был уменьшенным в 60 % случаев. У пациенток с наличием лимфогенных метастазов снижение уровня TGF–RIII наблюдалось в 64,7 %, а у больных с отдаленными метастазами – в 100 %.

albert52
17.03.2021, 23:35
Продолжим.

Особенность молочной железы — необычайная структурная и функциональная изменчивость. В течение жизни она многократно подвергается различным морфологическим перестройкам. Молочные железы новорожденных девочек построены довольно просто, они не имеют долек, а состоят из мелких трубочек, выстланных двумя слоями клеток: темного апокринизирующего эпителия и крупного светлого слоя клеток — миоэпителия.

Начиная с возраста 3-4 мес строение молочных желез еще более упрощается, что связано с прекращением действия материнских гормонов. До полового созревания молочные железы пребывают в состоянии относительного покоя. В период полового созревания происходит удлинение и разветвление мелких протоков, образование солидных клеточных почек на концах. Сформированные дольки появляются с началом менструации. Полное созревание эпителия молочных желез происходит во время беременности, чтобы генерировать сложные дольки и специализированные эпителиальные клетки в альвеолах, которые способны синтезировать и секретировать молоко для лактации.

У женщины молочная железа состоит из трех компонентов: кожи, подкожной жировой ткани и функциональной ткани, в состав которой входит паренхима и строма. Паренхимой является разветвленная железистая сеть из 15-20 сегментов, каждый из которых — самостоятельная экзокринная железа, протоки которых сходятся к соску и открываются на его вершине выводными протоками.

Истинное развитие ацинусов происходит в период беременности и лактации. Концевые (терминальные) протоки и ацинусы принято называть TDLU («концевыми протоково-дольковыми единицами»). Они окружены рыхлой внутридольковой соединительной тканью, отличающейся от более плотной междольковой стромы (впрочем, в период менструации эти различия стромы сглаживаются). Большинство случаев рака молочной железы возникают из эпителия TDLU, то есть являются однородной гистогенетической популяцией. Однако исторически сложилось деление РМЖ на протоковый и дольковый.

В период полового созревания эпителиальные клетки молочной железы, в частности те, которые находятся в TDLU, пролиферируют в ответ на стероиды яичников, а зрелая железа подвергается циклической пролиферации и апоптозу в течение каждого последующего менструального цикла. Так, в период менструации уменьшается количество альвеол, утолщается базальная мембрана, миоэпителиальные клетки съеживаются, постепенно темнеют, стихает пролиферация эпителия протоков. После лактации альвеолы ​​также подвергаются апоптозу. Этот процесс роста и регрессии свидетельствует о наличии иерархии стволовых и прогениторных клеток, способных регенерировать специализированные популяции эпителиальных клеток молочной железы.

В молочной железе, как и в простате, секреторные дольки образованы люминальными (просветными) и базальными клетками, среди которых много миоэпителиальных клеток. Стволовые клетки выявлены среди базальных клеток, а клетки-предшественники имеются в обоих слоях. Биология нормальных предшественников может играть важную роль в фенотипе и поведении опухоли. В частности, 70% случаев рака молочной железы выявляют ERα, а более половины ERα + клеток рака молочной железы также имеют PR.

Гормоны яичников, 17β-эстрадиол (далее E2) и прогестерон играют ключевую роль в развитии молочной железы. Хотя пренатальное развитие молочной железы относительно не зависит от этих стероидных гормонов, во время полового созревания происходит выраженный рост, для которого требуется E2. Гормоны яичников влияют на глубокие морфогенетические изменения в развитии желез путем индукции удлинения протоков, бокового ветвления, образования терминальных зачатков (TEB) и альвеологенеза.

E2 осуществляет свои биологические функции через специфические лиганд-индуцируемые ядерные рецепторы, а именно рецепторы эстрогена (ER) ERα и ERβ, причем ERα необходим для постнатального развития молочной железы, в то время как ERβ - нет. Каноническое действие ER (как и AR) включает связывание с его лигандом с сопутствующей диссоциацией от белков-шаперонов HSP, димеризацию рецептора, проникновение в ядро ​​и связывание с элементами ответа E2 (ERE), расположенными в промоторных / энхансерных областях генов-мишеней для регулирования транскрипции. ERα также предпочтительно рекрутируется в энхансерные области генов-мишеней при стимуляции E2.

ERα также может влиять на транскрипцию гена косвенно через его физическое взаимодействие с другими факторами транскрипции, такими как активаторный белок 1 (AP1), SP1, ядерный фактор-κB (NF-κB) и E2F1, а первым открытым корегулятором ERα является SRC-3 / AIB1.

Большинство коактиваторов используют специфические мотивы, называемые NR-боксами или мотивами LXXLL (X, любая аминокислота; L, лейцин), чтобы опосредовать их взаимодействие с лиганд-связывающими доменами ER. Напротив, корепрессоры ингибируют ER-опосредованную транскрипцию гена посредством прямого взаимодействия с нелигандованным ER или за счет использования бокса корепрессорного ядерного рецептора (CoRNR), присутствующего в нем, или путем конкуренции с коактиваторами за связывание ER.

Интригующий вопрос о поле ER - наличие многих корегуляторов ER (> 200). Сообщается, что дифференциальная экспрессия корегуляторов во многих тканях объясняет клеточно-специфическую регуляцию экспрессии гена-мишени E2. Комбинированные или индивидуальные модификации корегулятора также могут предоставлять различные виды деятельности для одного и того же корегулятора. Таким образом, в клетке создается репертуар корегуляторов, так что эти регуляторные молекулы используются в подходящее время и в соответствующих условиях.

SRC-1, 2 и 3, коактивируют передачу сигналов ER в эпителиальных и раковых клетках молочных желез, причем SRC-1 необходим для нормального удлинения протоков молочных желез и развития альвеол, в том числе во время беременности. Белок SRC-2 экспрессируется в эпителиальных клетках молочных желез, которые положительны в отношении рецептора прогестерона (PgR), указывая тем самым, что Src-2 молочных желез может играть решающую роль в опосредованном прогестероном пролиферативном развитии.

BRCA1 ингибирует транскрипционную активность ЕR посредством прямого взаимодействия между BRCA1 и белками ER и частично, регулируя экспрессию p300, коактиватора транскрипции для ER. Отметим, что BRCA-опосредованное ингибирование транскрипционной активности ER зависит от способности BRCA1 моноубиквитинировать ER, которая, в свою очередь, зависит от статуса ацетилирования ER. Впрочем, чем больше BRCA1, тем больше клетка компесаторно вырабатывает ЕR, так что потеря BRCA1 может приводить к ER-негативному фенотипу, обеспечивая молекулярную основу для потери экспрессии ER в большинстве злокачественных опухолей с мутантным BRCA1.

BRCA1 также транскрипционно регулирует ряд базальных и люминальных терминальных маркеров дифференцировки, которые определяют судьбу клеток в молочных железах. Так BRCA1 способствует дифференцировке по люминальному клону в координации с передачей сигналов Notch. Более того, BRCA1 также сотрудничает с GATA3, чтобы регулировать гены, критические для поддержания люминального фенотипа.
CITED-1, ядерный белок, связывающий CBP / p300, в ER-положительных клетках рака молочной железы связывается непосредственно с ER через свой домен трансактивации и сенсибилизирует клетки к E2, стабилизируя E2-зависимое взаимодействие между p300 и ER. CITED-1 может также опосредовать сигналы в регуляторной оси E2-TGF-β. Во время полового созревания CITED-1 локализуется в популяции люминальных эпителиальных клеток протоков молочных желез и в клетках TEB.

Циклин D1 сверхэкспрессируется в 50% случаев рака груди. Показано, что он коактивирует ER-зависимую транскрипцию лиганд-независимым образом, конкурируя с BRCA1 за связывание с шарнирной областью ER и тем самым проявляя коактиваторную функцию. Также циклин D1 необходим для конвергенции передачи сигналов ER и фактора роста в общем цис-элементе генов факторов роста.

E6-связанный белок (E6-AP) выполняет две независимые дискретные функции: коактивацию ER и активность убиквитин-протеинлигазы. Так, фосфорилирование ER по тирозину 537 (Y537) с помощью киназы Src усиливает связывание ER с убиквитином E6-AP, последующее убиквитинирование ER и, в конечном итоге, потерю его функции. Поэтому снижение E6-AP приводит к увеличению уровня ER. С другой стороны, E6-AP усиливает транскрипционную активность ER путем рекрутирования модификаторов хроматина, таких как p300, на промоторы генов-мишеней ER. Это предполагает тонкий баланс между функцией коактиватора E6-AP и его активностью разложения ER, что объясняет его роль в маммогенезе (E6-AP ингибирует латеральное ветвление во время развития молочных желез), а также в развитии рака груди.

albert52
18.03.2021, 17:28
Продолжим.

Белок HER2 принадлежит к семейству рецепторов эпидермального фактора роста (EGFR), состоящему из 4 трансмембранных тирозинкиназных (ТК) рецепторов: HER1 (EGFR/ErbB1), HER2 (ErbB2/neu), HER3 (ErbB3) и HER4 (ErbB4). Помимо внутриклеточного белкового ТК-домена, все рецепторы имеют трансмембранный сегмент и экстрацеллюлярный домен, ответственный за связывание с лигандом. В настоящее время известно более 10 лигандов, которые связываются с HER1, HER3 и HER4.

Лиганд, связывающийся с экстрацеллюлярным доменом, индуцирует конформационные изменения рецептора, промотирующие димеризацию его с другими членами семейства EGFR (гомо- или гетеро-), следствием чего является активация ТК-домена и аутофосфорилирование. В результате аутофосфорилирования каждый димер может запускать различные внутриклеточные сигнальные пути, передающие активирующий сигнал в ядро клетки, такие как PI3K/Akt или Ras/Raf/MAPK и STATs, которые играют важную роль в процессах онкогенеза: росте, пролиферации, выживании, подвижности клеток и апоптозе.

Лиганды к HER2 пока еще не идентифицированы. Предполагается, что он участвует в процессе димеризации в качестве корецептора, образуя гетеродимеры с другими представителями семейства EGFR. Помимо этого HER2, обладая конститутивной активностью, может принимать участие в лиганд-независимой гомо- или гетеродимеризации. Полагают, что HER2 является наиболее частым партнером для димеризации со всеми другими рецепторами, включая HER3.

В отличие от других EGFR, HER3-рецептор не обладает собственной тирозинкиназной активностью, и для генерации сигнала ему необходима гетеродимеризация. Кроме того, он содержит по крайней мере 6 доменов для связывания с регуляторной субъединицей PI3K: p85 и является наиболее мощным из всех EGFR активатором PI3K-пути. HER3 играет важную роль в реализации биологической активности HER2. Kлеточные линии РМЖ, экспрессирующие как HER2-, так и HER3-рецепторы, обладают более высокой степенью фосфорилирования Akt с ее активацией.

Основным механизмом гиперэкспрессии белка HER2 считается амплификация гена. Известно, что экспрессия HER2 способствует канцерогенезу. Однако для стимуляции клеточной пролиферации РМЖ рецептору HER2 необходим HER3, что подчеркивает значимость гетеродимерного комплекса HER2/HER3.

С развитием и прогрессированием РМЖ связана также активация рецепторов инсулино -подобного фактора роста 1 (IGF-1R). IGF-1R также относится к числу тирозинкиназных рецепторов, связываясь с IGF-1 и IGF-2, он регулирует клеточную пролиферацию и выживание. Существуют доказательства перекрестного взаимодействия между путями проведения сигнала, активированными семейством EGFR и IGF-1R. Так, в клетках РМЖ, резистентных к трастузумабу, выявлена гетеродимеризация между IGF-1R и HER2, что может являться одной из причин резистентности.

Внедрение в клиническую практику трастузумаба (Герцептин) – гуманизированного моноклонального антитела к экстрацеллюлярному домену белка HER2 – кардинально повлияло на выживаемость пациенток с HER2-положительным РМЖ, существенно улучшив как непосредственные, так и отдаленные результаты лечения. Однако вскоре после появления трастузумаба в конце 1990-х годов клиницисты начали наблюдать явное увеличение частоты метастазов в ЦНС по сравнению с историческими оценками. Дело в том, что трастузумаб плохо проникает через гематоэнцефалический барьер даже при наличии метастазов в головной мозг, следовательно, ЦНС является потенциальным убежищем для пациентов с HER2-положительным заболеванием, получающих трастузумаб.

HER4 / ErbB4 является членом семейства EGFR, который протеолитически процессируется на поверхности клетки для высвобождения цитозольного фрагмента, то есть внутриклеточного домена (4ICD), который независимо влияет на множество функций, включая действие в качестве коактиватора для ER. Установлено, что его функции зависят от местоположения. Напр., ядерный 4ICD в опухолевых клетках действует как мощный коактиватор ER, приводящий к E2-стимулированной пролиферации клеток рака груди, тогда как в молочной железе он регулирует дифференцировку и лактацию посредством пути STAT5. Цитозольный 4ICD накапливается в митохондриях, где он регулирует апоптоз.

Интересно, что Her4 сам по себе является геном, индуцируемым E2, и комплекс ER / 4ICD рекрутируется на промотор Her4 в ответ на E2. Поскольку также показано, что экспрессия Her4 необходима для стимулирующего рост действия E2 в клетках рака груди, это свиде -тельствует об участии аутокринной передачи сигналов в клетках рака груди. Кроме того, 4ICD взаимодействует с ER для усиления экспрессии PR в нормальной груди.

Семья MTA1. Белки, ассоциированные с метастазами, представляют собой небольшое семейство корегуляторов, которое включает MTA1, MTA2 и MTA3. Индивидуальные MTAs принимают участие в качестве критических компонентов комплекса ядерного ремодели -рования и деацетилирования (NuRD) и, следовательно, подавляют экспрессию целевых генов посредством деацетилирования гистонов в хроматине. Первым геном-мишенью, идентифицированным для комплекса MTA1 / NuRD, является ER, и лиганд-зависимые функции трансактивации ER репрессируются в клетках рака груди.

MTA3 также формирует комплекс Mi2-NuRD, специфичный для клеточного типа. MTA3 действует как прямой репрессор транскрипции Snail, главного регулятора эпителиально-мезенхимального перехода (EMT). Кроме того, молекулярный анализ показал снижение протокового ветвления за счет подавления Wnt4 экспрессии с помощью MTA3-NuRD комплекса.

Prohibitin (PHB) и REA (репрессор активности ER), также известный как PHB2, принадлежат к семейству белков, которые содержат эволюционно консервативный домен запрета гомологии. PHB играет разнообразную роль в клеточной дифференцировке, антипролиферации и морфогенезе. Избыточная экспрессия PHB в клетках рака груди подавляет транскрипционную активность ER, тогда как истощение увеличивает экспрессию генов-мишеней ER. PHB взаимодействует с HDAC1 через свой спиральный домен, что частично объясняет его корепрессорную активность в отношении функций трансактивации ER.
Ускоренный рост молочных желез в ответ на лечение стероидными гормонами наблюдался у гетерозиготных мышах Phb +/-, что указывает на важную роль in vivo PHB как корепрессора ER в контроле индуцированного стероидами морфогенеза молочных желез.

albert52
19.03.2021, 23:30
Продолжим.

Клетки, которые экспрессируют ERα, не характеризуются маркерами пролиферации. Таким образом, действие эстрогена через ERα опосредуется паракринным механизмом, способствующим пролиферации окружающих клеток. Одним из паракринных медиаторов эстрогена является амфирегулин, который также необходим для удлинения протоков.

Эпидермальный фактор роста (EGF), трансформирующий фактор роста альфа (TGFα) и нейрегулин-1 - все они необходимы для удлинения пубертатного протока, что указывает на то, что активация рецепторов семейства EGF эстрогеном имеет решающее значение для элонгации протоков.

После полового созревания молочная железа подвергается боковому ветвлению в ответ на стероиды яичников, вырабатываемые в течение менструального цикла. Этот процесс обусловлен прежде всего действиями прогестерона, который также действует на окружающие клетки через паракринный механизм. Одним из паракринных медиаторов активности прогестерона является RANKL, член суперсемейства факторов некроза опухолей, сверхэкспрессия которого приводит к преждевременному ветвлению боковых протоков и альвеологенезу, сходному с эффектами стимуляции прогестероном. Другой нижестоящей мишенью и паракринным медиатором PR является WNT-4, который активируется в первичных эпителиальных клетках молочной железы в ответ на прогестерон.

У человека в отличие от мышиной молочной железы, конечные почки не появляются и не врастают в строму молочной железы; скорее, дольки, разделенные соединительной тканью, развиваются и соединяются с центральными протоками. Дольки различаются по размеру и были классифицированы по степени их развития. Дольки I типа являются наименее развитыми и характеризуются как имеющие самую высокую экспрессию ERα и PR. Дольки созревают за счет увеличения их размера и сложности во время беременности, дольки типа IV присутствуют только у кормящих женщин. Хотя ткань молочной железы у неродившихся женщин в основном содержит дольки типа I, дольки типа II и типа III также присутствуют.

У людей пролиферация эпителиальных клеток молочной железы не достигает своего пика во время фолликулярной фазы, когда циркулирующие эстрогены находятся на максимуме, а скорее во время лютеиновой фазы, когда отношение циркулирующего прогестерона к эстрогену увеличивается. Таким образом, применение тамоксифена у женщин может ингибировать пролиферацию эпителия молочной железы во время лютеиновой фазы менструального цикла. Отметим, что дольки I типа более распространены во время фолликулярной фазы менструального цикла, тогда как дольки II типа чаще встречаются в течение лютеиновая фаза.

Транскрипционные факторы играют центральную клеточно-специфическую роль в выборе линии и клеточных решениях судьбы. Например, Gata-3 экспрессируется в эпителиальных клетках просвета и было показано, что он играет центральную роль в регуляции морфоге -неза молочной железы и дифференцировки этих клеток в процессе развития и в зрелой железе. Во время беременности GATA3, по-видимому, участвует в дифференцировке люминального эпителия, необходимой для лобулоальвеолярного развития. Потеря Gata-3, особенно во время лактации, приводит к значительному уменьшению количества дифференцированных альвеолярных клеток.

Один механизм, посредством которого Gata-3 регулирует дифференцировку клеток просвета, заключается в активации фактора транскрипции FoxA1, который важен для экспрессии ERα (аналогмчно AR). Так, дефицит FoxA1 приводит к значительному снижению экспрессии ERα и нарушение инвазии протоков вглубь молочной железы вследствие нарушения образования терминальных зачатков (нет протоков, значит нет альвеол).

ER в свою очередь индуцирует экспрессию GATA3 в клетках просвета, подразумевая, что существует взаимозависимость FOXA1, ER и GATA3 в поддержании этих клеток. Так, стимуляция лигандом приводит к образованию трехчастного энхансомного комплекса ERα, FOXA1 и GATA3, который дополнительно обеспечивает оптимальную активацию транскрипции путем рекрутирования p300 на хроматин гена-мишени. Интересно, что FOXM1 подавляет экспрессию GATA3 посредством метилирования промотора GATA3 в сочетании с DNMT3ß (ДНК-метилтрансферазой).

Экспрессия как GATA-3, так и FOXA1 связана с подтипами клеток просвета (см. выше) и имеет хороший прогноз у пациентов с ER-положительным раком груди. Здесь присутствие FOXA1 указывает на наличиие функционального комплекса ER, который хорошо поддается эндокринной терапии.

Однако экспрессия ER и FOXA1 сохраняется в метастатических сайтах. Тамоксифен действует путем ингибирования активности эстроген-ER в клетках рака молочной железы, причем для его действия требуется FOXA1. В исследованиях сигнал связывания ER был самым низким у пациентов с хорошим прогнозом и самым высоким в образцах с метастазами, что позволяет предположить, что интенсивность связывания ER может соответствовать прогрессированию ER-положительного рака молочной железы. Здесь повышенное связывание ER в устойчивых к тамоксифену раковых клетках вероятно, связано с FOXA1-опосредованным перепрограммированием связывания ER. Вообще, характерный цистром ER выявляет генные сигнатуры, которые могут предсказать клинический исход при ER-положительном раке молочной железы.

Транскрипционный фактор C / EBPβ также играет важную роль в дифференцировке просвет -ных клеток и правильном паттерне стероидных рецепторов, что обеспечивает экспансию просветных клеток, а также их способность дифференцироваться в популяцию, способную давать альвеолы, клетки которых секретируют молочные белки во время лактации. Другой транскрипционный фактор, E74-подобный фактор 5 (Elf5, также известный как ESE-2), также регулирует альвеолярную дифференцировку; экспрессия Elf5 индуцируется прогестероном.

Во время беременности Elf5 является критическим для дифференцировки секреторных клеток и регулируется как Stat5-опосредованными, так и независимыми механизмами. ERα и PR регулируют Stat5 и Elf5 и в свою очередь регулируются гормоном гипофиза пролакти -ном, который имеет решающее значение для альвеологенеза во время беременности и дифференцировки во время лактации.

Белок 140, взаимодействующий с рецептором (RIP140), экспрессируется как в эпителии, так и в строме молочных желез и участвует в различных регуляторных петлях обратной связи и ингибирующих перекрестных взаимодействий с участием нескольких ядерных рецепторов. Экспрессия RIP140 необходима для удлинения протоков во время полового созревания, а его подавление ведет к полной потере эпителия молочных желез. Кстати, RIP140 ингибирует ER-зависимую транскрипцию по ходу менструального цикла, конкурируя с коактиваторами, а также рекрутируя гистоновые деацетилазы (HDAC) на хроматин гена-мишени ER.

Также репрессор активности ER (REA) первоначально был идентифицирован как белок, взаимодействующий с ER, демонстрируя свои корепрессорные функции, усиливая связывание антиэстрогенов, таких как SERM, с ER. REA функционально конкурирует с коактиваторами, такими как SRC-1, для модуляции транскрипционной активности ER, что частично объясняет его корепрессорную активность. Во время беременности и кормления грудью при гомозиготным Rea с делецией гена в эпителии молочных желез выявлена потеря лобулоальвеолярных структур и усиление апоптоза альвеолярного эпителия молочных желез, что привело к нарушению выработки молока.

albert52
23.03.2021, 04:15
Продолжим.

Блокада сигнала E2 либо тамоксифеном (ТАМ), либо ингибиторами ароматазы (AI) является важной терапевтической стратегией для лечения или предотвращения рака груди, положительного по рецепторам эстрогена (ER). Однако устойчивость к ТАМ является основным препятствием в эндокринной терапии. Это сопротивление возникает либо de novo, либо приобретается после первоначальной положительной реакции.

Активность ТАМ зависит от уровней циркулирующего E2, которые выше у женщин в пременопаузе и ниже у женщин в постменопаузе. Первоначально считавшийся антагонистом, ТАМ в настоящее время классифицируется как селективный модулятор рецептора эстрогена (SERM), соединение, которое проявляет тканеспецифическую агонистическую или антагонистическую активность ER.

Комплекс TAM-ER гомо- или гетеродимеризуется и перемещается в ядро ​​клетки, вызывая активацию домена фактора активации 1 (AF1) ER и ингибируя его домен фактора активации 2 (AF2). Транскрипция гена (ов), отвечающего на Е2, при этом ослаблена, потому что AF2, лиганд-зависимый домен неактивен, а связывание коактиватора ER снижено комплексом TAM-ER; частичная агонистическая активность является результатом домена AF1, который остается активным в TAM-ER комплексе. Так, в ERα-позитивных / HER2-позитивных опухолях ТАМ, по-видимому, действует как агонист E2, способствуя увеличению пролиферации и выживаемости клеток.

ТАМ снижает риск развития ERα-положительного рака молочной железы как минимум на 50% как у женщин в пре-, так и в постменопаузе. Так, ТАМ подавляет пролиферацию клеток, вызывая остановку клеточного цикла в фазе G0 / G1. Использование этого антиэстрогенного агента (доза 20 мг / день) снижает частоту возникновения рака груди на 38% у здоровых женщин с высоким риском заражения, снижает вероятность рецидива на ранних стадиях рака груди, предотвращает развитие рака противоположной молочной железы, снижает пролиферацию клеток, вызывает апоптоз и снижает риск развития инвазивного рака молочной железы у женщин с протоковой карциномой in situ (DCIS).

ТАМ интенсивно метаболизируется в печени и, в меньшей степени, локально в груди, при этом основная экскреция происходит с желчью и фекалиями. Ферменты цитохрома P450 (CYP) опосредуют биотрансформацию ТАМ в несколько первичных и вторичных продуктов, в основном за счет деметилирования и гидроксилирования. Отметим, что его метаболиты эндоксифен и 4-ОН-ТАМ обладают более высокой эффективностью, чем исходное соединение.
Эндоксифен, основной метаболит, ответственный за действие ТАМ in vivo, по-видимому, по-разному влияет на два рецептора ER. Он стабилизирует ERβ, способствуя гетеродимеризации рецепторов и оказывает повышенное ингибирующее действие на экспрессию генов-мишеней. С другой стороны, эндоксифен нацелен на ERα для протеасомной деградации в клетках рака молочной железы.

В нормальной ткани молочной железы ERβ играет роль доминирующего рецептора, но во время канцерогенеза количество ERβ уменьшается, а количество ERα увеличивается. Таким образом, предполагается, что ERβ действует как ген-супрессор опухолей при раке груди. Большинство ER, присутствующих в опухолях груди, являются ERα; кроме того, высокие уровни этого рецептора в доброкачественном эпителии молочной железы увеличивают риск развития рака молочной железы, а ERα, в частности, был связан с инициацией опухоли и ее прогрессированием на более поздних стадиях

Отметим, что в отсутствие лигандов ERs обнаруживаются преимущественно в ядре в виде мономеров, связанных с мультибелковыми комплексами, включая белки теплового шока (HSP). Однако недавние исследования сообщили о наличии ERα, ERβ или обоих на внутренней фазе плазматической мембраны, связанных либо с мембранными белками, например, кавеолином-1, либо с другими мембранными рецепторами, например, рецептором инсулиноподобного фактора роста (IGFR), EGFR или HER2, или для передачи сигналов адапторным молекулам, например SHC (Src Homology 2 Domain Conpting).

Помимо классического механизма действия ER (см. выше) имеется негеномный эффект, опосредованный мембрано-ассоциированными ERα и ERβ, что привело к активации цитоплазматической тирозинкиназы Src и других сигнальных молекул, включая: (i) IGF1R и EGFR; (ii) митоген-активированные протеинкиназы (MAPK), фосфатидилинозитол-3-киназа (PI3K) и AKT; (iii) протеинкиназа C (PKC) и циклический AMP (cAMP); (iv) p21 и (v) пути, которые способствуют высвобождению внутриклеточного кальция.

Эти сигнальные каскады могут фосфорилировать ядерные ER и их коактиваторы (AIB1 / SRC-3), что приводит к их активации в качестве регуляторов транскрипции генов-мишеней. Кроме того, рецептор эстрогена, связанный с мембранным G-белком (GPER), является другой молекулой-кандидатом, участвующей в негеномной передаче сигналов, опосредованной E2, а также участвующей в устойчивости к ТАМ. Этот эффект не актуален для клеток рака молочной железы с низкими уровнями мембранных ER и в которых плохо экспрессируются RTK, такие как HER2. Поэтому опухоли пациентов с метастатическим ERα-положительным / HER2-положительным раком молочной железы рецидивировали после более короткого периода лечения ТАМ по сравнению с пациентами с HER2-отрицательными опухолями. А сверхэкспрессия и активация EGFR и HER2 приводят к пролиферации и выживанию клеток за счет активации сигнальных путей MAPK и PI3K / AKT, что способствует развитию устойчивости к эндокринной терапии.

Эффекты ТАМ в основном опосредуются через ERα, а степень экспрессии ERα является сильным предиктором положительного ответа на ТАМ, и потеря ERα может быть основным механизмом устойчивости de novo к эндокринной терапии. Она в основном связана с аберрантным метилированием CpG-островков и с повышенным деацетилированием гистонов, что приводит к более компактной структуре нуклеосом, которая ограничивает транскрипцию. Однако только 17–28% опухолей с приобретенной устойчивостью к ТАМ не экспрессируют ERα, и примерно 20% опухолей, устойчивых к ТАМ, в конечном итоге будут реагировать на лечение второй линии с помощью AI или фулвестрант.

В настоящее время терапевтическое лечение ERα-положительных опухолей молочной железы с приобретенной устойчивостью к ТАМ заключается в применении препаратов второй линии, таких как AI или синтетического антагониста ER фулвестранта. AI, включая экземестан, летрозол и анастрозол, стремятся нарушить передачу сигналов эстрогена путем либо необратимого и инактивирующего связывания (экземестан), либо обратимого и конкурентного связывания (летрозол и анастразол) с ферментом ароматазы; таким образом, значительно снижается местный биосинтез эстрогена и внутриопухолевый уровень эстрогена. Фулвестрант предотвращает димеризацию ER, ведущую к деградации и потере клеточного ER, и оказался столь же эффективным, как анастрозол, в лечении женщин в постменопаузе с приобретенной устойчивостью к ТАМ.

Дополнительные подходы включают использование агентов, разработанных для ресенсибилизации резистентных опухолей к эндокринной терапии путем воздействия на пути, признанные движущими силами резистентности. Одним из таких подходов была комбинация эндокринной терапии ТАМ с ингибиторами киназы рецепторов факторов роста (RKI), такими как гефитиниб, трастузумаб и лапатиниб. Было показано, что использование этих комбинированных методов лечения является хорошим терапевтическим вариантом для предотвращения или преодоления устойчивости к ТАМ при раке, сверхэкспрессирующем рецептор эпидермального фактора роста (EGFR) или EGFR2 (HER2).

albert52
24.03.2021, 13:01
Продолжим.

GPER, ранее известный как GPR30, является молекулой-кандидатом, которая может опосредовать негеномную передачу сигналов эстрадиола E2, а также может играть роль в устойчивости к ТАМ. Этот белок экспрессируется примерно в 50-60% всех карцином груди, в клетках рака эндометрия и яичников, в клеточных линиях карциномы щитовидной железы, в ERα-положительных (MCF7), ERα-отрицательных (SKBR3) ) и клетках тройного отрицательного рака молочной железы (TNBC).

GPER располагается в основном в ядре, однако этот рецептор также обнаружен в цитоплазматической мембране. Эта дифференциальная субклеточная локализация может быть объяснена ретроградным транспортом GPER от мембраны к ядру. В то время как цитоплазматическая локализация GPER коррелирует с низкой стадией опухоли и ER- и PR-положительными карциномами молочной железы, ядерный GPER связан с низкодифференцированными карциномами и подтипами TNBC.

Передача сигналов через GPER происходит через трансактивацию EGFR и включает тирозинкиназы семейства Src. В этом механизме E2 первоначально связывается с GPER, вызывая активацию передачи сигналов гетеротримерной G-протеин-тирозинкиназы Src -матриксной металлопротеиназой, что приводит к продукции гепарин-связывающего эпидермального фактора роста (HB-EGF).
Связывание HB-EGF с EGFR активирует сигнальный каскад MAPK / ERK и увеличивает активность аденилатциклазы. При этом повышенные уровни цАМФ способствуют фосфорилированию фактора транскрипции, связывающего элемент ответа цАМФ (CREB), который впоследствии связывается с элементами цАМФ-ответа (CRE) на промоторах митогенных генов.

В дополнение к E2, ТАМ, а также его метаболит, 4-ОН-ТАМ, также обладают высоким сродством связывания с GPER и могут активировать рецептор, тем самым вызывая быструю передачу клеточных сигналов, имитируя быстрые негеномные эффекты E2 в клетках рака молочной железы. Так, у GPER-положительных пациентов ТАМ активирует перекрестные связи между GPER и сигнальными путями EGFR, вызывая повышенный рост клеток, связанный не только с устойчивостью к ТАМ, но и с метастазированием.

Активируемый лигандом GPER также запускает активацию NOTCH и экспрессию генов-мишеней NOTCH. Более того, передача сигналов NOTCH вносит вклад в GPER-опосредованную миграцию ER-отрицательных клеток рака молочной железы и связанных с раком фибробластов.

Раковые опухоли TNBC ( тройной отрицательный рак молочной железы) сильно экспрессируют GPER и эта экспрессия коррелирует с более высоким рецидивом TNBC. ТАМ регулирует развитие клеточного цикла посредством передачи сигналов GPER / EGFR / ERK, а также предполагает связь между эстрогеном, ТАМ и GPER в TNBC.

Рецептор андрогенов (AR) можно рассматривать как маркер прогноза у пациентов с ERα-положительным раком молочной железы. Примерно 90% ERα-положительных пациентов также AR-положительны (AR +), и это связано с благоприятным прогнозом. Впрочем, недавно сообщалось, что опухоли, устойчивые к ТАМ, экспрессируют более высокие уровни АР, чем опухоли, чувствительные к ТАМ. Это значит, что высокая экспрессия AR может быть пагубной для исхода ERα-положительного рака молочной железы, леченного ТАМ, поскольку повышенная экспрессия AR может потенциально усиливать агонистические свойства ТАМ (связываясь с ним).

При ERα-положительном раке молочной железы, получавшем ТАМ, соотношение ядерного AR к ER (AR: ER), а не уровень экспрессии AR может играть роль в прогрессировании заболевания и реакции на лечение. Фактически, женщины с опухолями с высоким соотношением AR: ER (> 2,0) имеют более чем в четыре раза более высокий риск неудачи при терапии ТАМ по сравнению с женщинами с низким соотношением (<2,0).

FOXA1 необходим для клеточного ответа на тамоксифен и подавление FOXA1 не только подавляет лиганд-независимое связывание ERα с хроматином, но также ингибирует клеточную пролиферацию, не влияя на уровни белка ERα. Это значит, что FOXA1 является ключевым детерминантом ответа на антиэстрогены в ERα-положительных клетках, даже в тех, которые перешли к резистентности к тамоксифену.

Высокие уровни экспрессии AR обнаружены в подгруппе опухолей с высоким уровнем HER2 / ERα-отрицательных опухолей, которая содержит подмножество апокриноподобных опухолей. Сейчас выявлен подтип ERα-отрицательного рака молочной железы, получивший название «молекулярный апокрин» из-за обогащения апокриноподобными гистологическими признаками (апокриновая секреция), которые обладают сигнатурой генов, которая положительно связана с передачей сигналов эстрогена, несмотря на отсутствие ERα и, вероятно, ERβ.

Подобно нормальным апокриновым железам и метапластическим поражениям, молекулярный апокринный рак молочной железы обладает высокой экспрессией и активностью AR, а также экспрессией FOXA1. Во многих отношениях этот тип рака молочной железы имеет признаки, напоминающие рак простаты и при этом FOXA1 может направляют AR к сайтам, обычно занимаемым ERα при раке молочной железы, вызывая эстроген-подобную генную программу, стимулирующую пролиферацию.
Сайты FOXA1 при этом также значительно коррелировали с сайтами связывания AR в клетках рака простаты (82% перекрытия), таким образом представляя даже большую степень соответствия, чем наблюдаемая между FOXA1 и ERα в клетках рака молочной железы (перекрытие ~ 50%). Цистромы FOXA1 и AR также значительно перекрываются (37% сайтов связывания FOXA1), хотя FOXA1 в этом отношении более разностороннен.

Кстати, в простате подавление FOXA1 приводило к появлению дополнительных AR-занятых областей, увеличивая количество событий связывания в 2,5 раза. Хотя большое количество сайтов связывания соответствовало родительским клеткам и 43% были потеряны, выявлено более 13 000 новых сайтов. Эти данные указывают на то, что FOXA1 как способствует, так и подавляет функцию AR, и предполагают, что сайты связывания AR можно подразделить на те, которые (i) требуют FOXA1 в качестве исходного фактора; (ii) возникают независимо от статуса FOXA1; и (iii) демаскированы в отсутствие FOXA1. В роследнем случае хотя канонические консенсусные последовательности FOXA1 отсутствовали, другие цис-элементы были обогащены, в том числе из семейства ETS, что указывает на потенциальную роль этих белков в направлении AR к этим сайтам.

В клинических условиях апокринная карцинома, определяемая гистологическими маркерами, считается редким типом рака молочной железы, встречающимся примерно в 1–4% всех случаев рака молочной железы; однако молекулярные апокринные опухоли, как определено с помощью анализа генов, считаются более распространенными, составляя примерно 8–12% случаев рака груди.
Нацеливание на передачу сигналов AR стало потенциальной терапевтической стратегией для этого подтипа рака с использованием антагониста AR бикалутамида.

albert52
26.03.2021, 14:01
Продолжим.

В тройном негативном раке базально-подобный рак молочной железы (BLBC) является особенно агрессивным молекулярным подтипом, определяемым мощным кластером генов, экспрессируемых эпителиальными клетками в базальном или наружном слое взрослой молочной железы. В отличие от ER-положительных просветных опухолей и HER2-положительных опухолей, у базально-подобного подтипа обычно отсутствует экспрессия молекулярных мишеней, которые придают чувствительность высокоэффективным таргетным препаратам, таким как тамоксифен и ингибиторы ароматазы (ER) или трастузумаб (амплификация HER2).
Отметим, что тройные негативные опухоли, которые экспрессируют базальные маркеры, имеют отчетливые молекулярные повреждения ( например, нокдаун p53 и более высокие митотические показатели) и связаны с худшей выживаемостью, чем тройные отрицательные опухоли, в которых отсутствуют базальные маркеры .

BLBC чаще встречается у африканцев и афроамериканцев, а также у молодых женщин и женщин в пременопаузе (особенно среди афроамериканцев). Заболеваемость BLBC обратно пропорциональна продолжительности лактации. В отличие от опухолей просвета, BLBC чаще встречается у женщин с ранним началом менархе и первой доношенной беременностью до 26 лет. Хотя не было показано, что индекс массы тела достоверно связан с BLBC, как это имеет место для других молекулярных подтипов, повышенное соотношение талия-бедро положительно связано с BLBC у женщин в пременопаузе.

Несмотря на то, что опухоли TNBC / BLBC часто имеют большие опухоли на поздней стадии, они могут быть более чувствительными к предоперационной химиотерапии, о чем свидетельствуют более высокие показатели (22–45%) полного патологического ответа ( т. е. сами опухоли не обнаружены во время операции). Также среди пациентов с ER-отрицательным раком молочной железы (подтипы TNBC и HER2) в возрасте до 50 лет частота рецидивов в течение 5 лет в необработанной когорте составляет 38,8%, что снижается до 25,5% при комбинированной химиотерапии.
Важно отметить, что у пациентов, которые достигают патологического полного ответа, показатели выживаемости аналогичны показателям пациентов без TNBC / BLBC. Однако большинство женщин с TNBC / BLBC не имеют полного ответа и имеют высокий риск раннего рецидива в течение первых 2–5 лет после лечения, что приводит к общей более низкой 5-летней выживаемости.

TNBC / BLBC имеет характерный паттерн органоспецифических отдаленных метастазов с легкими, печенью и центральной нервной системой в качестве предпочтительных участков. Особенно разрушительным аспектом TNBC является высокая частота метастазов в паренхимe центральной нервной системе , которые наблюдаются у 46% женщин с метастатическим TNBC (6,7–9,6% всех случаев TNBC) и связаны с медианой выживаемости менее 5 месяцев с момента постановки диагноза.

Женщины с инактивирующими мутациями зародышевой линии в BRCA1 или BRCA2 имеют до 85% вероятности развития рака молочной железы в течение жизни. Потеря гетерозиготности (LOH) второго BRCA½ аллеля в эпителии молочной железы приводит к нарушению репарации двухцепочечной ДНК с помощью высокоточного пути репарации гомологичной рекомбинации. Вместо этого клетки полагаются на негомологичное соединение концов, которое подвержено ошибкам и может привести к хромосомным транслокациям, потому что репарация не связана с поврежденной последовательностью сестринской хроматиды ДНК.
Обычно наличие повреждения двухцепочечной ДНК приводит к остановке клеточного цикла и гибели клеток, но при наличии мутаций р53 остановка контрольной точки отменяется, что приводит к широкой нестабильности генома и анеуплоидии.

Спорадические фенотипы BLBC во многих аспектах наследственного рака молочной железы возникают у носителей BRCA1 (но не BRCA2 ). В частности, опухоли молочной железы у носителей BRCA1 и ненаследственного BLBC имеют следующие особенности:
1) они в основном носители тройного отрицания и базальны по профилю экспрессии генов и суррогатам биомаркеров;
2) они характеризуются высокой степенью развития опухоли, высокими митотически -ми показателями, мутациями р53 и хромосомной нестабильностью;
3) они часто имеют аномалии Х-хромосомы, включая дефекты в инактивации Х-хромо -сомы, хорошо известную функцию BRCA1;
4) они имеют сходные клинические признаки, в том числе молодой возраст на момент представления, плохой прогноз, ранние рецидивы и благоприятный ответ на химиотерапию, повреждающую ДНК.

Мутационная инактивация BRCA1 редко встречается при спорадическом раке молочной железы, а инактивация путем метилирования промотора CpG-острова, часто в комбинации с BRCA1 LOH наблюдается в 11–13% спорадических раков молочной железы, большинство из которых являются ER-негативными опухолями. Кроме того, было показано, что доминантно-негативный регулятор транскрипции ID4 регулирует экспрессию BRCA1 и преимущественно экспрессируется в BLBC.

BLBC также имеет высокую частоту (44–82%) мутаций TP53 , которые нарушают активацию и апоптоз контрольных точек, вызванные повреждением ДНК, тем самым способствуя нестабильности генома. Также EGFR рецепторная тирозинкиназа экспрессируется в 39–54% BLBC и придает устойчивость к апоптозу за счет лиганд-зависимой активации пути фосфатидилинозитол-3 (PI3) -киназа / Akt / mTOR.
Другой характерной апоптотической аномалией в BLBC является экспрессия молекулярного шаперона αB-кристаллина, который подавляет апоптоз путем ингибирования протеолитической активации проапоптотической протеазы каспазы-3. αB-Кристаллин экспрессируется в 45% BLBC и лишь редко (5%) в других молекулярных подтипах. Примечательно, что экспрессия αB-кристаллина связана с устойчивостью к предоперационной химиотерапии и плохой выживаемостью у пациентов с раком молочной железы.

Недавно определенная клаудиновая сигнатура с низкой экспрессией генов характеризуется низкой экспрессией генов клеточной адгезии ( например, Claudins и E-cadherin ), что приводит к фенотипу EMT. Опухоли с низким уровнем клаудина, наиболее тесно связанные с базисоподобным подтипом, обычно являются ER и HER2-отрицательными; такие опухоли составляют отдельный внутренний подтип экспрессии генов.

Фактор роста сосудистого эндотелия А (VEGFA / VEGF) является мощным митогеном для эндотелиальных клеток и регулирует ангиогенез опухоли и проницаемость сосудов, тем самым способствуя росту первичной опухоли и метастазированию. VEGF экспрессируется в приблизительно в 3 раза более высоких уровнях в TNBC по сравнению с не TNBC; ген VEGF расположен в хромосомной области (6p21.2–6p12.3), для которой в TNBC характерно частое увеличение числа копий.

В концепция синтетической летальности два онкогенных пути находятся в синтетической летальной взаимосвязи, если мутация любого онкогена хорошо переносится, но мутация обоих приводит к гибели клеток. Так, PARP и BRCA½ находятся в синтетических летальных отношениях: ингибиторы PARP потенциально индуцируют гибель клеток только в раковых клетках с мутациями в BRCA1 или BRCA2. Действительно, мутации в BRCA1 или BRCA2 придают 57- и 133-кратное увеличение чувствительности к ингибиторам PARP по сравнению с клетками с BRCA1 или BRCA2 дикого типа.

Дело в том, что лекарственные ингибиторы поли (АДФ) рибозо-полимеразы (PARP), фермента, участвующего в репарации ДНК-оснований, предотвращают восстановление одноцепочечных разрывов ДНК, которые превращаются в двухцепочечные разрывы на остановленных вилках репликации ДНК. Эти разрывы двухцепочечной ДНК обычно восстанавливаются с помощью BRCA½-опосредованного гомологичного рекомбинационного восстановления, и для клетки нет н***агоприятных последствий. Однако в присутствии BRCA1 или BRCA2 мутации, этот механизм репарации является дефектным: клетки накапливают двухцепочечные разрывы ДНК и в конечном итоге подвергаются апоптозу.

albert52
27.03.2021, 17:59
Продолжим.

Предшественники и преинвазивные поражения груди включают атипическую протоковую гиперплазию (ADH), протоковую карциному in situ (DCIS) и дольчатую неоплазию (LN). ADH - редкое заболевание, обнаруживаемое в 4% клинических доброкачественных биопсий, и по сути это небольшой очаг гиперплазии размером менее 2–3 мм. Значение диагноза ADH заключается в повышенном риске последующей инвазивной карциномы молочной железы IDC (относительный риск RR = 4,4).

Когда ADH сочетается с положительным семейным анамнезом, относительный риск инвазивного рака достигает 9,7. Основная проблема, связанная с ADH, - это трудность достижения приемлемого уровня соответствия или последовательности в диагнозе; так, пролиферация на краю биопсии может представлять собой периферию DCIS.

DCIS определяется как пролиферация злокачественных эпителиальных клеток в паренхиматозных структурах груди без признаков инвазии через базальную мембрану. В настоящее время DCIS составляет 15–20% злокачественных новообразований груди, выявляемых при скрининге, и известно, что такой диагноз повышает риск развития IBC (воспалительный рак груди) в 8-10 раз. Исследования показывают, что до 50% пациентов с микроскопическими очагами DCIS заболевают инвазивной карциномой, причем развитие инвазии связано с подтипом DCIS; комедонная форма (с кистами) прогрессирует в инвазивную карциному чаще и быстрее, чем DCIS низкой степени злокачественности. По данным маммографического скрининга, компонент DCIS присутствует в 30–60% IDC, причем пациенты с раком IDC с компонентом DCIS могут иметь менее агрессивное заболевание, чем у пациентов с чистой IDC груди.

LN характеризуется пролиферацией обычно мелких и часто слабо связанных клеток. Термин LN относится ко всему спектру атипичных эпителиальных пролифераций, возникающих в терминальной протоковой долевой единице (TDLU), с или без вовлечения терминальных протоков. При этом для оценки степени поражения используются термины ALH (атипичная дольчатая гиперплазия) и LCIS (лобулярная карцинома in situ); ALH увеличивает риск развития IBC в 3 раза, тогда как LCIS имеет относительный риск, равный 7.

В нормальной груди в пременопаузе ER (+) клетки составляют 7% от общей популяции эпителиальных клеток и равномерно распределены в просветном эпителии. Их число увеличиваются с возрастом, достигая плато после менопаузы. Экспрессия ER-альфа значительно повышена в гиперпластически увеличенной лобулярной единице (HELU), которая представляет собой самое раннее гистологически идентифицируемое поражение с предраковым потенциалом. Напротив, что касается увеличенных дольчатых единиц с столбчатым изменением (ELUCA), то более интенсивное окрашивание ER-альфа было связано с более низким риском последующей инвазивной карциномы.

В DCIS диптих ER (+) / Ki-67 (+) является отличительной чертой; при этом высокое соотношение ER-альфа / ER-бета при неатипичной эпителиальной гиперплазии, по-видимому, предсказывает прогрессирование до карциномы.

Подобно рецепторам эстрогена, рецепторы прогестерона (PR) повышены на очень раннем этапе предраковых поражений груди, а именно в (HELU). С другой стороны, зарегистрирована тенденция к снижению экспрессии PR при прогрессировании до злокачественного новообразования. При этом соотношение рецептора прогестерона A (PRA) / рецептора прогестерона B (PRB), по-видимому, играет центральную роль. В нормальной ткани молочной железы и неатипичной гиперплазии рецепторы гомогенно коэкспрессируются, но в начале прогрессирования один рецептор (особенно PRA при запущенных поражениях) преобладает. Следует отметить, что в нормальной ткани носителей мутации BRCA изоформа PRB совершенно отсутствует.

14-3-3 сигма это ген, экспрессия которого теряется при карциномах молочной железы, в первую очередь из-за опосредованного метилированием молчания. Он является негативным регулятором клеточного цикла и специфический маркером эпителия молочной железы человека, который подавляется в трансформированных клетках карциномы молочной железы. Он также был идентифицирован как продукт гена, индуцируемого р53, участвующий в контроле контрольных точек клеточного цикла после повреждения ДНК.

Важно отметить, что гиперметилирование локуса 14-3-3 сигма отсутствовало при гиперплазии без атипии, но выявлялось с возрастающей частотой по мере прогрессирования поражений груди от атипичной гиперплазии до DCIS и, наконец, до инвазивной карциномы. Метилированные аллели существовали также в перидуктальной стромальной ткани молочной железы.

Bcl-2 присутствует во всем спектре поражений молочной железы: преимущественно в доброкачественных поражениях, ADH, LN и хорошо дифференцированной DCIS. Более конкретно, наблюдается постепенное увеличение степени апоптоза и параллельное снижение экспрессии Bcl-2 в доброкачественных / предшественниках / преинвазивных / инвазивных поражениях по мере того, как они становятся гистологически более агрессивными.

BCL-2 локализован на внешней мембране митохондрий, где он играет важную роль в обеспечении выживания клеток и подавлении действия проапоптотических белков, включая члены его семейства. Проапоптотические белки семейства BCL-2, включая Bax и Bak , обычно действуют на митохондриальную мембрану, способствуя проницаемости и высвобождению цитохрома C и ROS , которые являются важными сигналами в каскаде апоптоза.

Bcl-2 в процессе апоптоза тесно взаимодействует с р53. Апоптоз, стимулированный р53, опосредуется двумя основными путями апоптоза, включая семейство В-клеточной лимфомы 2 ( Bcl-2) и каспазный каскад. Члены семейства Bcl-2 включают «мультидоменного» проапоптического члена семейства Bcl-2 Bax и членов «только BH3» Puma, Noxa и Bid. Домен BH3, короткий пептидный мотив, обнаруженный в некоторых белках семейства BCL-2, запускает ключевые митохондриальные события, связанные с апоптозом. Эти белки действуют выше Bax и вызывают активацию мультидоменных проапоптотических белков, а также являются прямыми мишенями для транскрипции через p53. р53 сам по себе может действовать как белок BH3 и противодействовать функции Bcl-2.

Преодоление антиапоптотического порога, установленного Bcl-2: p53-зависимые сигналы, включая индукцию «мультидоменного» Bax, и членов «только BH3» Puma и Noxa и прямое ингибирование Bcl-2, взаимодействуют с p53-независимыми сигналами, такими как индукция Bim, чтобы противодействовать функции Bcl-2 и способствовать апоптозу. р53 сам по себе может действовать как белок BH3 и противодействовать функции Bcl-2. Воздействие на клетки известных индукторов p53, таких как химиотерапия, вызывающая повреждение ДНК, или стрессы, которые активируют параллельные пути апоптоза, такие как лишение цитокинов, легко заставляют эти клетки превышать пороговое значение Bcl-2, чтобы вызвать апоптоз.

Напротив, инактивация любого отдельного пути апоптоза в клетках, экспрессирующих онкоген, может обеспечить уровень онкогенной активности, достаточный для стимуляции трансформации и туморогенеза. Так, при гиперплазии эпителия без атипии мутации р53 не обнаружены, но был констатирован мутированный p53 в ADH . Также мутации / накопление p53 присутствуют в значительном проценте DCIS, особенно у комедонов.

albert52
29.03.2021, 16:48
Продолжим.

Проапоптический BAK требует дополнительного этапа дефосфорилирования в процессе активации перед взаимодействиями с проапоптотическими белками, содержащими "только BH3", и последующих конформационных изменений, которые запускают BAK-зависимый апоптоз. Исследования показали, что киназа, отвечающая за поддержание BAK в неактивной конформации, представляет собой тирозинкиназу под названием BMX, которая, как сообщается, активируется при многих типах рака, включая рак груди, рак простаты, а также рак мочевого пузыря и другие. При ингибировании ВМХ BAK переходит в дефосфорилированное «активационно компетентное» состояние, которое более склонно к активации.

Фосфорилирование проапоптотического белка BH3 BID с помощью ATM / ATR является определяющим фактором того, подвергается ли клетка апоптозу после остановки митоза. Оказавшись в фосфорилированной форме в митозе, BID является более проапоптотическим, что делает его более зависимым от взаимодействия с белками семейства BCL-2 для его ингибирования и предотвращения апоптоза. Таким образом, фосфорилирование BID «готовит» клетки к апоптозу. Если митоз успешно завершен, происходит дефосфорилирование и снижается чувствительность к апоптозу. На основе этого механизма клетки, остановленные в митозе за счет добавления ингибиторов микротрубочек, таких как пакслитаксол, в сочетании с миметиками BH3, такими как ABT-737 или Navitoclax, значительно более сенсибилизированны к апоптозу.

Отметим, что нацеливание на апоптоз для лечения рака становится все более привлекательной стратегией, поскольку в настоящее время разрабатываются агенты для запуска внешнего апоптоза посредством передачи сигналов TRAIL или для предотвращения антиапоптотической активности белков BCL-2 или белков ингибитора апоптоза (IAP). Хотя уклонение от апоптоза является одним из отличительных признаков рака, многие виды рака имеют интактные сигнальные пути апоптоза, которые, если их разблокировать, могут эффективно убивать раковые клетки.

Напомню, что апоптоз (от греческого «опадание», как листья с дерева) преимущественно протекает двумя разными путями; внешние и внутренние пути апоптоза. Внешний путь инициируется внеклеточными проапоптотическими стимулами, включая лиганды клеточной смерти из семейства цитокинов TNF, которые действуют через рецепторы смерти, расположенные на поверхности клетки. Так, активация TRAIL приводит к его агрегации (TRAIL-R) и образованию DISC, в котором прокаспаза 8 активируется и инициирует апоптоз путем прямого расщепления нижестоящих эффекторных каспаз. Добавление либо агонистических антител TRAIL-R1 / R2, либо рекомбинантного человеческого TRAIL (rhTRAIL) использовалось для запуска внешнего пути апоптоза.

Внутренний путь инициируется внутриклеточными проапоптотическими сигналами, такими как повреждение ДНК или воздействие цитотоксических агентов и регулмруется семейством белков BCL-2, вызывающих образование пор на внешней мембране митохондрий и высвобождение апоптогенных факторов, таких как цитохром c или SMAC, из митохондрий. Высвобождение цитохрома с в цитозоль запускает активацию каспазы 9 за счет образова -ния комплекса апоптосом, содержащего цитохром c / Apaf-1 / каспазу 9. SMAC способствует активации каспаз за счет нейтрализации ингибирующего действия IAP. Каспазы 8 и 9 активируют каспазу 3/7, собственно вызывающую апоптоз.

Важно отметить, что существует перекрестное взаимодействие между двумя путями апоптоза через расщепление каспазой 8 BID, что приводит к усилению сигнала смерти. За активацией каспаз находится еще один уровень регуляции белков-ингибиторов апоптоза (IAP) через SMAC. Х-связанный ингибитор апоптиза (XIAP) способен ингибировать апоптоз путем прямого связывания и ингибирования каспаз 9 и 3/7, тогда как клеточные белки IAP (cIAP) подавляют активность каспазы косвенно через свою активность убиквитинлигазы, способствуя передаче сигналов выживания.

Антиапоптотические белки, включая BCL-2, BCL-XL, MCL-1, BCL-W и BFL-1 / A1, прерывают этот проапоптотический каскад двумя способами. Во-первых, антиапоптотические белки могут связывать белки-активаторы BH3, предотвращая их взаимодействие и активацию BAX или BAK. Кроме того, антиапоптотические белки могут связываться с мономерными активированными формами BAX и BAK, у которых экспонируются их домены BH3. Это предотвращает гомоолигомеризацию BAX и BAK и, таким образом, предотвращает MOMP и апоптоз.

Так, механизм, лежащий в основе особой зависимости CLL (хронический лимфолейкоз) от BCL-2, связан с высокой экспрессией BCL-2. Однако этот обильный BCL-2 не обеспечивает достаточной защиты от дополнительной проапоптотической передачи сигналов, поскольку он уже занят большими количествами проапоптотического белка BIM. Когда миметик BH3 с небольшой молекулой, такой как венетоклакс, связывается с BCL-2, он замещает BIM, позволяя ему активировать BAX или BAK, вызывая олигомеризацию, MOMP (повышение проницаемости внешней мембраны митохондрий) и гибель клеток.

Когда раковые клетки подвергаются химиотерапии, происходит отбор по снижению чувствительности к апоптозу, что, вероятно, является важным фактором пан-резистентного фенотипа многих рецидивирующих опухолей. Апоптотическая гибель клеток обычно считается менее иммуногенной, чем другие типы гибели клеток, такие как некроз, поскольку быстрый фагоцитоз апоптотических клеток приводит к меньшему воздействию внутриклеточного содержимого на иммунную систему. Однако апоптотическая гибель клеток, тем не менее, может быть иммуногенной, возможно, за счет облегчения презентации антигена. В целом, однако, чем более быстрый и полный ответ in vivo, тем более вероятно, что основным типом гибели клеток является апоптоз, лучше всего документированный при гематологических злокачественных новообразованиях.

Профилирование BH3 - это метод, впервые разработанный для выявления опухолей, выборочно зависящих от отдельных антиапоптотических белков. Суть профилирования BH3 заключается в систематическом воздействии на митохондрии известных концентраций пептидов BH3 (имитируют проапоптотические функции белков, содержащих только BH3) и измерении полученного MOMP, который обычно рассматривается как точка необратимости апоптоза.

Например, митохондрии, чувствительные к пептиду NOXA BH3, зависят от MCL-1, а митохондрии, чувствительные к пептиду HRK BH3, зависят от BCL-XL. Так, пептид венетоклакс используется при CLL с хромосомной делецией 17p; эта делеция приводит к потере p53 и ранее предвещала очень плохой прогноз и отсутствие реакции на химиотерапию. Venetoclax, по-видимому, применяет апоптотический сигнал непосредственно к митохондриям, устраняя необходимость в передаче сигналов p53 для индукции апоптоза.

Наиболее эффективными лекарствами, которые у нас есть для больных раком, по-прежнему остаются обычные химиотерапевтические агенты. Поскольку они нацелены на повсеместные элементы, в основном ДНК и микротрубочки, не сразу понятно, почему они убивают раковые клетки лучше, чем нормальные клетки. Традиционные объяснения основываются на предположении, что скорость деления раковых клеток делает их уязвимыми для таких агентов. Однако клинические данные, подтверждающие это предположение, отсутствуют. Раковые клетки часто не делятся очень быстро in vivo по сравнению с нормальными тканями, а некоторые виды рака, такие как вялотекущие лимфомы, чувствительны к химиотерапии, а делятся очень медленно.

При рассмотрении механизмов терапевтического индекса традиционной химиотерапии рака важно признать, что чувствительность к одному агенту часто означает чувствительность к нескольким. Например, излечимость ОLL у детей зависит не только от чувствительности этого рака к стероидам, но и от его чувствительности к антрациклинам, алкилирующим агентам, алкалоидам барвинка, l-аспаргиназе и 6-меркаптопурину. Напротив, отсутствие вызванных химиотерапией ремиссий при почечно-клеточной карциноме является результатом не только устойчивости к платинам, но и устойчивости к таксанам, алкилирующим агентам, антрациклинам, алкалоидам барвинка и ингибиторам топоизомеразы. Эти наблюдения предполагают, что существует узел, который широко регулирует химиочувствительность.

Можно предположить, что этот узел представляет собой митохондриальный апоптотический путь. Одна из гипотез состоит в том, что все клетки осуществляют проапоптотическую передачу сигналов в ответ на яды ДНК или микротрубочек. Однако некоторые клетки располагаются близко к порогу приверженности апоптозу, тогда как другие располагаются дальше; первые клетки совершают апоптоз, тогда как вторые выживают.

Для проверки этой гипотезы использовалось профилирование BH3 с так называемыми неразборчивыми пептидами BH3, пептидами, которые связывают с высоким сродством все антиапоптотические белки. Чувствительность митохондрий к таким пептидам дает меру общего антиапоптотического резерва и, следовательно, близость к пороговому значению. Клетки или митохондрии, более чувствительные к этим пептидам, называются более праймированными.

В клинических экспериментах с ОМL, ОLL, CLL, множественной миеломой и раком яичников предварительное апоптотическое праймирование образцов рака пациентов предсказывало чувствительность к обычным схемам химиотерапии, предполагая, что дифференциальное праймирование было объяснением, лежащим в основе разной химиочувствительности опухолей. Более того, также обнаружено, что большинство нормальных клеток были очень плохо подготовлены к апоптозу, что дает объяснение терапевтическому индексу химиотерапии, который использовался в течение многих десятилетий.

Единственным исключением из этого наблюдения были белые кровяные тельца, которые относительно сильно праймированы. В этом отношении следует отметить, что потеря белых кровяных телец является очень частой ограничивающей дозу токсичностью большинства химиотерапевтических режимов.

albert52
31.03.2021, 20:07
Продолжим.

Ключевым признаком рака является бегство от онкосупрессивных путей , таких как апоптоз, аутофагии и торможение клеточного цикла. Уклонение от апоптоза во время канцерогенеза происходит за счет трех различных механизмов: нарушение передачи сигналов рецепторов смерти, потеря активности каспаз, а также нарушение баланса между антиапоптотическими и проапоптотическими белками. Терапевтические агенты, предназначенные для восстановления нормального функционирования сигнальных путей апоптоза, могут избавить более чем от 50% случаев рака человека, включая рак груди.

Флавипиродол, госсипол, депсипептид, ABT-737, ABT-264, фенретинид, HA 14-1 и GX15-070 - это некоторые из небольших молекул, которые ингибируют BCl-2, снижая их экспрессию. Также были разработаны небольшие молекулы, способные имитировать проапоптотические или антиапоптотические белки семейства BH3-only Bcl-2 для индукции апоптоза. ABT 737 является одним из примеров миметиков, содержащих только BH3, которые ингибируют экспрессию антиапоптотических белков, таких как Bcl-xL, Bcl-2 и Bcl-W; первый таргетный препарат против Bcl-2, поступивший в клинические испытания на больных лейкемией, известен как облимерсен натрия.

Также ингмбиторы каспаз IAP являются привлекательными молекулярными мишенями. Некоторые новые методы лечения, направленные на XIAP, включали антисмысловые стратегии и короткие интерферирующие молекулы РНК (siRNA). Ингибирование XIAP привело с помощью лучевой терапии к улучшенному контролю опухоли in vivo. Также цисплатин последовательно снижает содержание XIAP и индуцирует апоптоз в цисплатин-чувствительных клетках.

Механизм действия малых молекул основан на их связывании с конкретными биополимерами, такими как белки и нуклеиновые кислоты, и действует как эффекторы для изменения функции или активности конкретного биополимера. При раке малые молекулы используются для восстановления мутировавших белков до их форм дикого типа и индукции активности белков, ответственных за устранение онкогенных клеток. В лекарственной терапии на основе р53 были исследованы несколько небольших молекул, которые могут восстанавливать функцию мутировавшего р53. Так, APR-246 превращается в активное соединение MQ, которое ковалентно связывается с мутантным p53, преобразовывая его в конформацию дикого типа2 и реактивируя p53-зависимый апоптоз; также дозозависимо снижает внутриклеточные уровни глутатиона.

Другая молекула, CDB3, представляющая собой синтетический пептид, производный от связывающего p53 белка (53BP2), взаимодействует с коровым доменом p53 и усиливает трансактивационную активность p53. Отметим, что после обработки только CDB3 апоптоз не индуцировался в клетках, несущих р53 дикого типа. Тем не менее, клетки показали повышенную чувствительность к апоптозу, индуцированному инфракрасным излучением

Наиболее продвинутыми из этих небольших молекул являются те, которые действуют, прерывая взаимодействие p53-MDM2, которое отвечает за инактивацию p53 дикого типа. К ним относятся нутлины, теновины и MI-219. MDM2 действует как негативный регулятор p53, связываясь с p53 и инактивируя его функцию с помощью ауторегулирующей петли обратной связи MDM2-p53. Эта активность MDM2 приводит к потере р53-опосредованного апоптоза в раковых клетках, что способствует канцерогенезу. Низкомолекулярные препараты MI-219 ответственны за дестабилизацию взаимодействий MDM2-p53, чтобы избирательно индуцировать апоптоз. Также Nutlin2 представляет собой низкомолекулярный ингибитор, который помещается в карман белка р53, где TP53 дикого типа связывается с MDM.

Отметим, что почти все без исключения низкомолекулярные фармацевтические препараты соответствуют «Правилам Липинского», включая высокую липофильность и молекулярную массу не более 500. В отличие от них, miRNA естественным образом не обладают этими лекарственными свойствами из-за их большого размера (два оборота двойной спирали нуклеиновой кислоты), почти 40 анионных зарядов за счет фосфодиэфирного остова и высокий молекулярный вес (более 13 кДа). Кроме того, miRNA нестабильны в сыворотке в результате разложения сывороточными нуклеазами, что способствует их короткому периоду полужизни in vivo. Поэтому используются siRNA дуплексы, имеющие стабильность в 600 раз большую, чем у природной РНК. siRNA могут быть сконструированы таким образом, чтобы соответствовать любому гену, их можно дешево производить и легко вводить в клетки.

Отметим, что эпигенетические модификации осуществляются метилированием ДНК, модификацией гистонов и интерференцией РНК (RNAi). Путь RNAi является обычным для многих эукариотических организмов. Термин «РНК-интерференция» (RNAi) был придуман для описания клеточного механизма, который использует собственную последовательность ДНК гена для его выключения - процесс, который исследователи называют « молчанием». У самых разных организмов, включая животных, растения и грибы, RNAi запускается двухцепочечной РНК (дцРНК) и играет важную роль в защите от вирусных вторжений вирусных нуклеотидов и транспозонов, изменений в развитии и экспрессии гена.

Центральным элементом RNAi являются три типа малых молекул РНК: miRNA, ShRNA и короткая интерферирующая или сайленсирующая РНК (siRNA). Она представляет собой класс молекул двухцепочечной некодирующей РНК , обычно длиной 20-27 пар оснований, подобных miРНК и действующих в рамках РНК-интерференции. Она препятствует экспрессии конкретных генов с комплементарными нуклеотидными последовательностями, разрушая мРНК после транскрипции, тем самым предотвращая трансляцию.

Важнейшими проблемами дизайна при выборе дуплексов siRNA для терапевтического использования являются эффективность и специфичность. В отношении специфичности миРНК есть два основных соображения: «нецелевое» из-за молчания генов, имеющих частичную гомологию с миРНК, и «иммунная стимуляция» из-за вовлечения компонентов врожденной иммунной системы дуплексом миРНК. Эффективность включения направляющей цепи дуплекса в комплекс RISC (РНК-индуцированного сайленсинга), возможно, является наиболее важным фактором, определяющим эффективность siRNA.

Вирусный белок E6 является еще одним тщательно изученным негативным регулятором р53 при раковых заболеваниях, связанных с ВПЧ (вирусом папилломы человека), таких как рак аногенитальной области, шейки матки, головы и шеи. Во время инфекции HPV экспрессия белка E6 увеличивается, чтобы облегчить репликацию HPV и интеграцию вируса в клетку-хозяин. Белок E6 достигает этого результата за счет использования своего Hect-домена лигазы E3 для связывания и разрушения клеточных белков-супрессоров опухолей p53 и pRB, тем самым устраняя способность клеток-хозяев инициировать остановку клеточного цикла и апоптоз. Терапевтические стратегии, направленные на нарушение взаимодействий E6-p53 в форме антисмысловых приложений и siRNA, специфичных для вирусного белка E6, привлекают наибольшее внимание в терапии рака, связанного с HPV.

Третий широко распостраненный белок, который, как предполагается, является еще одним негативным регулятором активного р53, особенно при прогрессировании рака молочной железы, известен как связывающий ретинобластому белок 6 (RBBP6). RBBP6 представляет собой белок 250 кДа, который обладает активностью лигазы E3. Его мРНК кодирует p53-связывающий домен, а также другие домены, известные как домен DWNN, домен цинкового пальца и домен безымянного пальца, которые ответственны за вездесущую природу RBBP6. RBBP6 является ассоциированным со сплайсингом белком и, следовательно, существует в различных других гомологах, известных как PACT и P2P-R. Нокдаун PACT усиливает взаимодействие p53-Hdm2 (MDM2), тем самым снижая полиубиквитинирование p53 с помощью RBBP6.

Будучи лигазой E3, RBBP6 напрямую взаимодействует с YB-1 через домен RING Finger, что приводит к убиквитинированию и деградации YB-1. Он также регулирует репликацию ДНК и стабильность хромосомных CFs посредством убиквитинирования и протеасомной деградации ZBTB18 (репрессора транскрипции, который играет роль в различных процессах развития, может играть роль в организации хромосом в ядре). RBBP6 может снижать экспрессию белка IκBα, ингибитора пути передачи сигналов NF-κB и активировать тем самым пути передачи сигналов NF-κB посредством убиквитинирования и деградации IκBα, а также дополнительно индуцировать EMT и метастазирование в CRC.

Сверхэкспрессия RBBP6 приводит к остановке клеточного цикла, общей прогрессии туморогенеза, и тесно связана с прогрессированием опухоли при раке шейки матки и пищевода. RBBP6 может играть решающую роль в злокачественном фенотипе рака человека. Трансфекция клеток рака легких siRBBP6 привела к снижению экспрессии RBBP6.

Интересвно, может ли трансфекция siRBBP6 усиливать гибель клеток, индуцированную паклитакселом или камптотецином? Клинические исследования пока не дали на это однозначный ответ и вообще пока почти все вышеупомянутые малые молекулы не дошли до клинического применения.

albert52
01.04.2021, 21:48
Вернемся к апоптозу.

Распространенные раковые клетки развили внутреннюю способность противостоять апоптозу, зависящему от закрепления (аноикис). Аноикис вызывается отсутствием клеточной адгезии, процесса, который лежит в основе формирования и поддержания просвета во время развития и гомеостаза молочной железы. В здоровых клетках анойкис в основном регулируется членами семейства белков B-клеточной лимфомы-2 (BCL2). Однако метастатические раковые клетки часто развивают аутокринные BCL2-зависимые механизмы устойчивости для противодействия аноикису.

Пролиферация, дифференцировка и инвазия до начала лактации обеспечивают формирование функциональной разветвленной протоковой сети молочных желез. В то же время их апоптотический потенциал должен подавляться до тех пор, пока не прекратится отлучение от груди и не будет индуцирована инволюция альвеол. Таким образом, регулируемый апоптоз поддерживает баланс между пролиферацией и гибелью клеток в нормальных тканях груди.

Раковый рост ткани молочной железы может иметь место, когда эпителиальные клетки молочной железы не в состоянии производить нормальные уровни про- и антиапоптотических белков, а избыток антиапоптотических факторов приводит к подавлению апоптоза. Впрочем, рак молочной железы с повышенным уровнем апоптоза и пролиферации из-за накопления генетических мутаций и нарушения регуляции экспрессии генов в клетках протоков молочной железы, вероятно, является опухолью высокой степени злокачественности. Так, экспрессия каспазы 3 сильно повышена в 58% DCIS и ~ 90% тканей инвазивного рака молочной железы, но не обнаруживается в нормальных клетках протоков молочной железы. Сильная экспрессия каспаз 3, 6 и 8 достоверно коррелирует с высокой степенью DCIS.

Поскольку высокая скорость апоптоза всегда связана с высоким уровнем пролиферации клеток, повышенная пролиферация активирует передачу сигналов апоптоза в клетках рака груди и вызывает апоптоз в популяциях клеток, которые относительно чувствительны к апоптозу. Это обеспечивает селективное преимущество для роста клеток рака молочной железы, которые разработали устойчивые механизмы для блокирования апоптотического ответа. Так, экспрессия каспазы 3 сильно повышена в 58% DCIS и ~ 90% тканей инвазивного рака молочной железы, но не обнаруживается в нормальных клетках протоков молочной железы,склонных к вызываемому каспазами апоптозу. Сильная экспрессия каспаз 3, 6 и 8 достоверно коррелирует с высокой степенью DCIS.

Проапоптотические белки можно разделить на две группы: многодоменные белки и белки, содержащие только BH3. Существует восемь белков, содержащих только BH3, причем они структурно очень разнообразны и имеют гомологию только в домене BH3. Взятые вместе, белки, содержащие только BH3, работают как сенсоры для множества клеточных стрессов в клетках млекопитающих. При этом каждому типу клеток требуется гомолог BCL2 для регуляции апоптоза; однако специфические проапоптотические белки необходимы для того, чтобы вызывать апоптоз в разных типах клеток и при разных обстоятельствах. Это позволяет клеткам реагировать на многочисленные внутриклеточные сигналы смерти. Например, NOXA и PUMA подвергаются регуляции транскрипции с помощью p53 и активируются при повреждении ДНК, вызванном УФ-излучением (NOXA) и γ-излучением (PUMA).

BIM и BMF являются двумя основными белками, содержащими только BH3, в развитии молочных желез, в основном из-за их ключевой роли в аноикисе и образовании просвета. В ответ на депривацию фактора роста или стресс в эпителиальных клетках молочных желез, BIM и BMF подвергаются прямой транскрипционной активации Fохо3а. Так, при физиологическом отделении эпителиальных клеток глобулоальвеол в них отсутствует устойчивая активность MAPK, позволяющая Fохо3а перемещаться в ядро ​​и транскрибировать BIM, тем самым запуская контролируемую гибель клеток.

Также JAK1-регулируемая активация транскрипционного фактора STAT3 сильно связана с транскрипцией BMF и в меньшей степени с транскрипцией BIM. STAT3-зависимая транскрипция BMF и BIM происходит специфически во время инволюции молочной железы. Ингибирующее действие белков IAP может быть антагонизировано несколькими белками-ингибиторами IAP, такими как Smac / Diablo и XIAP-ассоциированный фактор 1 (XAF1), чтобы вызвать апоптотический ответ.

BIMEL (сверхдлинная изоформа сплайсинга BIM) в закрепленных люминальных клетках, фосфорилированы активным сигнальным каскадом MAPK / ERK и эти клетки не будут подвергаться аноикису. Путь MAPK активируется ниже HER2 и EGFR и при активации этих рецепторов этот путь негативно регулирует апоптоз, частично из-за его ингибирования PTEN. В заякоренных в мембране клетках передача сигналов RTK приводит к активации MAPK, которая фосфорилирует BIMEL и тем самым индуцирует его ubiquitin-опосредованную деградацию и впоследствии ингибирует аноикос. Однако при раке молочной железы отслоившиеся эпителиальные клетки просвета молочной железы также содержат фосфорилированный BIMEL, несмотря на нарушение передачи сигналов RTK из-за отслоения клеток, и поэтому они сопротивляются BIM-опосредованному аноикису. Возникающее в результате наполнение просвета характерно для рака молочной железы in situ.

Белки, содержащие только BH3, являются опухолевыми супрессорами, причем BIM и BMF в молочной железе играют основную роль в подавлении опухолей. В отсутствие любого из этих белков супрессоров протоки молочных желез претерпевают заполнение просвета отслоившимися эпителиальными клетками. Существует терапевтический потенциал малых молекул, похожих на BMF, для восстановления аноики в эпителиальных клетках просвета молочной железы (см. выше).

AKT косвенно подавляет BIM и BMF через фосфорилирование и ингибирование их фактора транскрипции Fохо3а. Соответственно, цитозольная локализация FOXOs связана с плохой выживаемостью у пациентов с раком груди. Наконец, даже после высвобождения цитохрома с AKT может ингибировать апоптоз путем прямого фосфорилирования каспазы-9. Кроме того, AKT способствует выживанию клеток за счет стабилизации IAP.

Избыточная экспрессия BCL2 наблюдается в 85% случаев рака молочной железы ER +, возможно, из-за присутствия двух эстроген-чувствительных элементов в промоторе BCL2, при этом клетки рака груди используют как гормонозависимые (BCL2), так и -независимые средства (через MCL1 ), чтобы обойти BH3-опосредованный апоптоз, поддерживая рост опухоли и способствуя устойчивости к химиотерапии. Кроме того, антиапоптотический белок BCL-XL экспрессируется на низком уровне в нормальных эпителиальных клетках молочной железы, но сильно экспрессируется в 75% тканей карциномы молочной железы.

albert52
03.04.2021, 14:36
Рак яичников

Рак яичников - основная причина смерти среди всех гинекологических онкологических заболеваний в западных странах. По сравнению с другими гинекологическими видами рака, уровень смертности от рака яичников превосходит таковой от рака шейки матки и рака эндометрия вместе взятых. Такой высокий уровень смертности объясняется тем, что у большинства пациентов диагноз ставится на поздней стадии, что связано с относительным отсутствием специфических признаков и симптомов заболевания и отсутствием надежных тестов для раннего выявления.

Рак яичников - это высокометастатическое заболевание, характеризующееся широким распространением перитонеальной диссеминации и асцитом, и является основной причиной смерти от гинекологических заболеваний. Несмотря на агрессивное хирургическое вмешательство и химиотерапию на основе платины для пациентов с клинически распростненным раком яичников, общая пятилетняя выживаемость составляет всего 15–20% . Смертность, связанная с заболеванием, при карциноме яичников чаще всего является результатом метастазирования. На момент постановки диагноза в большинстве случаев заболевание распространилось за пределы яичников. Однако при раке яичников I стадии выживаемость может достигать 90%.

Существует более 30 типов и подтипов рака яичников; классифицируются на 3 основные категории в зависимости от первичных клеток, из которых они возникают. Они делятся на следующие категории: эпителиальные опухоли, стромальные опухоли и опухоли половых клеток. Эпителиальные опухоли яичников (карциномы яичников) являются наиболее распространенными и наиболее агрессивными; составляют около 90% всех случаев рака яичников.

К опухолям поверхностного эпителия относится большинство первичных опухолей яичников. Классификация эпителиальных опухолей яичников основана на типе гистологической дифференцировки опухолевых клеток и степени пролиферации эпителия.
Так, в зависимости от дифференцировки опухолевых клеток выделяют 3 основных гистологических типа опухолей: серозные, муцинозные и эндометриоидные. Степень пролиферации эпителия связана с биологическим поведением опухоли: согласно ей опухоли яичников делят на доброкачественные (минимальная пролиферация эпителия), пограничные (умеренная пролиферация эпителия) и злокачественные (выраженная пролиферация эпителия с признаками инвазии в строму).
Около 70% из них являются доброкачественными и пограничными, а 30% — злокачественными. Кроме того, доброкачественные опухоли часто классифицируют в зависимости от составляющих их компонентов на цистаденомы (опухоль представлена кистозными участками), цистаденофибромы (опухоль представлена кистозными и фиброзными участками) и аденофибромы (опухоль представлена преимущественно фиброзными участками). Пограничные и злокачественные опухоли также могут иметь выраженный кистозный компонент, злокачественные опухоли иногда обозначают как цистаденокарциномы. К моменту обнаружения опухоли могут иметь относительно небольшой размер или заполнять собой весь малый таз.

Самая распространенная теория происхождения эпителиальных опухолей яичников — трансформация целомического эпителия. Эта точка зрения основана на особенностях эмбриогенеза яичников, при котором из целомического эпителия образуются мюллеровы протоки, а из них формируется серозный (трубный), эндометриоидный (эндометриальный) и муцинозный (цервикальный) эпителий женских половых органов.
Опухоли этих трех типов эпителия развиваются преимущественно в яичниках, поскольку целомический эпителий часто внедряется в корковое вещество яичника с формированием эпителиальных инклюзионных кист; предполагается, что они являются результатом инвагинаций поверхностного эпителия, который впоследствии теряет связь с поверхностью. Такие кисты чаще всего выстланы мезотелием или трубным эпителием.

Карциномы яичников зависимости от их патогенеза делятся на (1) карциномы на фоне пограничных состояний; (2) карциномы de novo, т.е. без предшествующего поражения. При этом высокодифференцированные серозные, эндометриоидные и муцинозные карциномы часто имеют участки пограничных опухолей того же эпителиального типа, но это сочетание редко наблюдается при умеренно дифференцированных и низкодифференцированных серозных карциномах либо злокачественных смешанных мюллеровских опухолях. Результаты молекулярных исследований также поддерживают эту классификацию.

Гипотеза гонадотропинов предполагает, что повышенные уровни гонадотропинов (ФСГ и ЛГ) играют важную роль в развитии эпителиального рака яичников (EOC). Это подтверждает наблюдение, что ЭОК чаще всего диагностируются у женщин в постменопаузе, при этом средний возраст затронутых женщин составляет более 60 лет, у которых обычно наблюдается высокий уровень гонадотропинов в сыворотке крови. Кроме того, снижение риска EOC связывают с продолжительностью лактации, увеличением числа беременностей (многоплодие) и использованием оральных контрацептивов; при которых типичны либо более низкие уровни гонадотропинов, либо пониженная экспрессия их рецепторов.

Теория непрерывной овуляции предполагает, что частые вызванные овуляцией разрывы OSE без периодов отдыха, вызванных беременностью, являются возможной причиной EOCs. Эта теория предполагает, что повторяющиеся периоды апоптоза и митотического восстановления клеток поверхностного эпителия яичников (OSE) предрасполагают их к генетическим мутациям и геномной нестабильности, которые обычно предвещают начало неопластической трансформации.
Факторы, защищающие от EOC, такие как использование оральных контрацептивов, лактация и беременность, которые характеризуются ановуацией, согласуются с этой теорией. Кроме того, факторы риска, такие как нерожание и использование препаратов, стимулирующих овуляцию (лечение бесплодия), все характерные для непрерывной овуляции, также подтверждают эту теорию.

Отмечена высокая степень окислительного повреждения ДНК на клетках OSE вокруг места овуляции. Предположено, что если повреждение ДНК не восстанавливается, клетка может уклоняться от апоптоза, что приводит к появлению трансформированной клетки-предшественника, которая может размножаться во время митогенной репарации OSE после овуляции. Так, наиболее важным фактором риска, связанным с раком яичников, являются генетические мутации в генах репарации ДНК рака груди BRCA1 и / или BRCA2, которые распространены в семьях с историей рака груди и / или яичников. Мутации BRCA1 предоставляют 30 - 40% шанс заболеть раком, в то время как мутации BRCA2 показывают пожизненный риск 10-15%.

Синдром Линча (также называемый наследственным неполипозным колоректальным раком (HNPCC)) представляет собой мутацию зародышевой линии восстановления несоответствия, которая предрасполагает людей к определенным типам рака, включая рак прямой кишки, эндометрия и яичников. Примерно от 10 до 15% наследственных случаев рака яичников происходит у женщин с синдромом Линча. Более мягкий, менее агрессивный и генетически более стабильный пограничный рак яичников включает мутации KRAS, BRAF, PTEN и ß-catenin.

Около 50% раковых заболеваний человека показали инактивацию p53 в результате мутаций или потери, a в большинстве опухолей, сохраняющих p53 дикого типа, были обнаружены нарушения в p53 пути подавления опухоли. Именно такие опухоли чаще всего характеризуются злокачественным течением.

albert52
04.04.2021, 00:50
Продолжим.

Яичник показывает собой парадигму запрограммированной гибели клеток из-за циклической природы развития и функции яичников. Было показано, что апоптоз является основным механизмом гибели клеток в яичниках. Это наблюдалось при потере половых клеток (истощение зародышевых клеток), атрезии фолликулов и регрессии желтого тела (лютеолиз) и поверхностных эпителиальных клетках яичников до овуляции.

Атрезия фолликулов - это разрушение и рассасывание фолликулов яичников, которое происходит до овуляции. Лютеолиз происходит в конце женского репродуктивного цикла при отсутствии беременности. Молекулярные эффекторы, которые являются медиаторами лютеолиза, включают лиганд апоптоза Fas / Fas, простагландин F2α, эндотелины, интегрины и γ-интерферон.

Апоптоз при истощении зародышевых клеток: около семи миллионов ооцитов вырабатываются в яичниках на ранних этапах жизни человеческого плода. Однако вскоре после рождения происходит резкое сокращение количества ооцитов примерно до одной четверти вследствие апоптоза. Дефекты апоптоза или длительная пролиферация половых клеток могут привести к опухолям половых клеток яичника.

Апоптоз и гены, которые его контролируют, оказывают глубокое влияние на злокачественный фенотип. В яичниках Bcl-2 экспрессируется в основном в здоровых фолликулах яичников, в то время как Bax, которая является проапоптотической молекулой, экспрессируется в фолликулах, подвергающихся атрезии. Повышенные гонадотропины имеют тенденцию ингибировать экспрессию Bax, одновременно увеличивая экспрессию Bcl-2 и Bcl-xL, тем самым способствуя выживанию фолликула.

IAP являются эндогенными ингибиторами каспаз, и они могут ингибировать активность каспаз, связывая свои консервативные домены BIR с активными сайтами каспаз, способствуя деградации активных каспаз или удерживание каспаз от их субстратов; XIAP является наиболее мощным ингибитором апоптоза среди всех IAP. Так, выявлена аномальная экспрессия семейства IAP в раковых клетках поджелудочной железы, и эта аномальная экспрессия также является ответственной за их устойчивость к химиотерапии.

В нормальных яичниках повышение уровня ФСГ в яичниках активирует XIAP, что приводит к подавлению апоптоза гранулезных клеток и способствует росту фолликулов, индуцированному ФСГ. При раке некоторые новые методы лечения, направленные на XIAP, включали антисмысловые стратегии и короткие интерферирующие молекулы РНК (миРНК).

Фактор некроза опухоли альфа (TNF-α), также известный как кахектин и TNFSF2, является прототипическим лигандом суперсемейства TNF. Это плейотропная молекула, которая играет центральную роль в воспалении, апоптозе и развитии иммунной системы. При нормальном развитии яичников экспрессия некоторых членов семейства TNF, таких как FasL / Fas, сильно зависит от уровней гонадотропинов. Повышение уровня гонадотропина приводит к снижению экспрессии Fas / FasL, что способствует выживанию фолликулов. Однако снижение уровня гонадотропина приводит к повышенной экспрессии Fas / FasL, что приводит к атрезии фолликулов.
TNF-α запускает апоптоз, активируя каспазы; с другой стороны, TNF-α способен способствовать выживанию клеток гранулезы за счет усиления экспрессии XIAP через систему NFκB.

TRAIL - еще один член семейства TNF, который, как было выше показано, индуцирует апоптоз в опухолевых клетках, но не в нормальных клетках, из-за присутствия рецепторов-ловушек TRAIL, которые конкурентно ингибируют путем связывание лигандов TRAIL с родственными рецепторами.

Интерфероны (IFN): IFN-γ является мощным иммуномодулирующим, противовирусным и антипролиферативным цитокином, обладающим противораковой активностью. Они включают IFN-α, IFN-γ, IFN-β и IFN-δ; IFN-γ непосредственно подавляет рост опухолевых клеток человека. Интерфероны сенсибилизируют клетки к индуцирующим апоптоз генам и белкам в путях апоптоза.
IFN-γ мог бы быть полезным биологическим лечением эпителиального рака яичников человека, если бы устойчивые уровни этого цитокина могли быть достигнуты в брюшине за счет улучшенных стратегий доставки белков или генов.

Интегрины: это рецепторы трансмембранных белков, содержащие α- и β-гетеродимерные цепи и короткий хвост в цитоплазматической области. Они обладают адгезионными свойствами, которые соединяют мембрану с цитоскелетом и способны влиять на выживание и гибель клеток. Они участвуют в пролиферации клеток через пути передачи сигналов, активируя протеинкиназы.

Интегрины экспрессируются на поверхности примордиальных фолликулярных клеток, способствуя их адгезии с внеклеточным матриксом. Интегрины слабо экспрессируются в атретических третичных фолликулах и отсутствуют в атретических первичных и вторичных фолликулах. Клетки гранулезы, у которых отсутствует экспрессия, являются единственными, которые подвергаются апоптозу.

Для лечения рака яичников были исследованы различные целевые терапевтические стратегии, которые часто используются в сочетании с химиотерапевтическими агентами для достижения максимальных результатов. Отметим, что более чем в 70% случаев химиотерапевтического лечения рака яичников наблюдается резистентность к препаратам на основе платины и паклитакселу и последующий рецидив.

Направленные противораковые препараты можно разделить на две широкие категории: ингибиторы киназ и моноклональные антитела. Тирозинкиназы - это молекулы, которые играют решающую роль в передаче сигналов, достигая кульминации своего действия путем регулирования транскрипции генов в ядре. Они функционируют, передавая γ-фосфатные группы от АТФ к гидроксильной группе белковых молекул, ответственных за передачу сигнала. Наиболее важные клеточные процессы, такие как клеточный цикл, дифференцировка, подвижность и апоптоз или выживаемость клеток, находятся под скрупулезной регуляцией тирозинкиназ.

Тирозинкиназы сверхэкспрессируются или мутируют в нескольких типах опухолей у людей, включая опухоли яичников, что делает их хорошими мишенями для лечения рака. Небольшие молекулы были разработаны для нацеливания на тирозинкиназы, в то время как моноклональные антитела нацелены на поверхностные белки или антигены, которые дифференциально экспрессируются, сверхэкспрессируются или мутируют в раковых клетках по сравнению с нормальными тканями.
Моноклональные антитела действуют, вызывая изменения в функции рассматриваемого антигена или рецептора, такие как вызов иммунного ответа или конъюгирование лекарственного средства с антителом, которое нацелено на конкретный антиген.

Так, плохой прогноз при раке яичников связан с повышенной экспрессией фактора роста эндотелия сосудов (VEGF), который выполняет такие функции, как ангиогенез, митогенез, повышение проницаемости сосудов и выживаемость эндотелиальных клеток. Низкомолекулярные ингибиторы тирозинкиназы при раке яичников нацелены на лиганд и рецептор VEGF , тем самым замедляя ангиогенез и улучшая прогноз заболевания.

Также около 70% случаев рака яичников демонстрируют повышенную экспрессию EGFR, сверхэкспрессия которого коррелирует с химиорезистентностью и плохим прогнозом. Ингибиторы тирозинкиназы, такие как эрлонитиб и гефитиниб, действуют против EGFR, правда при прогрессировании заболевания и рецидивах с низкой эффективностью.

Aurora A - серин-треониновая киназа, которая необходима для многих важных клеточных функций, таких как митоз, формирование веретена и разделение центромер. Сверхэкспрессия Aurora A, а также амплификация местоположения его гена часто отмечались в опухолях человека, в том числе при карциномах яичников. Было показано, что Aurora A ингибирует апоптоз, опосредованный паклитакселом и цисплатином, в раковых клетках яичников. Ингибирование киназы Aurora с помощью небольшой молекулы MK0457 в сочетании с химиотерапией (доцетаксел) показало значительное снижение пролиферации клеток и роста опухоли.

BRCA1 и BRCA2 играют важную роль в восстановлении двухцепочечных разрывов ДНК и поддержании стабильности генома. Мутации в этих генах составляют от 5 до 10% всех случаев рака яичников, причем более чем в 50% случаев серозной карциномы яичников высокой степени злокачественности наблюдается потеря функции генов BRCA по генетическим или эпигенетическим причинам.

Поли-АДФ-рибозная полимераза (PARP) представляет собой ядерный фермент, участвующий в репарации одноцепочечных разрывов ДНК. Он активируется при повреждении ДНК, и его ингибирование приводит к одноцепочечным разрывам ДНК, что в свою очередь может привести к двухцепочечным разрывам. Пациенты с BRCA1 и BRCA 2 проявляют высокую чувствительность к ингибиторам PARP, например к олапариб (создан небезызвестной AstraZeneca). Однако он одобрен только для пациенток с мутацией BRCA (это та самая мутация, из-за которой Анджелина Джоли приняла решение удалить себе молочные железы и яичники). Дело в том, что он работает лучше у BRCA-мутантных больных, и когда BRCA он не работает, клетка вынуждена пользоваться обходными путями, такими как PARP.

Препарат niraparib показал преимущество по безрецидивному выживанию не только у пациенток с мутацией BRCA, но и без неё. У пациенток с мутацией препарат увеличил медиану времени выживаемости без прогрессирования с 5,5 до 21 месяца по сравнению с плацебо, а у пациенток без мутации — с 3,9 до 9,3 месяцев.

От 50% до 80% случаев рака яичников демонстрируют активацию рецептора PDGF (фактора роста тромбоцитов) в результате мутаций, генетической амплификации или хромосомных перестроек. Значительная индукция апоптоза и уменьшение веса опухоли, когда мезилат иматиниба (STI571), нацеливаный на рецептор PDGF, использовался в комбинации с паклитакселом. Однако сам по себе STI571 не вызвал каких-либо значительных эффектов.

albert52
05.04.2021, 02:21
Продолжим.

Карциномы яичников неоднородны и в основном классифицируются по типу клеток на серозные, муцинозные, эндометриоидные, светлоклеточные и Бреннеровские (переходные) опухоли, соответствующие различным типам эпителия в органах женского репродуктивного тракта.

В современной модели опухоли яичников делятся на две группы, обозначенные как тип I и тип II. Серозная карцинома низкой степени злокачественности (MPSC) представляет собой прототипную опухоль типа I и развивается поэтапно от атипичной пролиферативной опухоли через неинвазивную стадию MPSC (обе эти опухоли квалифицируются как пограничные), прежде чем стать инвазивной.
Поскольку серозные пограничные опухоли (SBT) редко связаны с инвазивной серозной карциномой, они представляют собой отдельную сущность, не связанную с инвазивной карциномой. Тем не менее, SBT иногда прогрессируют до карциномы, и поэтому должна существовать некоторая взаимосвязь. Напротив, муцинозные пограничные опухоли (МВТ) часто связаны с инвазивной муцинозной карциномой.

Серозная карцинома высокой степени злокачественности представляет собой прототипную опухоль типа II и развивается из поверхностного эпителия яичников или кист включения без морфологически распознаваемых промежуточных стадий. KRAS и BRAF мутации в этих новообразованиях, в отличие от ТР53, обнаруживаются редко. Они очень агрессивны и быстро распространяются, учитывая их продвинутую стадию на момент обращения.

В опухолях I типа гистологические переходы от аденофибром и атипичных пролиферативных серозных опухолей (APST) к неинвазивным MPSC наблюдаются почти в 75% случаев. Кроме того, в значительной части случаев обнаруживаются области инфильтративного роста (инвазии стромы), непосредственно прилегающие к неинвазивному компоненту. Гистологически характеризуется небольшими плотными гнездами и микропапиллами, беспорядочно инфильтрирующими строму. Эти инвазивные MPSC являются синонимом серозной карциномы низкой степени злокачественности.

APST и неинвазивный MPSC можно рассматривать как аналог дисплазии и карциномы in situ шейки матки. То есть APST - это доброкачественная пролиферативная опухоль, которая может прогрессировать до неинвазивного MPSC, который является непосредственным предшественником инвазивной микропапиллярной серозной карциномы низкой степени злокачественности.

Серозная карцинома низкой степени злокачественности обычно протекает безболезненно и может длиться более 20 лет. Приблизительно от 50 до 60% пациентов в конечном итоге умирают из-за широко распространенного внутрибрюшного карциноматоза, но опухоль сохраняет свой гистологический тип и низкий индекс пролиферации на протяжении всего процесса. Такие опухоли с небольшими очагами, демонстрирующими микропапиллярную архитектуру, обозначают как «микрокарциному.

Цитологически инвазивный MPSC состоит из относительно однородной популяции клеток с небольшими округлыми ядрами, часто содержащими небольшое, но заметное ядрышко; многоядерность практически отсутствует. Такие карциномы составляют примерно 10% всех серозных карцином. По шкале от 1 до 3 эта степень ядерной атипии квалифицируется как степень 1.

Мутации KRAS и BRAF по-видимому, возникают на очень ранней стадии развития MPSC низкой степени злокачественности, о чем свидетельствует демонстрация того, что те же мутации KRAS и BRAF, обнаруженные в SBT, обнаруживаются в эпителии цистаденомы, соседнем с SBT. Мутации в TP53 очень редки.

Онкогенные мутации в BRAF, KRAS и ERBB2 приводят к конститутивной активации пути пере -дачи сигнала митоген-активированной протеинкиназы (MAPK), причем KRAS мутации в кодонах 12 и 13 встречаются в одной трети инвазивных низкосортных MPSC и еще в одной трети SBT. Точно так же мутации BRAF в кодоне 600 встречаются в 30% серозных карцином низкой степени злокачественности и в 28% случаев SBT. Мутации в KRAS, BRAF и ERBB2 исключают друг друга (как в колоректальном раке), а прогрессирование APST до MPSC имитирует последовательность аденома-карцинома.

Напротив, опухоли типа II с самого начала агрессивны и высокой степени злокачественности, и, поскольку предшествующие поражения не были идентифицированы, считается, что они возникают de novo. В эту группу входят серозная карцинома высокой степени злокачественности, смешанные злокачественные мезодермальные опухоли (MMMT) и недифференцированные карциномы.

Поскольку многие из этих опухолей имеют микропапиллярную архитектуру, можно предположить, что они возникли из подгруппы серозных карцином низкой степени злокачественности, в которых отсутствовали мутации KRAS, BRAF и ERBB2 . Последующее приобретение TP53 мутация могла привести к генетической нестабильности, которая, в свою очередь, способствовала повышению уровня ядерной атипии (степень 2), вплоть до сильно плеоморфных, часто многоядерных клеток (степень 3).

Значительное количество «карцином яичников» типа II развивается за пределами яичника, в частности, брюшины и маточной трубы, и вторично поражает яичник. Эндометриоидная карцинома и светлоклеточная карцинома связаны с эндометриозом яичников или таза в 15–50% случаев, ведущие исследователи предполагают, что эндометриоз является предшественником этих опухолей. В редких случаях серозная карцинома высокой степени ассоциируется с эндометриозом яичников.

Около 50% карцином яичников развиваются из уже существующих кистозных поражений, соответствуя I типу, остальные 50% развиваются в яичниках без видимых отклонений на УЗИ. Они состоят из больших масс клеток, которые часто имеют сосочковую архитектуру. Некроз - обычное явление. Опухолевые клетки имеют большие плеоморфные ядра, многие из которых многоядерные. Наблюдается высокий уровень митотической активности и часты аномальные митотические числа.

Серозные карциномы высокой степени злокачественности и аденокарциномы MMMT имеют сходные молекулярно-генетические профили. В будущем может оказаться более целесообразным включить все эти плохо дифференцированные / недифференцированные карциномы в единую категорию «анапластической карциномы».

Муцинозные опухоли (MBT) имеют некоторое сходство с серозными опухолями; 80% МВТ на поздних стадиях связаны с псевдомиксомой брюшины (PMP). Метастатические муцинозные карциномы из верхних отделов желудочно-кишечного тракта, включая желчевыводящие пути, поджелудочную железу и шейку матки, могут метастазировать в яичник и имитировать первичную муцинозную опухоль яичников. Первичная MBT, в отличие от SBT, никогда не распространяются за пределы яичника.
Наиболее частым молекулярно-генетическим изменением МВТ и муцинозных карцином является точечная мутация KRAS. Возрастающая частота мутаций KRAS в кодонах 12 и 13 была описана в цистаденомах, MBT и муцинозных карциномах соответственно.

Светлоклеточная карцинома яичников ((OCCC) составляет от 10% до 15% всех случаев рака яичников. OCCC считается одним из наиболее агрессивных видов рака, поскольку он, как правило, невосприимчив к традиционным химиотерапевтическим препаратам, таким как таксол или цисплатин.
OCCC связан с повышенной экспрессией провоспалительных цитокинов, поэтому ингибирование интерлейкина-6 (IL-6) снижает пролиферацию клеток OCCC. Фактор транскрипции ядерного фактора RelA κB (NF-κB) является основным фактором, управляющим индукцией цитокинов. А цитокины участвуют во взаимодействии рака и стромы, которое может управлять процессами, вовлеченными в прогрессирование рака, такими как ангиогенез (например, IL-8) и метастазы (например, CXCL1). Отсюда ингибирование NF-κB может принести пользу лечению OCCC, блокируя прогрессирование рака.

Компоненты комплекса SWI / SNF, включая ARID1A, часто мутируют при различных типах рака. Так, ARID1A часто мутирует при OCCC и часто сосуществует с активирующими мутациями PIK3CA, который действует через путь AKT-IKK2, высвобождая RelA (путь NF-κB) из ингибитора каппа B (IκB). Мутация PIK3CA освобождает RelA от IκB, так что RelA может проникать в ядро ​​для активации генов цитокинов. Также рекрутирование репрессорного комплекса Sin3A/гистон -деацетилазы (HDAC) на гены цитокинов нарушается из-за потери ARID1A, что приводит к их дерепрессии.

Ингибитор NF-κB частично снижает пролиферацию OCCC и улучшает эффективность карбоплатина (производное цисплатина). При этом ингибирование NF-κB может избирательно подавлять рост мутантных клеток ARID1A / PIK3CA, не затрагивая при этом нормальные клетки или OCCC без этих мутаций.

albert52
10.04.2021, 18:45
Вставка

Большинство внутриклеточных белков разлагается посредством UPS, который состоит из двух этапов: убиквитинирования целевого белка и деградации протеасомой. Убиквитин-лигазы специфически распознают целевые белки и катализируют убиквитинирование, тем самым контролируя специфичность протеолиза, опосредованного UPS. Убиквитинирование само по себе представляет собой посттрансляционную модификацию белков. Сравнительные модификации представляют собой связывание убиквитин-подобных белков, таких как SUMO , Urm1 или Nedd8, соответствующих сумоилированию, Urmylierung или неддилированию.

Убиквитин - это небольшой белок; процесс маркировки белков-мишеней убиквитином называется убиквитинилированием. Несколько убиквитинов, прикрепленных в цепь, маркируют белок, таким образом полиубиквитинируемый при контроле качества белка, предназначая на деградацию в протеасоме. Само по себе убиквитинирование является многофазным процессом, три основных этапа которого катализируются различными ферментами: убиквитин-активирующий (E1), убиквитин-конъюгированный (E2) и, наконец, убиквитинлигазы (E3), которые по-разному связывают убиквитин с определенными белками-субстратами.

Ub-конъюгирующие ферменты (E2) UBE2C и UBE2S взаимодействуют с (APC / C (комплексом / циклосомой, стимулирующим анафазу Ub-лигазы E3) для регулирования клеточного цикла при раке. Повышение уровня UBE2C наблюдается при раке легких, мочевого пузыря и яичников. Фермент E2 UBE2B увеличивает полиубиквитинирование β-катенина, белка, который часто активируется в раковых клетках. Кроме того, UBE2B кооперируется с MDM2, лигазой E3 Ub, в комплексе, способствующем убиквитинированию и деградации супрессора опухоли p53.

Разнообразие целевых белков, модифицированных убиквитином, отражается в количестве различных ферментов E3. Если принять во внимание все ферменты, структурно принадлежащие к трем подсемействам ферментов E3 (HECT, RING и U-Box), для высших организмов можно принять число от нескольких сотен до одной тысячи. Здесь Е3 лигазы либо ведут себя как истинные ферменты (HECT E3s), либо занимаюися «сватовством» (RING E3s).
Так, RING finger E3 ubiquitin ligase RNF146 (также известная как Iduna) отвечает за PARylation-зависимое убиквитинирование AXIN, тем самым положительно регулируя передачу сигналов Wnt. Здесь PAR (поли (АДФ-рибоза) функционирует как «молекулярный переключатель» для изменения аллостерической конформации RNF146 и активации его лигазной активности для убиквитинирования и деградации целевых белков.

С другой стороны, существует ряд различных десубиквитинирующих ферментов (DUB), под действием которых, помимо прочего, присоединенные молекулы убиквитина могут быть снова удалены. DUB представляют собой протеазы, состоящие из пяти подсемейств, включая убиквитинкар -боксиконцевые гидролазы (UCH), убиквитинспецифические протеазы (USP), опухолевые протеазы яичников (OTU), металлопротеазы JAMM / MPN и протеазы болезни Мачадо-Якоба (MJD). Все DUB представляют собой цистеиновые протеазы, кроме металлопротеаз JAMM / MPN 6 .

Убиквитин имеет глобулярную форму, выступают только последние четыре С- концевые аминокислоты. Важными функциональными аминокислотами являются C- концевой глицин (G) в 76-м положении (G76) и лизины (K) в 48-м (K48) и 63-м положении (K63) аминокислот -ной последовательности. Через C- концевую карбоксильную группу на G76 убиквитин ковалентно связывается со специфическими лизинами, цистеинами, серинами, треонинами или N- концом маркируемого белка . Дополнительные молекулы убиквитина могут быть присоединены к уже связанному убиквитину через лизины, так что образуется цепь убиквитина. Поскольку убиквитин содержит всего семь лизинов, возможны по крайней мере семь различных типов соединения убиквитина.

Если по крайней мере пять молекул убиквитина связаны в цепь с целевым белком, это называется полиубиквитинизацией. Если эти молекулы связаны друг с другом по лизину 48 (K48), целевой белок в основном расщепляется протеасомой . Соединение по лизину 63 (K63) может привести к лизосомной деградации белка или активировать киназы.Здесь K63 и линейные цепи убиквитина играют роль каркаса для сигнальных сборок и играют важную роль во многих биологических процессах, включая воспаление.

С другой стороны, моно- и мультиубиквитинации меньше влияют на стабильность отдельных белков, чем на их внутриклеточное распределение, и могут обеспечивать взаимодействие с другими белками. Олигоубиквитинирование, например, влияет на активность фактора транскрипции, не инициируя его деградацию. Моноубиквитинирование играет преобладающую роль в транспортировке белков, в то время как полиубиквитинирование способствует транспортировке белков (через K63) и деградации (через K48).

Система убиквитиновых протеасом играет важную роль в «обеспечении качества» внутриклеточно продуцируемых белков. Белки должны быть правильно сложены во время и после их производства, чтобы они функционировали. Особые белки - шапероны могут способствовать правильному сворачиванию белка. В случае «непоправимого» неправильного свертывания образуется комплекс белок-шаперон-убиквитин-E3-лигаза, который полиубиквитинирует неправильно свернутый белок и, таким образом, делает возможной деградацию протеасомой. Таким образом гарантируется, что структурно вырожденные белки ни цитозольные, ни мембранно- связанные, не влияют на клеточные процессы.

Убиквитин участвует во внутриклеточной передаче сигнала внешних стимулов, например, в сигнальном пути NF-kB ( англ. Nuclear factor kappa B). Он может быть активирован сигнальной молекулой фактора некроза опухоли (TNF). Если TNF связывается с рецептором TNF клеточной мембраны, E3-лигаза TRAF2 рекрутируется во внутриклеточную часть рецептора путем его конформационного изменения . Она полиубиквитинирует себя и белок RIP через связи K63.
Убиквитинированные белки RIP и TRAF2 продуцируют разные киназы, фосфорилирующие ферменты. Киназа βIκ в конечном итоге фосфорилирует белок IκB, что освобождает ранее связанный и неактивный NF-κB. NF-κB мигрирует в ядро клетки и активирует там транскрипцию определенных генов. IkB, с другой стороны, полиубиквитинируется через K48 и разлагается через протеасомы.

Ингибиторы протеасом были первоначально разработаны для лечения кахексии, которая возникает у пациентов с запущенными формами рака и характеризуется катаболическим состоянием, которое приводит к прогрессирующему истощению. В настоящее время существует два ингибитора протеасом, одобренных FDA, бортезомиб (Velcade), пептид боронат, и карфилзомиб (Kyprolis), пептид-эпоксикетон.

Лечение бортезомибом приводит к стабилизации I-κB, важного супрессора передачи сигналов NF-κB. Кроме того, бортезомиб также вызывает накопление двух важных негативных регуляторов клеточного цикла, p27 KIP1 и p53, оба из которых являются важными супрессорами опухолей. Другим потенциальным преимуществом лечения бортезомибом может быть накопление проапоптотического белка BAX, тем самым смещая баланс в сторону апоптоза. И последнее, но не менее важное: бортезомиб также вызывает стресс эндоплазматического ретикулума и окислительный стресс в раковых клетках, что может ускорить апоптоз.

Карфилзомиб блокирует доступ субстратных белков к каталитическим остаткам. Карфилзомиб необратимо подавляет протеасомную активность до уровня менее 20%, поэтому единственный способ восстановить протеасомную активность - это заново синтезированные и собранные протеасомы. Следовательно, карфилзомиб более эффективен, чем бортезо -миб, вызывая ответы, например, при устойчивой к бортезомибу множественной миеломе.

При раке груди широко используются антагонисты ER, прежде всего тамоксифен, вместе с ингмбмторами ароматазы. Но в конечном итоге сопротивление эндокринной терапии почти неизбежно. Секвенирование рецепторов показало , что точечные мутации в ESR1 являются драйверами для устойчивости к существующим терапии.
Кроме того, антагонисты ER могут обладать агонистическими свойствами в определенных тканях, таких как матка, что затрудняет их использование. Поэтому неудивительно, что существует значительный интерес к разработке селективных подавляющих регуляторов ER (SERDs) для нацеливания на ER для деградации. В настоящее время фулвестрант, антиэстроген с чистой антагонистической активностью, является единственной молекулой SERD, одобренной для лечения рака груди. Однако плохие фармацевтические свойства этого инъекционного препарата и отсутствие его превосходства над ингибиторами ароматазы второй линии при поздней стадии рака груди отрицательно повлияли на его клиническое применение.

Элацестрант - это новый нестероидный пероральный биодоступный селективный деструктор эстрогеновых рецепторов (SERD), который продемонстрировал активность у пациентов с эстроген-положительным / HER2-отрицательным раком груди, ранее получавшим эндокринную терапию, включая фулвестрант и / или CDK 4/6 ингибитор терапии, а также у больных с ESR1 мутаций ( ESR1-mut), что, как известно, придает эндокринную резистентность.

Базедоксифен (BZA) - мощный пероральный антиэстроген, который клинически одобрен для использования в заместительной гормональной терапии (DUAVEE). Он показал сильные антагонистические профили и профили SERD в груди, сохраняя при этом полезные агонистические свойства в кости и не стимулировал ткань эндометрия в доклинических исследованиях.

albert52
10.04.2021, 20:17
Продолжим.

Помимо убиквитина, у млекопитающих существует более дюжины убиквитин-подобных молекул (Ubls), которые все активируются эквивалентным ферментативным каскадом для конъюгации со своими родственными субстратами. Один из этих путей конъюгации с Ubl включает NEDD8, молекулу Ubl, которая имеет примерно 60% сходства последовательностей с убиквитином. Как и убиквитинирование, неддилированные субстраты, в частности кулины - регуляторный каркас мультисубъединичных E3-лигаз - играют критическую роль в пролиферации клеток.

Подобно убиквитинированию, конъюгация зрелого NEDD8 с белками-мишенями осуществляется мультиферментным каскадом E1-E2-E3. Зрелый NEDD8 конъюгируется с белками-мишенями АТФ-зависимым образом посредством последовательных реакций, катализируемых последовательно E1 (NAE), E2 (Ubc12) и E3. С помощью этих ферментов C-концевой глицин NEDD8 образует изопептидную связь с лизином целевого белка. Денеддилазы, такие как CSN и NEDP1, деконъюгируют NEDD8 из недилированных белков перед протеосо -мой, захватывающей высвобождающийся субстрат.

NAE - единственный специализированный NEDD8 E1, но помимо NAE, фермент, активирующий убиквитин E1, UBE1 также может функционировать как атипичный NEDD8 E1, опосредуя присоединение NEDD8 к цепи убиквитина. Другие убиквитин-лигазы, такие как MDM2, c-Cbl, паркин и IAP, также могут функционировать как лигазы E3 NEDD8, способствуя неддилированию различных клеточных белков.

Основными известными субстратами модификации NEDD8 являются Cullin - субъединицы убиквитинлигаз E3 на основе Cullin, которые активны только при неддилировании. Их NEDDylation является критическим для рекрутирования E2 в лигазный комплекс, тем самым облегчая конъюгацию убиквитина, то есть NEDD8 является модулятором процесса убиквитинирования. Путь NEDD8, по-видимому, влияет на функцию UPS, по крайней мере, посредством регулирования активности убиквитинлигазы, антагонизма убиквитинированию или контроля удлинения убиквитиновой цепи.

Неддилирование регулирует активность CRL, самого большого известного класса убиквитинлигаз. CRL состоит из каркасного белка cullin, белка RING Rbx1, который рекрутирует убиквитин E2, адаптивного белка Skp1, который взаимодействует с белком F-бокса, и самого F-бокса, распознающего субстрат. Сочетая индивидуальный кулин (всего их 7 видов) с различными белками F-бокса, CRL контролируют деградацию огромного количества клеточных белков и, что неудивительно, участвуют во многих аспектах биологических процессов.

CRLs составляют ~ 20% всей протеасомной деградации в клетке, а многие CRL-белки связаны с опухолевым генезом. Так, при апоптозе комплекс, образующийся после активации рецепторов смерти TRAIL-R1 / R2 (DR4 / DR5), называется сигнальным комплексом, индуцирующим смерть (DISC), состоящим из рецепторов, адапторной молекулы FADD, прокаспазы-8 и FLIP. FADD рекрутирует прокаспазу-8 в этот комплекс, где она образует гетеродимер с длинной формой FLIP (L)), регулирующей ее процессинг и активность .

Cullin-3 взаимодействуя с TRAIL-R2 DISC, способствует K63-связанному убиквитинированию p10-субъединицы каспазы-8, что усиливает ее ферментативную активность и индукцию апоптоза. Связь p43-FLIP (L) с TRAIL-R2 DISC усиливает его взаимодействие с SCF Skp2 (см. ниже), что приводит к нацеливанию p43-FLIP (L) на протеасомы и снижение уровней гетеродимера FLIP (L): каспаза-8. Так возникает конкуренции между SCF Skp2 и каноничес -кимии белками DISC за связывание p43-FLIP (L). Таким образом Cullin-1 регулирует DISC главным образом посредством модуляции FLIP (L).

Недилирование кулинов запускает сборку функциональных CRL, приближает заряженный убиквитином E2 и субстрат и способствует переносу убиквитина к субстратам. После завершения убиквитинирования CSN делает возможным денеддилирование кулинов, что приводит к разборке CRL и высвобождению убиквитина E2 для следующего раунда убиквитинирования.

Такие Е3 лигазы, как Mdm2, Рarkin и Smurf1, также могут быть модифицированы с помощью NEDD8, и такая модификация влияет на их убиквитинлигазную активность. Например, Smurf1 представляет собой убиквитинлигазу HECT, неддилирование которого усиливает его ассоциацию с убиквитин E2, что играет решающую роль во многих процессах, включая развитие клеточного цикла, пролиферацию клеток, дифференцировку, поддержание стабильности генома и метастазирование. Так, при колоректальном раке человека повышенная экспрессия Smurf1, NEDD8, NAE1 и Ubc12 коррелирует с прогрессированием рака.

Показано также, что неддилирование ряда клеточных белков, таких как PINK1, HuR и RCAN1, противодействует убиквитинированию и увеличивает их стабильность. Например, HuR представляет собой РНК-связывающий белок, который регулирует пролиферацию и выживаемость клеток. HuR модифицируется NEDD8 по его лизинам 283, 313 и 326, что опосредуется NEDD8 E3 лигазой Mdm2. Неддилирование HuR подавляет его убиквитинирование, увеличивает его стабильность и способствует его ядерной локализации.

Также возможно, что при (протеотоксическом) стрессе, NEDD8 функционирует как заменитель убиквитина и блокирует убиквитиновую цепь, таким образом предотвращая чрезмерное удлинение убиквитиновой цепи и истощение пула убиквитина, что в противном случае было бы катастрофично для клеток.

Активированный NEDD8 необходим в двух путях репарации ДНК: NER и NHEJ, при этом накопление NEDD8 в сайтах повреждения ДНК является очень динамичным процессом. Неддилирование необходимо в течение короткого периода суб-пути глобальной репарации генома (GGR) - эксцизионной репарации ДНК (NER). В GGR NER после того, как повреждение ДНК вызвано УФ-облучением, Cul4A в комплексе белка 2 связывания повреждений ДНК ( DDB2 ) активируется NEDD8, и это позволяет GGR-NER приступить к устранению поврежде -ния.

Неддилирование также играет роль в восстановлении двухцепочечных разрывов. Негомологичное соединение концов (NHEJ) - это путь репарации ДНК, часто используемый для репарации двухцепочечных разрывов ДНК. Первый шаг на этом пути зависит от гетероди -мера Ku70 / Ku80, который образует высокостабильную кольцевую структуру, охватыва -ющую концы ДНК. Но гетеродимер Ku должен быть удален, когда NHEJ завершается, иначе он блокирует транскрипцию или репликацию. Он убиквитилируется, чтобы способствовать высвобождению Ku и других факторов NHEJ из сайта репарации после завершения процесса.

Если активация NEDD8 ингибируется, клетки с индуцированным дефицитом NER или NHEJ могут погибнуть из-за недостаточной репарации ДНК, приводящей к накоплению повреж -дений ДНК. Эффект ингибирования NEDD8 может быть больше для раковых клеток, чем для нормальных клеток, так как они более активны в альтернативных путях репарации ДНК (см.выше). Ингибитор NAE, MLN4924 (певонедистат) индуцирует гибель клеток из-за неконтролируемого синтеза ДНК во время S-фазы клеточного цикла, приводя к повреждению ДНК и индукции апоптоза. MLN4924 взаимодействует с сайтом связывания нуклеотидов в NAE и образует ковалентный аддукт, который имитирует NEDD8-AMP, но не может участвовать в последующих реакциях, что приводит к блокированию функции NAE.

F-box белок SKP2 образует комплекс с CUL1, SKP1 и белком RING-пальца RBX1, вместе называемый SCF SKP2. SKP2 был впервые идентифицирован как критический регулятор клеточного цикла, потому что он убиквитинирует несколько важных регуляторов клеточного цикла, включая p27 KIP1 и p21 CIP1 , оба являются критическими ингибиторами CDK. SKP2 также играет критическую роль в EGFR-обеспечиваемом убиквитинировании AKT и рекрутировании мембран. Онкогенный потенциал SKP2 был предложен его избыточной экспрессией в различном злокачественных опухолях человека. Важно отметить, что эта сверхэкспрессия SKP2 показала обратную связь с p27 KIP1. Более того, уровни белка SKP2 могут служить прогностическим биомаркером, с более высокими уровнями, предсказывающими плохую выживаемость пациентов.

Cинтетический сompaund 25 нарушает взаимодействие между SKP1-SKP2 и, таким образом, отменяет активность лигазы SCF SKP2 . Он синергетически взаимодействуя с химиотерапевтическими агентами снижает выживаемость опухоли.

Мультидоменный связывающий белок 6 ретинобластомы (RBBP6) принадлежит к особому семейству эукариот и отсутствует у прокариот. Молекулярные функции RBBP6 включают метаболизм нуклеиновых кислот (репликацию, транскрипцию и сплайсинг пре-мРНК), активность убиквитинлигазы E3 и взаимодействие с p53 и белком ретинобластомы (RB1).

Белок контрольной точки сборки митотического веретена (MAD2L2) взаимодействует с RBBP6; он контролирует контрольную точку митоза. Он действует в комплексе с другими белками, чтобы напрямую ингибировать Cdc20, не позволяя ему активировать комплекс, способствующий анафазе (APC), убиквитинлигазу, которая важна для инициации сегрегации хромосом. Это означает, что RBBP6 действует на решающем этапе, когда сегрегация хромосом происходит в митозе и в мейозе. В противном случае может возникнуть анеуплоидия.

RBBP6 также обнаруживается в областях прикрепления ядерного матрикса (MAR), что указывает на участие в организации хроматина, где он рекрутирует p53 и Rb, а также член серин-аргининового подсемейства протеинкиназ, известных как SRPK1a, и факторы прикрепления матрикса, SAF-B и нуклеолин. Эти особенности дополнительно усиливают роль RBBP6 в организации хроматина.

RBBP6 экспрессируется на ранних стадиях развития человека и идентифицируется как «тот, кто рано встает»: он легко обнаруживается в ооците и сильно активируется на стадиях 2-8 клеток. RBBP6 также является одним из белков с более чем трехкратной экспрессией в плюрипотентной РНК эмбриональных стволовых клеток человека.

albert52
10.04.2021, 21:13
Продолжим.

Ген RBBP6 имеет 17 интронов, которые альтернативно сплайсируются для получения четырех транскриптов: разные изоформы RBBP6 обладают уникальными функциями. Так, изоформа 3 представляет собой регулятор клеточного цикла, необходимый для контрольной точки G2 / M, и обладает антипролиферативным действием, поскольку его сверхэкспрессия стабилизирует p53 и подавляет рост (в отличие от изоформы 1). Изоформа 3 не регулируется в опухолях, но обильно экспрессируется в нормальной ткани, ассоциированной с опухолью.

Сам p53 контролирует обе фазы G1 / S и G2 / M, поскольку его транскрипционная мишень, p21, ингибирует циклинзависимые киназы в контрольных точках G1 / S, а также киназу cdc2 в G2 / M. PRb, с другой стороны, является ключевым регулятором границы G2 / M, и его истощение приводит к остановке G2.

Путь, необходимый для репликации и стабильности генома человека, состоит из трех компонентов: убиквитинлигазы E3, репрессора транскрипции и белка репликации. Убиквитинлигаза Е3 RBBP6 убиквитинирует и дестабилизирует репрессор транскрипции ZBTB38. Этот репрессор отрицательно регулирует транскрипцию и уровни фактора репликации MCM10 на хроматине.

RBBP6 регулирует репликацию генома и стабильность CFS, поскольку в его отсутствие репликация ДНК замедляется, и CFS теряются из генома. Репликационный белок MCM10 является прямой мишенью репрессии транскрипции с помощью ZBTB38, и его подавление отвечает за нарушения репликации, которые возникают в отсутствие RBBP6. Эти данные предоставляют доказательства решающей роли оси RBBP6 / ZBTB38 / MCM10 в сохранении и стабильности генома.

Репликация ДНК - это период, в течение которого геном особенно уязвим. Среди областей, которые очень чувствительны к аномалиям репликации, есть общие ломкие сайты (CFS) - участки генома, склонные к разрыву ингибиторами репликации (внешний стресс репликации). Так, вызванный онкогенами репликационный стресс (RS) вызывает повреждение ДНК в CFS на самых ранних стадиях рака.

Геномные изменения чаще встречались в CFS при эпидермальных и уротелиальных предопухолевых поражениях, а также при раке. CFS были в среднем менее гибкими, чем нехрупкие области, содержали больше последовательностей гуанин-цитозин (GC) и Alu. Отметим, что элементы Alu имеют тенденцию отдавать предпочтение GC- островкам и областям, богатым генами. Регионы с потерей гетерозиготности были также менее гибкими и имели более высокий процент Alu.

Большинство транслокаций, связанных с раком, содержат точки останова в CFS, и многие гены, которые были идентифицированы как опухолевые супрессоры или онкогены, расположены в CFS, решительно подтверждая, что хрупкость СХУ причинно способствует развитию рака.

Повреждения CFS могут иметь далеко идущие последствия, если они могут инициировать цикл теломерного разрушения-слияния-разрушения. При таком сценарии может быть создан порочный круг прогрессирующего ухудшения хромосомной нестабильности. С другой стороны их раннее вовлечение может служить для усиления клеточного ответа на потенциальную геномную угрозу, как ранний сенсор избыточного RS. В этом случае разрывы в этих местах могут функционировать как «система сигнализации», вызывающая быстрый защитный отклик в нормальных условиях, когда механизм ответа на повреждение ДНК не поврежден.

Супрессор опухолей р53 играет ключевую роль в защите от рака. В физиологических условиях вновь синтезированный р53 быстро подвергается убиквитинированию и деградации, что приводит к «бесполезному циклу» и очень низкому «устойчивому» уровню белка. Это в значительной степени контролируется лигазой RING finger E3, MDM2 (Mouse double minute 2 homolog, HDM2 у человека). Помимо того, что MDM2 является ингибитором транскрипции p53, он также тесно взаимодействует с самим белком p53, узнавая N-концевой домен трансактивации (TAD), позволяя p53 подвергаться убиквитинированию и последующей протеасомной деградации. Mdm2 подвергается ускоренной деградации на ранней стадии повреждения ДНК, тем самым вызывая быструю стабилизацию и активацию p53.

В дополнение к активности транс-E3-лигазы в отношении p53, Mdm2 также опосредует собственное разложение посредством автокаталитического механизма. В стрессовых условиях, таких как повреждение ДНК, Mdm2 подвергается ATM -опосредованному фосфорилированию и последующей деградации, тем самым запуская стабилизацию и активацию p53. Mdm2 стабилизируется структурно родственным белком Mdmx и его сплайсированными формами. Также E3 лигаза NEDD4-1 увеличивает стабильность Mdm2 за счет стимулирования его полиубиквитинирования, связанного с Lys 63. Но деубиквитинирующий фермент HAUSP способен стабилизировать Mdm2 посредством удаления его полиубиквитиновых цепей.

Как негативный регулятор p53, MDM2 сверхэкспрессируется при многих раках либо за счет амплификации гена, либо за счет усиления транскрипции. Так, Mdm2 часто сверхэкспрессируется при остром лимфобластном лейкозе у детей с помощью пост-транскрипционных механизмов. Среди всех малых молекул, которые ингибируют MDM2, Nutlins, семейство аналогов цис-имидазолина, выявленных с помощью высокопроизводительного скрининга, обладает наибольшим потенциалом и в настоящее время проходит клинические испытания. Обработка Nutlin индуцировала накопление дикого типа, но не мутантного белка p53, так как большинство мутантов p53 больше не подвергаются убиквитинированию с помощью MDM2 и становятся стабилизированными.

Отметим, что молекулы, нацеленные на восстановление нативной конформации мутантов p53 и реактивацию их опухолевой супрессорной функции, могут принести больше пользы при более широком спектре рака. Например: PRIMA-1 и его аналог APR-2 ковалентно модифицируют мутанты p53 посредством алкилирования тиоловых групп, восстанавливая конформацию дикого типа и функцию мутантного p53.

Стабилизация p53 после ионизирующего излучения является результатом ингибирования связывания MDM2 через каскад фосфорилирования, который сначала требует фосфорилирования p53 S15, что необходимо для последующего фосфорилирования T18.

В прошлом считалось , что цитоплазма является эксклюзивным местом деградации р53, таким образом , ядерный экспорт р53 является необходимым условием для его доставки в цитоплазматический протеас. После признания того, что сам p53 обладает сигналами ядерного экспорта (NES), самотранспортный p53 также был включен в модель. Позже было обнаружено, что домен пальца MDM2 RING, но не NES MDM2, необходим как предпосылка для эффективного экспорта p53 в цитоплазму. MDM2 моноубиквитинирует все доступные остатки лизина на COOH-конце p53, тем самым выявляя NES в соседнем домене тетрамеризации и позволяя взаимодействовать с экспортным рецептором CRM1.

Ядро ​​также является физиологическим местом деградации p53. Важно отметить, что 26S протеасомы в равной степени находятся в изобилии в цитозоле и ядра. Более того, убиквитинирование p53 - предварительное условие его деградации - явно происходит в ядре, и фактически ядро, вероятно, является единственным местом для этой модификации. Таким образом, в нелетальных исходах клеточного стресса, когда повреждение ДНК было успешно восстановлено и активный ответ p53 необходимо быстро подавить для восстановления нормального гомеостаза, задействуются как ядерные, так и цитоплазматические протеасомы для эффективного разрушения повышенного уровня p53 и MDM2. уровни белка. Локальная ядерная деструкция добавляет более жесткий контроль и ускоряет выключение пути p53.

Разные активаторы ответа контрольной точки p53 нацелены на путь деградации MDM2. Ионизирующее излучение действует через каскад так называемый стресс - киназы, с сигнала АТМ киназы к контрольной точке киназ hCHK1 и hCHK2 с целью фосфорилировать p53 в несколько NH 2 концевых остатков серина. Фосфорилирование Thr18 также может быть регуляторным механизмом, который разрушает комплекс p53-MDM2, таким образом активируя p53 в ответ на повреждение ДНК.Общий эффект этих модификаций может заключаться в снижении аффинности комплексов p53-MDM2.

Напротив, как УФ-излучение, так и гипоксия снижают уровни транскриптов и белка MDM2, тем самым снижая деградацию p53. Более того, УФ-повреждение блокирует убиквитинирование и вместо этого способствует сумоилированию p53 на Lys386, что способствует его транскрипционной активности. Впрочем, сам белок MDM2 стал центром внимания и теперь также признан основной мишенью сигналов, которые приводят к стабилизации p53. MDM2 подвергается многосайтовому фосфорилированию in vivo, при этом большинство сайтов модификации сгруппированы в пределах p53-связывающего домена и центрального кислотного домена, необходимого для деградации p53.

albert52
12.04.2021, 02:33
Продолжим.

Важность p53 в подавлении опухоли неоспорима, о чем свидетельствует его инактивация более чем в половине всех спорадических случаев рака человека. Во время развития опухоли TP53 мутация, спорадическая или наследуемая, обычно сопровождается потерей гетерозиготности, что приводит к дефициту p53. Кроме того, p53 является членом мультибелкового семейства факторов транскрипции, в которое также входят p63 и p73, и эти факторы выполняют как перекрывающиеся, так и различные клеточные роли.

Большинство мутаций TP53, обнаруженных в опухолях человека, представляют собой миссенс-мутации (80%), которые находятся в ДНК-связывающем домене (DBD), чаще всего в шести «горячих точках». Эти мутации подразделяются на контактные мутации, которые изменяют остатки, которые имеют решающее значение для взаимодействия с ДНК, и структурные мутации, которые нарушают трехмерную укладку DBD.

Мутантный p53 не только оказывает доминантно-негативный эффект на белок дикого типа, но также проявляет свойства увеличения функции (GOF). Мутантный p53 может проявлять эффекты GOF посредством регуляции транскрипции, взаимодействуя с различными другими факторами транскрипции, такими как ядерный фактор Y (NFY), рецептор витамина D (VDR), p63 и p73. Специфические клеточные ответы p53 зависят от функции p53 как активатора транскрипции и от p53-опосредованной индукции определенных генов-мишеней.

p53 - это сенсор клеточного стресса, который вызывает временную остановку клеточного цикла, постоянную остановку клеточного цикла (клеточное старение) и апоптоз в ответ на множество различных стрессов, включая повреждение ДНК, гиперпролиферативные сигналы, гипоксию, окислительный стресс, истощение рибонуклеотидов и нехватка питательных веществ. В ответ на такие стрессовые сигналы р53 вытесняется из своих негативных регуляторов MDM2 и MDM4, тем самым обеспечивая его стабилизацию и активацию.

Наиболее хорошо проработанными молекулярными моделями активации р53 являются модели в ответ на сигналы острого повреждения ДНК и гиперпролиферативные сигналы. Индукция p53 в результате острого повреждения ДНК начинается, когда двухцепочечные разрывы ДНК запускают активацию мутированной серин/треонин протеинкиназы, известной как ataxia telangiectasia and Rad3-related protein (ATR) или FRAP-related protein 1 (FRP1) - киназы, которая фосфорилирует киназу CHK2, или когда застопорившиеся или свернутые вилки репликации ДНК рекрутируют ATR, который фосфорилирует CHK1.

ATR участвует в распознавании повреждения ДНК и активации контрольной точки повреждения ДНК, что приводит к остановке клеточного цикла. ATR активируется в ответ на стойкую одноцепочечную ДНК, которая является обычным промежуточным звеном, образующимся при обнаружении и репарации повреждений ДНК. Одноцепочечная ДНК встречается в остановившихся ответвлениях репликации и в качестве промежуточного звена в путях репарации ДНК, таких как эксцизионная репарация нуклеотидов и ремонт путем гомологичной рекомбинации. ATR относится ко второй киназе, активирующей контрольные точки, наряду с ATM , которая активируется двухцепочечными разрывами ДНК или разрушением хроматина (см. выше).

ATR работает с белком-партнером, называемым ATRIP, для распознавания одноцепочечной ДНК, покрытой RPA. Белок репликации А ( RPA ) является основным белком, который связывается с одноцепочечной ДНК (ssDNA) в эукариотических клетках. Во время репликации ДНК RPA предотвращает наматывание одноцепочечной ДНК на себя или образование вторичных структур. Это заставляет ДНК раскручиваться, чтобы полимераза могла ее воспроизвести. РПА также связывается с ssDNA во время начальной фазы гомологичной рекомбинации , что является важным в процессе репарации ДНК и профазы I из мейоза.
После активации ATR фосфорилирует Chk1 , инициируя каскад передачи сигнала , кульминацией которого является остановка клеточного цикла. В дополнение к своей роли в активации контрольной точки повреждения ДНК, ATR, как полагают, участвует в невозмущенной репликации ДНК.

Опухолевые клетки in vivo вероятно, чаще сталкиваются с более хроническим повреждением ДНК низкого уровня из-за стресса репликации, истощения теломер или окислительного повреждения, что может способствовать подавлению опухоли через пути p53, отличные от путей, необходимых для передачи сигналов острого повреждения ДНК. Так, OIS (онкоген-индуцированное старение) может активировать p53, минуя DDR: Ras через NOREA1, который способствует ацетилированию р53 при старении, ингибируя его проапоптотическое фосфорилирование, AKT, посредством подавления MnSOD, истощения онкосупрессора PTEN , индуцируя связывание mTORC1 и mTORC2 с p53 вместо MDM2, и MAPK p38γ посредством прямого фосфорилирования p53.

p53 является субстратом как для киназ ATM, так и для ATR, а также для CHK1 и CHK2, которые координированно фосфорилируют (P) p53, способствуя его стабилизации. Фосфорилирование p53 происходит по нескольким сайтам, особенно по аминоконцу, например по серинам 15 и 20. Эти события фосфорилирования играют важную роль в стабилизации р53, так как некоторые из модификаций нарушают взаимодействие между р53 и его негативными регуляторами MDM2 и MDM4.

Гиперпролиферативные сигналы аналогичным образом активируют p53 посредством нарушения взаимодействия MDM2-p53. Эти сигналы могут функционировать путем высвобождения фактора транскрипции E2F, который может стимулировать транскрипцию опухолевого супрессора ARF. ARF в свою очередь, ингибирует MDM2 своей антагонистической активностью и / или запирая MDM2 в ядрышках.

В модели р53 как «хранителя генома» р53 работает как триггер ареста G1 в ответ на повреждение ДНК путем трансактивации CDKN1A. Помимо способности p53 полностью блокировать развитие клеточного цикла в ответ на сигнал стресса, базальные уровни p53 могут также просто замедлять скорость прохождения клеточного цикла.

Ингибирование метаболического перепрограммирования с помощью p53 может препятствовать онкогенезу за счет ограничения пролиферации или активации апоптоза, а индукция аутофагии также может подавлять рак, облегчая апоптоз. Точно так же классические ответы могут влиять на новые функции, напр., P53-индуцированное старение ускоряет передачу сигналов в микроокружение опухоли, что в конечном итоге провоцирует супрессию опухоли.

Более 80% мутаций TP53 в опухолях человека локализуются в ДНК-связывающем домене и нарушают специфичное для опухоли связывание ДНК. Карбоксиконцевой домен тетрамеризации, через который мономеры p53 взаимодействуют с образованием тетрамеров, также важен для активации транскрипции.

Клеточное старение связано с опосредованным p53 подавлением опухоли в определенных контекстах и появлением маркеров старения. Наиболее изученными путями, участвующими в регуляции клеточного старения, являются пути опухолевых супрессоров p53 / p21 cip1 и / или p16 INK4A / Rb. Так, различные внутренние или внешние стрессовые факторы запускают путь ответа на повреждение ДНК (DDR), который, в свою очередь, активирует пути p53 и / или p16 INK4A. p16 INK4A инактивирует Cdk4 / 6, что приводит к накоплению фосфорили -рованного pRb, останавливает регуляцию факторов транскрипции E2F и запускает остановку клеточного цикла или старение. Эти стрессоры также сами вызывают повреждение ДНК (клеточные ответы на такие повреждения регулируются путями ATM-Chk2 или ATR-Chk1) и трансактивируют p53 и p21 CIP1 . Более того, уровни белка p21 CIP1 могут приводить к ингибированию активности Cdk4 / 6, что способствует остановке на G1 или старению.

После активации p21 cip1 выполняет множество функций, включая его роль в обеспечении модуляции экспрессии генов многих мишеней p53, таких как CDC25C, CDC25B и сурвивин, в основном за счет рекрутирования комплекса E2F4. Однако решающее значение p21 cip1 зависит от его способности стимулировать старение через ингибирование апоптоза; было доказано, что он связывает многие агенты апоптоза, включая многие каспазы. Это согласуется с доказательствами обратной связи между апоптозом и уровнями p21 cip1; в клетках колоректального рака в ответ на высокие уровни доксорубицина p53 ингибирует экспрессию p21 cip1 через DNMT3a.

Кроме того, Δ40p53, Δ133p53α и p53β представляют собой изоформы p53, которые в основном участвуют в клеточном старении, особенно на его ранних стадиях. Δ133p53α, в большом количестве накапливаясь в пролиферирующих клетках, противодействует функциям p53, в то же время уровни p53β низкие. В стареющих клетках p53β активируется посредством сплайсинга, опосредованного SRSF3, а Δ133p53α подавляется посредством аутофагической деградации, опосредованной STUB1. Более того, Δ40p53, по-видимому, регулирует клеточное старение, действуя двумя разными способами: напрямую регулируя сигнальный путь IGF-1 для модуляции факторов роста и выживания клеток и регулируя транскрипционную активность полноразмерного p53 на гене-мишени посредством прямого связывания.

albert52
13.04.2021, 12:01
Продолжим.

В то время как путь p53 / p21 cip1, по- видимому, играет ключевую роль в инициации старения, путь с участием p16 и семейства белков ретинобластомы (семейство Rb), по-видимому, играет центральную роль в поддержании клеточного старения. Об этом свидетельствовало снижение уровня p53 после индукции старения, в то время как уровень p16 оставался стабильно высоким. Впрочем, например, когда p53 и pRb одновременно восстанавливались до нормальных уровней в клетках карциномы шейки матки человека, клеточное старение индуцировалось почти во всех клетках.

Вообще, активация пути p16 может быть ответственна за проведение границы между двумя различными фазами старения: ранней, обратимой фазой, в которой доминирует активность p53, и необратимой фазой, индуцированной путем p16 / Rb.
Путь p16 может включать различные белки, принадлежащие к семейству Rb, а именно pRb / p105, p107 и pRb / p130. В прогрессировании старения в клетках человека, по-видимому, основная роль принадлежит Rb2 / p130 посредством репрессии циклина А, при этом классический Rb участвует только на ранних этапах.

Отметим, что INK4a / ARF локус кодирует два критических опухолевых супрессоров, p16INK4 и ARF, которые, в дополнение к их роли в раке, являются важными индукторами клеточного старения. Несмотря на общие экзоны, два белка кодируются в разных рамках считывания, и, как следствие, они не имеют гомологии аминокислот и обладают разными молекулярными функциями. В то время как p16INK4a является ингибитором циклин-зависимых киназ CDK4 и CDK6 (см. выше) и действует путем остановки клеточного цикла на G1, ARF регулирует стабильность p53 посредством инактивации MDM2.
INK4a / АРФ локус, как правило , малоактивен в большинстве тканей у молодых организмов, но активируется со старением. Эпигенетические регуляторы семейства Polycomb ответственны, по крайней мере частично, за низкие уровни экспрессии p16INK4a и ARF в нормальных условиях в молодых тканях.

Существует модель, в которой клетки обладают по крайней мере двумя независимыми часами: один зависит от теломер и в основном регистрирует накопленное число клеточных делений; другие часы зависят от INK4a / ARF и в основном регистрируют воздействие на клетки митогенной стимуляции.

Характерные изменения стареющих клеток включают уплощенную и увеличенную форму клеток, увеличенный лизосомный компартмент и вакуоли, повышенную скорость метаболизма и продукцию активных форм кислорода (АФК),формирование ассоциированного со старением секреторного фенотипа (SASP), ядерные изменения и изменения хроматина, а также устойчивость к апоптотическим стимулам. Так, старение также характеризуется секрецией набора цитокинов и хемокинов, известных как секреторный фенотип, связанный со старением (SASP), а также конститутивно активным NF-kB. В этом отношении было показано, что SASP способствует воспалению.

Следовательно, p53 может действовать как рестриктор и аттенюатор (ступенчатое снижение) воспалительных реакций за счет баланса между p53 и NF-kB.

Динамичное развитие клеточного старения:
1. Первичное старение - индукция пути p53 / p21, индукция антипролиферативной транс -крипционной программы (маркеры BAF57, GADD45 NOTCH1).
2. Развитие старения - путь p53 / p21 и / или p16, высвобождение SASP, морфологические изменения (маркеры п21, п19, п16, LIMA1, Ki-67).
3. Позднее старение - избыточная продукция SASP, ремоделирование хроматина, лизосомная активность, путь p16 (маркеры Il-6, PGC-1β, SA-бета-галактозидаза IFN-I, Ki-67).

Через секрецию SASP стареющие клетки могут влиять на окружающие клетки в различных микросредах. В этом контексте тканеспецифические различия могут влиять на различную экспрессию p53, способствуя определению судьбы клеток после воздействия генотоксического стресса.
Стареющие клетки и SASP могут направлять и способствовать миграции / инвазии раковых клеток в моделях рака щитовидной железы и кожи. Инвазия и метастазирование опухоли также включают нарушение базальной мембраны и ремоделирование ВКМ матриксными металлопротеиназами (ММП), которые часто выражаются как факторы SASP. Хотя старение является барьером для перепрограммирования, паракринная активность стареющих клеток может способствовать экспрессии маркеров стволовых клеток и пролиферации соседних клеток, и IL6 играет ключевую роль в управлении этим процессом.
В целом, стареющие клетки посредством своего SASP могут индуцировать недифференцированные клеточные состояния; в зависимости от контекста это может быть полезным (например, регенерация ткани) или вредным (например, стимулирование клеток, инициирующих опухоль).

При гепатоме активация местной иммунной системы, вызванная старением, также, как было показано, активирует клиренс (снижение числа) предзлокачественных гепатоцитов. Напротив, стареющие клетки также могут способствовать уклонению опухоли от иммунного надзора. Во время старения кожи стареющие стромальные клетки и их SASP (особенно IL6) вызывают увеличение количества супрессивных миелоидных клеток. Кроме того, было показано, что это приводит к ингибированию противоопухолевых Т-клеточных ответов и усилению роста опухоли; все это способствует развитию старческой меланомы.

Наблюдающийся в течение жизни клетки эффект Хейфлика состоит из трех основных «факторов Хейфлика» ( потеря теломер, накопление повреждений ДНК и дерепрессия локуса INK4a / ARF ). Теломеры состоят из повторяющихся элементов ДНК на концах линейных хромосом, которые защищают концы ДНК от деградации и рекомбинации. Из-за внутренней неспособности репликационного аппарата копировать концы линейных молекул, теломеры становятся все короче с каждым раундом деления клетки. В конце концов, теломеры достигают критически короткой длины, ведя себя как двухцепочечные разрывы ДНК, которые активируют белок-супрессор опухоли p53, что приводит к инициированному теломерами старению или апоптозу.

Критически короткие или дисфункциональные теломеры можно рассматривать как особую форму повреждения ДНК, и как таковые они маркируются фосфорилированным гистоном H2AX (γH2AX); впрочем, не все возрастные очаги γH2AX связаны с теломерами.
Принимая во внимание, что старение связано с накоплением окислительного повреждения, можно предположить, что укорочение теломер может отражать не только пролиферативную историю клетки, но также накопление окислительного повреждения.

Теломераза - это рибонуклеопротеин с активностью ДНК-полимеразы, который удлиняет теломеры, но его уровень активности в большинстве тканей взрослого человека недостаточен, чтобы компенсировать прогрессирующее истощение теломер, которое происходит с возрастом.

Так наз. теломерные часы ограничивают не только пролиферацию нормальных нераковых клеток, но также пролиферацию тех клеток, которые уже находятся на пути к неопластической трансформации.
Лучше всего это иллюстрируется тем фактом, что практически все раковые клетки человека приобрели механизмы для поддержания теломер, как правило, за счет экспрессии высоких уровней теломеразы. В исключительных случаях раковые клетки могут поддерживать свои теломеры в отсутствие теломеразы за счет гомологичной рекомбинации между теломерами. Значит теломераза является онкогенным фактором, способствующим прогрессированию опухоли.

Два основных исключения из этой общей тенденции возникают, когда недостаток теломеразы сочетается с недостатком p53 или со сверхэкспрессией теломер-связывающего белка TRF2, который рекрутирует нуклеазу XPF на теломеры и разрушает их. В этих условиях клетки размножаются в присутствии безудержных хромосомных аберраций, что, в свою очередь, способствует развитию рака.

Механизм репарации ошибочного спаривания ДНК, в частности фактор репарации ДНК PMS2, участвует в запуске остановки пролиферации и старения за счет потери теломер в процессе, который, по-видимому, находится выше p21Cip1. Это отделяет функцию пролонгирования укорочения теломер (PMS2- и p21Cip1-зависимую) от противоопухолевой функции укорочения теломер (p53-зависимую, но независимую от p21Cip1).

albert52
14.04.2021, 07:20
Продолжим.

Старение опосредуется двумя основными путями опухолевого супрессора клетки, а именно путями ARF / p53 и INK4a / RB, поэтому индуцированное онкогеном старение есть механизм, сдерживающий рост потенциально опасных клеток. ARF является критическим сенсором онкогенных сигналов, а критическим медиатором, который активирует p53 в ответ на онкогенную передачу сигналов, является каскад передачи сигналов повреждения ДНК, запускаемый аберрантным запуском фактроров репликации.

Клетки, которые стареют с устойчивой передачей сигналов DDR, содержат устойчивые ядерные фокусы, называемые сегментами ДНК с изменениями хроматина, усиливающими старение (DNA-SCARS). Эти очаги содержат активированные белки DDR, включая фосфо-ATM и фосфорилированные ATM / ATR субстраты, и отличимы от временных очагов повреждения. ДНК-SCARS включают дисфункциональные теломеры или очаги, вызванные дисфункцией теломер (TIF).

Предраковые поражения в легких содержали большое количество стареющих клеток, тогда как аденокарциномы легких почти полностью лишены клеток, положительных по маркерам индуцированного онкогеном старения. Точно так же предраковые невусы и аденомы толстой кишки человека содержали клетки, экспрессирующие маркеры старения, включая передачу сигналов SA-β-gal (Senescence-associated beta-galactosidase) и DDR; однако число стареющих клеток заметно уменьшились в злокачественных меланомах и аденокарциномах, которые развиваются из этих поражений.

У людей стареющие клетки были идентифицированы в доброкачественных поражениях кожи, несущих онкогенный мутант BRAF (BRAFE600); в нейрофибромах пациентов с мутантом NF1 - генетический дефект, который приводит к постоянно высоким уровням активности Ras; и при доброкачественных поражениях простаты. Генетические манипуляции, отменяющие реакцию старения, приводят к полномасштабной злокачественной опухоли. Так, после делеции Suv39H1, гена, кодирующего гистоновую H3-лизин-9-метил -трансферазу, которая, как полагают, участвует в образовании de novo ассоциированных со старением гетерохроматиновых фокусов (SAHF), которые заглушают критические пролиферативные гены, развивается злокачественная лимфома.

Умеренные уровни активности Ras запускают гиперплазию молочных желез, но не способны продуцировать опухоли. Более высокие уровни Ras (аналогичные тем, которые обнаруживаются в спонтанных опухолях) запускают старение и приводят к злокачественным опухолям, когда нарушаются пути, вызывающие старение. Эти результаты также распространяются на Raf, решающий нижестоящий эффектор для Ras-индуцированного старения.
В этом смысле химиотерапевтическое вмешательство, направленное на запуск старения, может оказаться эффективным. Так, для некоторых типов опухолей, таких как гепатокарциномы или саркомы мягких тканей, регресс опухоли может достигаться за счет старения.

Факторы, запускающие старение, также запускают апоптоз и покой, что затрудняет анализ вклада каждой из этих реакций на старение. Клеточное старение может влиять на старение посредством двух неисключительных и, возможно, сопутствующих механизмов :
1. Накопление стареющих клеток в тканях может достигать точки, которая ставит под угрозу функциональность ткани;
2. Старение может ограничивать регенеративный потенциал взрослых стволовых клеток (ограничение, которое также может быть вызвано покоем или апоптозом стволовых клеток).

Стареющие клетки, в отличие от нормальных клеток, обеспечивают лучшую среду и стромальную поддержку раковых клеток (см. выше). Согласно этому представлению, пожилые организмы более подвержены раку из-за комбинации двух факторов: накопления онкогенных мутаций и благоприятной среды для роста рака. Так, многие факторы SASP стимулируют фенотипы, связанные с агрессивными раковыми клетками. Например, стареющие фибробласты секретируют амфирегулин и связанный с ростом онкоген (GROα), которые в моделях клеточных культур стимулируют пролиферацию предраковых эпителиальных клеток. Старые клетки также секретируют высокие уровни интерлейкина 6 (IL-6) и IL-8, которые могут стимулировать предраковые и слабо злокачественные эпителиальные клетки к вторжению в базальную мембрану.

Временная организация стареющего фенотипа : одним из самых ранних событий после остановки роста, является экспрессия IL-1α. Этот цитокин, связанный с клеточной поверхностью, активирует ядерный фактор факторов транскрипции κB (NF-κB) и C / EBPβ, которые необходимы для экспрессии многих белков SASP. Эти действия предшествуют экспрессии белков, которые позволяют иммунной системе убирать стареющие клетки, которые экспрессируют связанные с поверхностью лиганды и молекулы адгезии, на которые нацелены естественные киллеры и другие иммунные клетки, хотя неизвестно, когда эти белки экспрессируются относительно SASP.

Поскольку число стареющих клеток увеличиваются с возрастом, то либо клиренс является неполным (и поэтому стареющие клетки постепенно накапливаются), либо пожилые люди генерируют стареющие клетки быстрее, чем их иммунная система может справиться, либо и то, и другое.
Наконец, стареющие клетки в конечном итоге экспрессируют две микроРНК, mir-146a и mir-146b, которые составляют петлю отрицательной обратной связи для подавления активности NF-κB.
Индукция этих miRNAs может препятствовать тому, чтобы SASP генерировал стойкое острое воспаление, которое, в отличие от хронического воспаления низкого уровня, предназначено для самоограничения. Однако, несмотря на их индукцию, воспалительный ответ может сохраняться, хотя и на низком хроническом уровне, и он может вызывать хронические патологии, связанные со старением.

Расскажем еще о сумоилировании.

SUMOylation - это посттрансляционная модификация, в которой белок из 97 остатков, SUMO (Small Ubiquitin-related Mоdifier) ​​ковалентно присоединяется к специфическим остаткам лизина в белке-мишени. Несмотря на свою ковалентность, это очень кратковременная модификация из-за действия высвобождающих SUMO изопептидаз, названных SENP — SUMO-специфические протеолитические ферменты. Поэтому конъюгация SUMO действует как быстро обратимый переключатель, который может способствовать или ингибировать взаимодействия с белком-субстратом. Статус SUMOylation для все большего числа белков-субстратов играет решающую роль в клеточных реакциях на метаболический и генотоксический стресс, то есть похоже, что повышенное SUMOylation представляет собой клеточную защитную реакцию.

SUMOylation лучше всего охарактеризовано для ядерных белков, участвующих в целостности генома, ядерной структуре и транскрипции, но помимо ядра выяснилось, что SUMOylation играет критическую роль в передаче сигналов, перемещении и модификации цитозольных и интегральных мембранных белков. Так показано, что сумоилирование необходимо для ядерного транспорта в нервной ткани фактора DJ-1, который подавляет транскрипционную активность р53, и мутации в котором зачастую связаны с развитием ранней аутосомно-рецессивной формы болезни Паркинсона.

Есть три подтвержденных паралога SUMO (SUMO-1–3) у позвоночных. SUMO-2 и SUMO-3 идентичны, за исключением трех остатков, но имеют только ~ 48% идентичности последовательности с SUMO-1. Существуют также значительные различия в динамике конъюгации SUMO-1 и SUMO-2/3 и ответах на клеточный стресс. В условиях покоя существует очень мало неконъюгированного SUMO-1, тогда как существует большой свободный пул SUMO-2/3. В целом SUMO-1, по-видимому, участвует в основном в нормальной клеточной физиологии и поддержании, тогда как SUMO-2/3 преимущественно участвует в ответах на клеточный стресс.

Протеолиз белка SUMO осуществляется на С-конце полипептидной цепи, освобождая два остатка аминокислоты глицина — GG. Данная стадия процесса сумоилирования называется «созревание» и осуществляется SUMO-специфическими протеолитическими ферментами — SENP-протеазы у млекопитающих. Далее наш маленький белок SUMO активируется Е1-активирующим ферментом (гетеродимер Aos1/Uba2) и переносится на фермент Е2 (Ubc9). После этапа активации SUMO конъюгируется с субстратом в реакции, которая катализируется ферментами Е3. Как и в случае убиквитинилирования, на молекулу белка-субстрата может переноситься как один остаток SUMO (моносумоилирование), так и несколько (полисумоилирование).
Модификация белков SUMO гораздо реже обнаруживается для большинства белков в клетках по сравнению с модификацией Ub. Основная причина этого различия заключается в том, что модификация SUMO нацелена не на деградацию, а на изменение функции.

albert52
15.04.2021, 22:53
Продолжим.

SENP сильно сконцентрированы в ядре. SENP1 и SENP2 демонстрируют дискретное распределение в ядерных порах и субъядерных компартментах. Оба содержат мотивы сигнала ядерной локализации (NLS) и сигнала ядерного экспорта (NES), позволяющие им перемещаться между ядром и цитоплазмой. SENP3 и SENP5 преимущественно локализуются в ядрышке. SENP6 и SENP7 присутствуют в нуклеоплазме, а SENP6 частично совмещается с ядерными тельцами белков промиелоцитарного лейкоза.

B ответ на стресс увеличенный SENP1, вероятно, усиливает созревание pro-SUMO, делая более активным SUMO доступным для конъюгации, тем самым облегчая глобальное SUMOylation и, в то же время, на фоне повышенного SUMOylation, селективно деконъюгирует SUMO из определенных белков-субстратов.

Стабильность SENP3 контролируется опухолевым супрессорным белком p19 (ARF), который ускоряет зависящий от убиквитин-протеасомной системы (UPS) оборот SENP3. Карбоксильный конец ubiquitin ligase Hsc70-взаимодействующего белка (CHIP) обеспечивает убиквитинирование SENP3 и последующую деградацию в базовых условиях. В стрессовых условиях, однако, SENP3 ассоциируется с молекулярным шаперонным белком теплового шока 90 (Hsp90), который защищает его от CHIP-обеспечиваемого убиквитинирования, тем самым приводя к увеличению уровней SENP3.

Установлено. что функциональные группы / кластеры / сети белков в определенных субклеточных местоположениях подвергаются одновременному SUMOylation в ответ на клеточный стресс. Это подтверждает теорию "Spray", по которой конъюгация SUMO происходит одновременно на пространственно связанных группах субстратов.

SUMOylation, вероятно, обеспечивает механизм защиты клеток от смертельно низких уровней кислорода и глюкозы. Перекись водорода (H2O2) вызывает окислительный стресс и вызывает сложные изменения в глобальных уровнях конъюгации SUMO. Так, SENP1 недавно был идентифицирован как ген гипоксического ответа. Избыточная экспрессия каталитического домена SENP1 увеличивает гибель нейронов в ответ на ишемию. Однако deSUMOylation с помощью SENP1 было предложено как цитопротективное для H2O2 - индуцированной гибели клеток, а истощение SENP1 либо за счет интерференции RNAi (РНК-интерференция (RNAi) - это средство подавления генов посредством деградации мРНК), либо за счет генетического нокаута способствует гибели клеток. SENP3 увеличивается после травматического повреждения спинного мозга, сопутствующего активации каспазы 3.

Стресс эндоплазматического ретикулума (ER) возникает, когда неправильно свернутые белки накапливаются в просвете ER. Это ведет к сложной серии трансляционных и транскрипционных событий, которые пытаются восстановить правильную функцию ER путем ингибирования общего синтеза белка, но способствуя транскрипции шаперонов ER и ферментов фолдинга для усиления процессинга ER и облегчения агрегации белков. В зависимости от степени стресса, развернутый белковый ответ (UPR) может быть либо про-выживанием, либо про-апоптозом, при этом SUMOylation представляет собой новый компонент UPR, который участвует в определении баланса между выживанием и гибелью клеток.

Вкратце, существует три ветви UPR, которые включают инозитол-требующую киназу 1α (IRE1α), протеинкиназоподобную киназу эндоплазматического ретикулума (PERK) и активирующий фактор транскрипции 6 (ATF6). SUMOylation участвует как в путях IRE1α, так и в путях PERK.
Путь IRE1α незаменим для восстановления сворачивания белков или деградации развернутых белков. IRE1α представляет собой ER-трансмембранный белок с киназным доменом и обладает эндонуклеазной активностью. Автофосфорилирование IRE1α запускает сплайсинг мРНК фактора транскрипции XBP1 в активную форму (XBP1s). XBP1s подвергаются SUMO-1- и SUMO-2/3-илированию, опосредованному SUMO E3 лигазой PIASx, указывая тем самым, что сделан еще один ключевой шаг в активации UPR, а гомеостаз ER регулируется с помощью SUMOylation.

PERK активируется посредством автофосфорилирования, которое, в свою очередь, фосфорилирует и инактивирует eIF2α, который подавляет глобальный синтез белка за счет быстрого снижения инициации трансляции. PERK активируется во время церебральной ишемии и реперфузии in vivo и имеет решающее значение для выживания клеток в условиях крайней гипоксии.

Еще модификация Drp1 (Dynamin-1-like protein) с помощью SUMO-1 может способствовать делению митохондрий, тогда как модификация SUMO-2/3 предотвращает это. Более того, SENP5 и SENP3, по-видимому, по-разному регулируют SUMO-1- и SUMO-2/3-илирование Drp1, соответственно потенциально обеспечивая высокочувствительную и детализированную систему регуляции для контроля динамики митохондрий.

Агрессивный подтип PDAC (рак поджелудочной железы) демонстрирует гиперактивность основного пути SUMO и, таким образом, связывает путь SUMO с менее дифференцированными PDAC - базальным подтипом - и н***агоприятный прогнозом. Так, белок 1, взаимодействующий со Smad ядра (SNIP1), динамически де- и ре-SUMOилировался в ответ на лечение гемцитабином; вообще, нарушение равновесия SUMOylation является обычным явлением для фенотипов PDAC, устойчивых к лекарствам.

Так, ядерные тельца белка промиелоцитарного лейкоза (PML) участвуют в регуляции клеточных процессов, имеющих отношение к подавлению опухоли, таких как репарация ДНК и реакция на повреждение ДНК (DDR). Было показано, что функция этих ядерных органелл зависит от соответствующего SUMOилирования основного структурного компонента PML, а гипосумоилирование PML в клетках PDAC было связано с повышенной активацией пути NFκB для опосредования устойчивости к гемцитабину и повышенной активации пути связывания элемента ответа цАМФ, опосредующий устойчивость к оксалиплатину.

Опухолевые клетки подвергаются ограниченному поступлению питательных веществ и гипоксии. Гипоксия запускает адаптивные сигнальные пути, чтобы гарантировать выживание и перестройку клеточного метаболизма, например, индукцию гликолиза. При этом сверхэкспрессируется SUMO-лигаза E3-типа PIAS4 (белковый ингибитор активированного белка STAT 4) и способствует SUMOylation и инактивации VHL (см. выше), что необходимо для полной стабилизации HIF1α. Участие пути SUMO в контроле DDR может объяснить, как лиганд SUMO-2/3 на наночастицах золота повышает чувствительность раковых клеток к облучению.

Амплификация MYC, которая была обнаружена примерно у 14% пациентов с PDAC, является единственной вариацией числа копий, связанной с плохой выживаемостью пациентов с PDAC. Амплификации MYC положительно выбираются во время прогрессирования опухоли, причем активность MYC связана с базальным подтипом заболевания.

Синтетическая летальность обычно относится к ситуации, в которой индивидуальное нацеливание на каждый ген в паре генов допустимо, но комбинированная инактивация вызывает резкое снижение выживаемости раковых клеток. Синтетическая летальность также может возникать между генами и небольшими молекулами, что подтверждается чувствительностью опухолевых клеток, несущих мутации в гене репарации ДНК BRCA1 / 2, к ингибиторам поли-АДФ-рибозо-полимеразы (PARP) и некоторым химиотерапевтическим препаратам, таким как соединения платины. Действительно, преимущества терапии платиной или ингибирования PARP были продемонстрированы у пациентов с BRCA1 / 2 - мутированной PDAC.

Примечательно, что особый вид синтетической летальности, называемый летальностью синтетической дозы, определяет ситуацию, в которой гиперактивность одного гена порождает зависимость от продукта другого гена, и имеет значение в контексте пути MYC. Так, выявлена синтетическую летальность компонентов пути SUMO SAE1 и SAE2 с MYC, подтвержденная при гематологических злокачественных новообразованиях и мелкоклеточном раке легкого (SCLC).

Повышенная экспрессия MYC приводит к митотическим изменениям и создает уязвимости в делящейся клетке, например, повышенная экспрессия MYC связана с неправильным выравниванием хромосом в метафазе с последующим отставанием хромосом в анафазе. Следовательно, раковые клетки с высокой активностью MYC зависят от защитных путей, чтобы справиться с этим конкретным стрессом. Эти защитные пути, которые включают механизм SUMOylation, позволяют клеткам адаптироваться к митотическому стрессу. Блокирование пути SUMO вызывает остановку клеточного цикла в фазе G2 / M, полиплоидию и последующую гибель клеток.

TPX2 (кинезиноподобный белок 2 Xenopus) необходим для сборки веретена во время митоза, и ген непосредственно активируется с помощью MYC. В то время как нормальным клеткам требуется небольшое количество белка для сборки веретена, раковые клетки с высокой экспрессией MYC зависят от TPX2, чтобы эффективно формировать веретено и прогрессировать через митоз, то есть TPX2 является синтетическим летальным геном, ассоциированным с MYC. Вообще, многие белки, несущие множественные сайты SUMO, являются митотическими белками, и все BIRC5, EG5 и TPX2 могут быть SUMOylated.

Forlife
16.04.2021, 19:35
Рак никуда не денется.
Лучше про корону, мутации, вакцины, тромбы запузырь и что с этой приблудой делать ?

albert52
18.04.2021, 17:06
Что делать?... работать с ними, как говаривал товарищ Сталин, благо соответствующие технологии имеются. Я же уже на пенсии и могу только по-стариковски ковыряться на таком интереснейшем и благодатном поле, каким является рак.

albert52
06.05.2021, 11:43
Продолжим.

SUMO PTM представляет собой динамический биомаркер реакции на применяемые в настоящее время химиотерапевтические методы. Кроме того, исследование специфической роли SENP, которые в нормальных клетках жестко контролируют равновесие SUMOylation, может предоставить информацию для дополнительного фармакологического вмешательства в MYC / SUMO-активированный PDAC и другие виды рака. Впрочем, для более точного определения доли PDAC, чувствительной к ингибитору SAE, следует рассмотреть другие маркеры, помимо MYC. Клинические данные на примере рака толстой кишки указывают на ценность комбинации двух или более целевых методов лечения для лечения солидного рака. Кроме того, первый в своем классе ингибитор СУМО, ТАК-981, продемонстрировал иммуномодулирующие свойства.

Каскад SUMOylation уравновешивает передачу сигналов врожденного иммунитета посредством регулирования ответов интерферона I типа (IFN) и активности NF-каппа-B (NF-k B). Так, СУМОилирование IFN-регуляторного фактора транскрипции IRF3 отрицательно регулирует транскрипцию IFNβ. Следовательно, десумоилирование IRF3 с помощью SENP2 индуцирует транскрипцию IFNβ.

Еще одним эффектором нашего врожденного иммунитета является GMP-AMP-синтаза (cGAS), которая воспринимает вирусную ДНК и, следовательно, активирует стимулятор генов интерферона (STING). Впоследствии STING стимулирует IFN 1-го типа. Лигаза E3 TRIM38 SUMOилирует cGAS и STING, что приводит к их стабилизации на ранних стадиях после заражения. В позднем инфекционном состоянии SENP2 де-СУМОилирует cGAS и STING, что приводит к их деградации и, таким образом, снижает иммунный ответ. Напротив, также было обнаружено, что SUMOylation подавляет потенциал восприятия ДНК cGAS, который может быть снят с помощью SENP7, показывая в целом подавляющий эффект SUMOylation на активацию иммунной системы (см. выше).

Фенотипическими характеристиками, иллюстрирующими потерю SUMOylation в клетках, являются анеуплоидия и образование хроматинового мостика. Оставшийся участок ДНК между двумя дочерними клетками в случае образования хроматинового мостика мешает клеткам должным образом делиться и запускать свой собственный независимый клеточный цикл. В целом аберрантная экспрессия протеаз SUMO останавливает пролиферацию клеток и приводит к дефектной морфологии ядра и двуядерным клеткам.

Существует все больше исследований, связанных с SUMOylation, и основное внимание уделяется ингибиторам регуляторов SUMOylation. SUMO E1 представляет собой димер, состоящий из субъединиц SAE1 и UBA2 / SAE2 и нокдаун этих субъединиц блокирует пролиферативную способность раковых клеток. Так, ингибиторы лигазы SUMO E1 обладают преимуществами более высокой селективности и меньшего количества побочных эффектов. Первые зарегистрированные ингибиторы SAE1 / 2 представляют собой природные соединения, включая гинкголиновую кислоту, ее структурный аналог анакардиновую кислоту и керриамицин B. Эти соединения ингибируют образование промежуточного соединения SAE1 / 2-SUMO, следовательно, блокируя конъюгацию SUMO с белками-мишенями. Другим природным веществом, блокирующими SAE1 / 2, является дубильная кислота с аналогичный механизм действия.

Ограничения этих натуральных продуктов состоят в том, что они в основном функциони -руют в микромолярном диапазоне и не нацелены только на сумоилирование. Известно, что гинкголевая кислота нацелена на провоспалительные молекулы, такие как простагландины и лейкотриены, и дубильная кислота может также вызывать гибель раковых клеток через активацию апоптоза, а не через ингибирование прогрессирования клеточного цикла, как ожидается для ингибитора SUMOylation.

Полипептиды цистеиновых протеаз могут действовать как аналоги SENP и обладают способностью отщеплять SUMO от целевого белка и / или расщеплять форму предшественника SUMO с высвобождением его активной формы.

Пять регуляторов SUMOylation (PIAS1, PIAS3, SENP8, SUMO4 и TRIM27), которые присутствовали в сигнатуре риска. Большинство этих регуляторов обладают значительным активационным эффектом в пути клеточного цикла, а в пути RAS / MAPK обладают значительным ингибирующим действием. Биологические эффекты этих регуляторов в онкогенезе и развитии разнообразны.
Эти регуляторы могут быть потенциальным индикатором прогноза множественных опухолей. Эти регуляторы SUMOylation имеют более низкую общую среднюю частоту мутаций при 33 типах рака, хотя регуляторы SENP1, SENP5, SENP7 и PIAS3 имеют более высокие частоты мутаций. SENP2, SENP5, CBX4 и TRIM27 показали более обширную CNV амплификацию (сopy number variation - - это явление, при котором участки генома повторяются, а количество повторов в геноме варьируется от человека к человеку); напротив, SENP3 и SUMO4 имели более обширные CNV делеции.

SENP1 высоко экспрессируется в образцах рака простаты человека и коррелирует с экспрессией индуцируемого гипоксией фактора 1α (HIF1α). SENP1 индуцирует транс -формацию здоровой простаты в предраковые поражения in vitro и in vivo. PIAS1 и PIAS4 необходимы в процессе репарации после повреждения ДНК. SENP1 может регулировать MMP-2 и MMP-9 через сигнальный путь HIF1α, тем самым способствуя прогрессированию клеточных линий рака простаты и метастазам в кости.

Связанный с аутофагией белок 8 ( Atg8 ) представляет собой убиквитиноподобный белок, необходимый для образования мембран аутофагосом. Временная конъюгация Atg8 с аутофагосомной мембраной посредством ubiquitin-подобной системы конъюгации важна для аутофагии у эукариот. У высших эукариот Atg8 не кодируется одним геном, как у дрожжей, а происходит из мультигенного семейства. Четыре его гомолога уже идентифи -цированы в клетках млекопитающих.
Одним из них является LC3 ( MAP1LC3A ), легкая цепь белка 1, связанного с микротрубоч -ками. Подобно Atg8, LC3 необходимо протеолитически расщеплять и липидировать, чтобы превратить в активную форму, которая может локализоваться на мембране аутофагосомы. Подобно ситуации с дрожжами, процесс активации LC3 запускается истощением питатель -ных веществ, а также в ответ на гормоны. Изоформы LC3 млекопитающих содержат консервативный Ser / Thr12, который фосфорилируется протеинкиназой А для подавления участия в аутофагии / митофагии.
Другими гомологами являются транспортный фактор GATE-16 (усилитель АТФазы, ассоциированный с Гольджи, 16 кДа), который играет важную роль в везикулярном транспорте внутри Гольджи, стимулируя активность АТФазы NSF (N-этилмалеимид-чувствительный фактор) и GABARAP (белок, связанный с рецептором γ-аминомасляной кислоты типа A), который облегчает кластеризацию рецепторов GABAA в сочетании с микротрубочками.
Все три белка характеризуются процессами протеолитической активации, в результате которых они липидируются и локализуются на плазматической мембране. Однако для GATE-16 и GABARAP мембранная ассоциация, по-видимому, возможна даже для нелипидированных форм. взаимодействия с одним из гомологов ATG4 млекопитающих, hATG4A.

Еще одним убитиквиноподобным белком является ATG12 Autophagy related 12); аутофагия - это процесс разрушения большого количества белка, при котором компоненты цитоплазмы, включая органеллы, заключены в двухмембранные структуры, называемые аутофагосомами, и доставляются в лизосомы или вакуоли для деградации.
Аутофагия требует ковалентного присоединения белка Atg12 к ATG5 через систему конъюгации, подобную убиквитину. Конъюгат Atg12-Atg5 затем способствует конъюгации ATG8 с липидным фосфатидилэтаноламином. Было также обнаружено, что Atg12 участвует в апоптозе. Этот белок способствует апоптозу за счет взаимодействия с антиапоптотическими членами семейства Bcl-2 .

Отметим, что ATG5 является ключевым белком, участвующим в расширении фагофорной мембраны в аутофагических пузырьках. ATG5 также может действовать как проапоптотическая молекула, нацеленная на митохондрии . При низких уровнях повреждения ДНК ATG5 может перемещаться в ядро и взаимодействовать с сурвивином .

albert52
11.09.2021, 19:36
Вернемся к расширенной версии рака желудка.

Из трех основных типов злокачественных опухолей желудка, аденокарциномы желудка (GC), неходжкинской лимфомы и стромальных опухолей желудочно-кишечного тракта, приблизительно 95% составляют GC, который остается одним из наиболее часто диагностируемых видов рака в мире.

Опухоли чаще возникают в антруме или нижней трети желудка, наиболее часто на малой кривизне. Некоторые из таких опухолей многоцентровые. Их локализация, видимо, меняется с возрастом, с увеличением проксимальных опухолей и снижением их в антруме.

РЖ подразделяют на 2 основные категории: ранний (early carcinoma) и распространенный (advanced carcinoma). К раннему относят рак, поражающий слизистую оболочку желудка или подслизистый слой, независимо от наличия или отсутствия метастазов в лимфатических узлах, которые можно диагностировать лишь гистологически. При нем 5-летняя выживаемость находится в пределах 90-100 %.

Процесс опухолевой трансформации клеток до первых клинических проявлений РЖ длительный, многоэтапный. Продолжительность «естественной эволюции» РЖ составляет 15-25 лет, что обусловливает возможность его диагностики на ранней стадии, которая может продолжаться с момента обнаружения заболевания от 6 мес до 10 лет и более. Лица с высокой степенью риска заболевания РЖ, у которых морфологически была диагностирована тяжелая интраэпителиальная неоплазия (дисплазия) эпителия, подлежат динамическому наблюдению с обязательным проведением рентгеноскопии и гастроскопии не менее чем 2 раза в год.

РЖ - очень гетерогенное заболевание с морфологической и молекулярной точек зрения. Также гистологическое строение РЖ отличается многообразием форм аденокарциномы, происходящей из камбиальных эпителиальных клеток слизистой желудка, находящихся в области шейки желудочных желез. Размножаясь эти клетки как поднимаются в зону покровного эпителия, так и спускаются в главную часть желез; этим железы желудка напоминают крипты толстой кишки.

Во многих случаях обнаруживаются сочетания различных гистологических форм РЖ. По мере инвазии карциномы в глубь стенки желудка комплексы опухолевых клеток зачастую утрачивают дифференцировку и предстают в виде мелких лимфоцитоподобных клеток, образуя тяжи и мелкие трубчатые структуры.

Кардиальная GC делится на две различные этиологические сущности: GC кардии, подобной пищеводу, которая связана с гастроэзофагеальным рефлюксом, курением и диетой и часто встречается в регионах с низким риском GC, и дистальной желудочно-подобной GC кардии, связаной с наличием H. pylori и атрофией слизистой, и является наиболее частым вариантом GC кардии в регионах с высоким риском GC.

GC некардиального типа в соответствии с классификацией Лорена подразделяются на два гистологических варианта, называемые GC кишечного и диффузного типов. Оба типа РЖ одинаково ассоциированы с H. pylori инфекцией, однако H. pylori инфекция может играть роль только на начальных этапах канцерогенеза. GC кишечного типа характеризуется образованием железистых структур, дистальной локализацией в желудке и обычно встречается у пожилых людей. Она также чаще встречается у мужчин (соотношение 2: 1) и у лиц с более низким социально-экономическим статусом. Этому типу GC часто предшествует предраковая фаза, которая начинается с перехода нормальной слизистой оболочки в мультифокальный атрофический гастрит. Это первоначальное гистологическое изменение сопровождается кишечной метаплазией, дисплазией и, наконец, аденокарциномой.

Высокая пролиферативная активность клеток «кишечного» рака определяет высокую скорость их роста. Быстрое клиническое течение рака интестинального типа определяет его ранние клинические проявления, а тесная связь клеток ведет к меньшей инвазивности, чем обеспечивается возможность радикальной операции. Так, интестинальные опухоли, как правило, являются экзофитными, часто изъязвляются, ассоциированы с гастритом тела желудка, с атрофией и кишечной метаплазией. Кишечный тип рака состоит из клеток, формирующих железы. Четко формируемые железы определяются как высокодифференцированная аденокарцинома, плохо формируемые железы – как низкодифференцированная аденокарцинома.

Диффузный тип рака обладает более низкой пролиферативной активностью, что определяет длительность латентного течения таких опухолей. Слабая связь клеток друг с другом ведет к высокой инвазивности диффузного рака, что определяет больший объем радикального оперативного вмешательства и объясняет более низкий процент 5-летней выживаемости. С другой стороны, GC диффузного типа плохо дифференцируется, поражает более молодых людей и тесно связана с генетической предрасположенностью (вариант наследственного диффузного GC, который связан с мутациями зародышевой линии в CDH1, гене, кодирующем E-кадгерин). Кроме того, она не связана с формированием предраковых поражений и, как было установлено, распостраняется на всю поверхность желудка. Этот тип GC одинаково присутствует у представителей обоих полов и связан с худшим прогнозом по сравнению с GC кишечного типа.

Отметим, что гетерозиготные мутации зародышевой линии неоднократно обнаруживались в гене E-кадгерина ( CDH1 ) и гене α-E-катенина ( CTNNA1 ), что подчеркивает их инактивацию и, следовательно, снижение сцепления клеток. Мутации этих генов считаются главной причиной HDGC ( наследственный диффузный рак желудка - см.выше ). У людей с мутацией в гене CDH1 пожизненный риск диффузного рака желудка оценивается к 80 годам от 67% до 70% для мужчин и от 56% до 83% для женщин. Женщины с мутацией в гене CDH1 имеют также к 80 годам примерно от 39% до 52% риска развития дольчатого рака молочной железы.

Если поподробней, то семейная или наследственная диффузный рак желудка является аутосомно доминирующей наследственной предрасположенностью к канцерогенезу клеток желудка в зародышевой линии на основе мутаций в гене CDH1. Опухоль проникает в стенку желудка и обычно приводит к утолщению стенки, не будучи видимым в виде язвы (как при кишечном раке желудка).

Обычно каждая клетка имеет по 2 копии каждого гена: 1 унаследован от матери и 1 унаследован от отца. HDGC следует аутосомно-доминантному типу наследования, при котором мутация происходит только в 1 копии гена. Это называется мутацией зародышевой линии. Следовательно, ребенок, у которого есть родитель с мутацией, имеет 50% шанс унаследовать эту мутацию.

Средний возраст начала HDGC у носителей мутации - 38 лет (диапазон от 14 до 69 лет), кумулятивный риск развития HDGC до 80 лет составляет 80% для мужчин и женщин. Если затронутые семьи соответствуют указанным ниже критериям показаний, частота обнаружения мутаций в CDH1 составляет 25-50%. Поэтому мутации в этом гене, вероятно, не единственная причина семейной диффузной карциномы желудка.

В семьях с признаками мутаций риск заболевания низок до 20 лет, поэтому профилактическая гастрэктомия рекомендуется носителям в возрасте от 20 лет (исключения в особенно раннем возрасте появления в семье). В подвергшихся контролю семьях без признаков мутации результаты патологической биопсии (гастроскопия один раз в год, 30 биопсий) являются показанием для гастрэктомии.

Смешанный РЖ, определяемый двойным паттерном дифференцировки - железистая / солидная (кишечная) и изолированно-клеточная карцинома (диффузная) демонстрирует двойную метастатическую картину (гематогенные метастазы и перитонеальное распространение с метастазами в лимфатические узлы), предполагая кумулятивный эффект н***агоприятного поведения кишечного и диффузного GC.

albert52
11.09.2021, 19:46
Продолжим.

В группу риска развития РЖ следует отнести лиц, с детского возраста имеющих высокие показатели обсемененности слизистой оболочки H. pylori или страдающих заболеваниями, ассоциированными с хеликобактериозом; пациентов, в течение значительного времени страдающих хроническим гастритом (как с пониженной, так и с нормальной или повышенной кислотностью), аденомами (аденоматозными полипами), язвенной болезнью желудка, пернициозной анемией, с резецированным желудком, болезнью Менетрие, а также в случае семейной предрасположенности к РЖ.

Так как в здоровой слизистой оболочке рак практически не возникает, в последние годы сформировалось представление о предраковой патологии желудка, в спектре которой Н. pylori-ассоциированный хронический гастрит занимает центральное место. Впрочем, хотя инфекция H. pylori была признана наиболее важным фактором риска развития GC и классифицирована Всемирной организацией здравоохранения в 1994 году как канцероген класса 1, этиология GC также включает факторы хозяина и окружающей среды. Об этом свидетельствует тот факт, что только у 1–3% пациентов, инфицированных H. pylori, развивается GC, и что прогрессирование до GC у некоторых субъектов происходит даже после уничтожения бактерии.

Имеются данные, что персистенция инфекции Н. pylori увеличивает риск развития рака желудка в 4-9 раз, особенно в случаях инфицирования в детском возрасте; в целом до 80% аденокарцином желудка связаны с Н. pilori-ассоциированным хроническим атрофическим пангастритом. Впрочем, современные представления состоят в том, что Н. pylori скорее действует в качестве промотора, чем инициатора желудочного канцерогенеза.
При инфекции экспрессия эпителиальными клетками IL-8 запускает цитокиновый провоспалительный каскад. Мобилизованные моноциты и нейтрофилы экспрессируют, в свою очередь, IL-10, являющийся одним из мощнейших ингибиторов кислотообразования. Таким образом, IL-10 потенцирует воспалительные изменения в слизистой оболочке и вызывает достаточно выраженную гипохлоргидрию, облегчающую колонизацию Н. pylori в желудке.

Helicobacter pylori - грамотрицательная бактерия, поражающая почти 50% населения человека. В слизистой оболочке желудка большая часть Helicobacter pylori находится в слое слизи, но они также могут прикрепляться к эпителиальным клеткам, что приводит к поддержанию, распространению и серьезности инфекции. Инфекция H. pylori была связана с развитием ряда заболеваний, включая язвенную болезнь (10%), некардиальную GC (1-3%) и лимфому, ассоциированную со слизистой оболочкой желудка (MALT) (<0,1 %).

Более того, эта бактерия ассоциирована с тремя различными фенотипами у инфицированного хозяина:
(1) гастрит с преобладанием поражения дна и тела желудка, который может привести к атрофическому гастриту, гипохлоргидрии и развитию GC; при фундальном и мультифокальном гастритах у 1% пациентов ежегодно развивается рак желудка и практически не встречаются дуоденальные язвы.
(2) фенотип язвы двенадцатиперстной кишки, при котором гастрит с преобладанием антрального отдела желудка приводит к повышенной секреции кислоты желудочного сока. Впрочем отмирание париетальных клеток без последующей регенерации начинается в антральном отделе желудка. В нём обнаруживают первичные очаги атрофии. Со временем болезнь прогрессирует, функционирующие железы заменяются кишечным слоем эпителия. Атрофический антральный гастрит при длительном течении опасен перерождением изменённых участков в злокачественную опухоль.
(3) доброкачественный фенотип, при котором бактериальная инфекция вызывает легкий смешанный гастрит, который оказывает незначительное влияние на выработку кислоты желудочного сока.

Отметим, что на фенотип Н. pylori-accoцииpoванного гастрита влияет секреция соляной кислоты. Если ее уровень низкий, Н. pylori может колонизировать любой отдел желудка, при сохранной (повышенной) кислотности единственным местом, где может выжить микроорганизм, является антральный отдел, для которого характерны более низкие значения рН. В этом случае ведущую роль в развитии конкретного фенотипа будет играть возраст, в котором произошло заражение, поскольку для детей более характерно состояние гипоацидности, а для взрослых - нормацидности.

Поверхностный гастрит с фундальной или мультифокальный локализацией приводит к потере желудочных желез с замещением их фиброзной тканью или (что более типично) метаплазированным эпителием. Именно этот вариант гастрита создаст фон для карциномы кишечного типа.

Динамическое наблюдение за больными, инфицированными Н. pylori, позволило выделить две формы хронического гастрита - хронический поверхностный и хронический атрофический, являющиеся, по сути, последовательными этапами развития хронического геликобактерного гастрита. С другой стороны, большинством специалистов, занимающихся вопросами геликобактерноза, выделяются два фенотипа геликобактерного гастрита - классический антральный и фундальный (мультифокальный). Именно топографические особенности гастрита, а не выраженность воспаления определяют клинические последствия инфицирования Н. pylori.

Необходимо отметить, что именно Cag-A-позитивные штаммы Н. pylori инициируют более высокий уровень пролиферации эпителиоцитов. При этом уровень апоптоза не соответствует ускоренной пролиферативной активности эпителия, возникает дисбаланс между гибелью клеток и их размножением, что увеличивает возможность "выживания" мутаций, имеющих канцерогенный потенциал. Отчасти это объясняется более активной экспрессией IL-8 Cag-А-позитивными штаммами Н. pylori, а следовательно, и более выраженным воспалением.

H. пилори приобретается в начале жизни, большинство людей заражается в возрасте до 10 лет при контакте с близкими, которые являются общим источником инфекции. Было высказано предположение, что раннее заражение может быть связано с широким спектром патологий, связанных с инфекцией H. pylori, и с очень устойчивыми уровнями заболеваемости GC в генетически восприимчивых популяциях, которые мигрировали в развитые страны. При отсутствии антибактериальной терапии H. pylori инфекция обычно сохраняется на всю жизнь.

Способность H. pylori выживать и колонизировать желудок связана с рядом механизмов. Самое главное: H. pylori в отличие от других бактерий вырабатывает большое количество фермента уреазы, гидролизующего мочевину до аммиака, который впоследствии взаимодействует с ионами водорода в желудке с образованием аммония. Можно еще отметить "недоступность" бактерии для антител в слое желудочной слизи, невозможность выделения IgG в просвет желудка при относительном дефиците секреторных IgA, а также "антигенную мимикрию" Н. pylori.
Кроме того, H. pylori экспрессирует несколько белков внешней мембраны, включая антигенсвязывающий адгезин группы крови (BabA), адгезин, связывающий сиаловую кислоту (SabA) и внешний воспалительный белок (OipA), которые, по-видимому, связываются с рецепторами на поверхности эпителиальных клеток желудка, что снижает скорость выведения бактерий в результате перистальтики.

Тот факт, что более одного штамма H. pylori могут колонизировать слизистую оболочку желудка, дает H. pylori возможность приобретать новые генетические последовательности и подвергаться событиям рекомбинации.

albert52
11.09.2021, 19:54
Продолжим.

Хронический гастрит (некоторые исследователи его рассматривают как гастропатию, так как атрофические и пролиферативные процессы превалируют над воспалительными) предшествует возникновению рака желудка в 73,5-85 % случаев.

Установлено, например, что у 1% больных антральным хроническим гастритом ежегодно возникают дуоденальные язвы, но у них не развивается рак желудка; при фундальном и мультифокальном гастритах ежегодно у 1% пациентов развивается рак желудка и практически не встречаются дуоденальные язвы ("язвенный" и "раковый" фенотипы хронического гастрита по P. Sipponen). Возможное объяснение этому кроется в том, что фенотип Н. pylori-accoцииpoванного гастрита влияет на секрецию соляной кислоты. Если ее уровень низкий, Н. pylori может колонизировать любой отдел желудка, при сохранной (повышенной) кислотности единственным местом, где может выжить микроорганизм, является антральный отдел, для которого характерны более низкие значения рН. В этом случае ведущую роль в развитии конкретного фенотипа будет играть возраст, в котором произошло заражение, поскольку для детей более характерно состояние гипоацидности, а для взрослых - нормацидности.

Участки атрофии чередуются с участками разрастания соединительной ткани. Уплотнения появляются в случаях, когда острая фаза заболевания прошла без лечения. Такой процесс называют гиперплазией. Клетки в утолщённых участках активно делятся, что может привести к образованию полипов.
Аденоматозные полипы (аденомы) представляют собой аналог аденом толстой кишки. Эти новообразования имеют вид узла на широком основании. Микроскопически представляют собой тубулярные и тубулопапиллярные хаотические эпителиальные разрастания, выстланные высоким цилиндрическим эпителием, с вытянутыми и расположенными на различных уровнях ядрами и высоким ядерно-цитоплазматическим отношением. Частота малигнизации аденом чрезвычайно высока и кол***ется, по данным большинства исследователей, в пределах 30-40 %.

Для обозначения предраковой эпителиальной пролиферации слизистой оболочки желудка, промежуточной между гиперплазией и раком, предложен термин «желудочная интраэпителиальная неинвазивная неоплазия» (синоним «дисплазия»). Для нее характерны нарушение дифференциации клеток с клеточной атипией, а также дезорганизация структуры слизистой оболочки.

Под кишечной метаплазией в слизистой оболочке желудка принято понимать замещение желудочного эпителия кишечным (см. выше). Метаплазия с наличием клеточных элементов тонкой или толстой кишки расценивается соответственно как тонко- и толстокишечная. Раньше тонкокишечную метаплазию отождествляли с полной метаплазией (метаплазия эпителия с наличием всех клеток, свойственных тонкой кишке), а толстокишечную - с неполной. Но даже при полной метаплазии не обнаруживается весь спектр клеток, характерных для тонкой кишки, а также нередкой встречаемостью смешанного типа кишечной метаплазии.

С позиций современного понимания процесса метаплазии как адаптивной перестройки на иной клеточный фенотип - более приспособленный к изменившимся условиям окружения, полную метаплазию можно рассматривать в качестве начального этапа такой перестройки, а неполную - как нарушение процессов дифференцировки. Так, при неполной метаплазии выявляются полиморфизм ядер, увеличение ядерно-цитоплазматических соотношений; поверхностные отделы желез практически не отличаются от глубоких, что говорит о нарушении созревания и аберрантной дифференциации. Все эти картины показывают сходство неполной кишечной метаплазии с дисплазией.

Важную роль в канцерогенезе GC принадлежит нарушениям процессов апоптоза и, соответственно, нарушениям в сигнальных путях, его регулирующих, прежде всего пути AKT, который наиболее часто подвержен гиперактивации. Для атрофического гастрита без хеликобактерного инфицирования характерен средний уровень ИА (индекса апоптоза) и низкий уровень экспрессии mTOR, при метаплазии слизистой отмечалось как повышение ИА, так и уровня экспрессии mTOR, а при раке желудка ИА значительно снижался, а экспрессия mTOR оставалась на высоком уровне. Учитывая высокмй уровень биосинтетических процессов в раковых клетках это не удивительно.

Регуляция пролиферации и апоптоза в эпителиоцитах при неполной кишечной метаплазии сильно нарушена, в некоторых из них выявляется мутация гена р53, что позволяет данным клеткам подвергнуться дальнейшему перерождению под влиянием различных мутагенов, вплоть до злокачественного, поскольку они защищены от апоптоза. Все эти явления не отмечаются при полной метаплазии, что позволяет утверждать - полная кишечная метаплазия не может быть предраком биологически.

Выявление неполной кишечной метаплазии показало высокую специфичность этого признака (98%) для рака желудка, однако чувствительность оказалась достаточно низкой - всего 38%, что свидетельствует об ограниченном значении неполной кишечной метаплазии как показателя прогноза развития рака кишечного типа. Высказывается мнение, что маркером повышенного риска возникновения последнего является не столько тип кишечной метаплазии, сколько площадь замещения желудочного эпителия.

Для выявления подтипов кишечной метаплазии имеет значение присутствие цилиндрических клеток с различными вариантами образования муцинов. При полной кишечной метаплазии муцины не обнаруживаются, типичным же является наличие выраженной щеточной каймы.

В целом замещение одного типа ткани на другой происходит в несколько ступеней. На начальном этапе хронический антральный атрофический гастрит характеризуется тонкокишечной метаплазией. Со временем железы трансформируются в незрелый и позже в зрелый толстокишечный эпителий. Процесс замещения одного вида ткани на другой длится 5–6 лет.

В гистологической классификации опухолей желудка ВОЗ (2000) выделены 2 степени выраженности интраэпителиальной неоплазии: слабая (low-grade) и тяжелая (high-grade). Слабо выраженную интраэпителиальную неинвазивную неоплазию очень трудно отличить от регенерирующего эпителия. Появление высокой степени интраэпителиальной неоплазии - маркер повышенного риска развития и этап морфогенеза РЖ. Последнее поражение рассматривается как внутрислизистая неинвазивная карцинома, которая может выглядеть как плоское (дисплазия) или возвышающееся (аденома) поражение.

Следует отметить, что у пациентов с кишечной метаплазией в зоне пищеводно-желудочного перехода и в пищеводе риск развития рака существенно выше, чем у пациентов с кишечной метаплазией в «некардиальном» отделе желудка.

albert52
11.09.2021, 20:12
Продолжим.

На основе комплексного анализа молекулярной информации команда TCGA предложила систему классификации, в которой GC разделен на четыре подтипа: EBV (вирус Эпштейна–Барр)-положительный, микросателлитно-нестабильный, геномно стабильный и хромосомная нестабильность (CIN).
Азиатская группа по исследованию рака (ACRG) в свою очередь описала четыре молекулярных подтипа с различными прогностическими эффектами:
(1) опухоли с высоким MSI, морфологией кишечника и наилучшим прогнозом;
(2) MSS / EMT GC с диффузной морфологией и худшим прогнозом;
(3 и 4) аденокарциномы MSS без сигнатуры EMT, либо TP53-активные (MSS / TP53 +), либо неактивные (MSS / TP53-), и с промежуточным прогнозом. Подтип MSS / TP53- (который примерно соответствует подтипу пролиферации и CIN) встречается часто (36-50% GC) и содержит геномные амплификации TKR (Tyrosine Kinase Receptor), которые представляют собой трансмембранные белки, обладающие сайтами связывания в своих внеклеточных доменах для полипептидных гормонов и факторов роста (лигандов)) и / или RAS, которые используются или являются потенциальными терапевтическими мишенями.

Нарушения эпигенетической регуляции могут способствовать злокачественной трансформации клеток желудка. Инактивация транскрипции метилированием цитозина на промоторных CpG-островках генов репарации несоответствия ДНК (MMR) или генах-супрессорах опухолей является важным механизмом, способствующим развитию нескольких видов рака у человека. Например, гиперметилирование промоторной области hMLH ( гена репарации ошибочного спаривания гомолога ДНК) нарушает регуляцию механизмов репарации ДНК, что приводит к фенотипу микросателлитной нестабильности (MSI), что можно наблюдать, сравнивая микросателлитные локусы в опухолевой и нормальной ДНК.

Нестабильность генома - ключевой клеточный процесс, при котором клетки приобретают мутации с повышенной скоростью, что способствует накоплению мутаций, что в конечном итоге приводит к онкогенезу. Нестабильность генома может быть вызвана мутациями в генах, обеспечивающих уход за ДНК, которые участвуют в обнаружении и восстановлении повреждений ДНК. Например, TP53 и BRCA2 - два ключевых гена-драйвера, которые часто мутируют в GC: TP53 представляет собой ген- супрессор опухоли, кодирующий фактор транскрипции p53, который регулирует гены остановки роста. Мутации в p53 отменяют обнаружение клетками повреждения ДНК, что приводит к аберрантному росту клеток. Точно так же BRCA2 участвует в репарации двухцепочечных разрывов ДНК.

Два фенотипа для геномной нестабильности являются общепринятыми при GC : фенотип, ассоциированный с микросателлитной нестабильностью (МSI), и фенотип, связанный с хромосомной нестабильностью (CIN). Эти фенотипы не являются независимыми и в некоторых случаях могут накладываться друг на друга.

Анеуплоидия ДНК наблюдалась уже во внутрислизистых GC диаметром менее 5 мм, а также в ранних GC. Сходным образом, изменения числа копий были обнаружены в предшественниках GC, a MSI был идентифицирован при кишечной метаплазии, аденоме желудка и ранней GC. Изменения числа соматических копий (SCNA) включают структурные вариации в ДНК, которые возникают из-за изменений числа копий ДНК; SCNA могут включать фокальные области генома или широкие хромосомные области ДНК. В GC специфические SCNA связаны с гистологическим типом. Увеличение числа копий на 8q, 17q и 20q связано с кишечным GC, тогда как прирост на 12q и 13q связано с диффузным GC; так, увеличение 1q, и потеря 18q связаны с плохим прогнозом.

GC демонстрируют частые амплификации в генах сигнального пути RTK / RAS / MAPK , и амплификации генов ERBB2 , EGFR , MET , FGFR2 и KRAS используются для классификации GC на пять подгрупп, что позволяет индивидуализировать лечение каждой подгруппы различными препаратами. Например, на ERBB2 , EGFR , MET и FGFR2 могут быть нацелены лекарства трастузумаб, нимотузумаб, онартузумаб и AZD4547 соответственно. По сути, 37% популяции GC потенциально можно лечить препаратами, нацеленными на этот путь.

Гены PD-L1 и PD-L2 (ингибиторы иммунных контрольных точек), часто амплифицируются в подгруппе EBV-положительных форм рака. Также сообщается о ко-амплификации генов, связанных с клеточным циклом, с другими онкогенами. Например, CCNE1 (Cyclin E1) часто коамплифицируется с HER2 и пациенты с GC с коамплификацией CCNE1 / HER2 обычно развивали устойчивость к лапатинибу, низкомолекулярному ингибитору HER2.

KLF5 , GATA4 и GATA6 существуют в одном комплексе и действуют совместно как онкогены «выживания клонов», способствуя пролиферации клеток; 30% пациентов с ГК показали их амплификацию. При этом KLF5 физически взаимодействует с факторами GATA, поддерживая кооперативную регуляцию KLF5 / GATA4 / GATA6 на совместно оккупированных генах; истощение и сверхэкспрессия этих факторов, по отдельности или в комбинации, уменьшали и способствовали пролиферации рака, соответственно. Отметим, что Krüppel-подобные факторы (Klf) 4 и 5 являются двумя близкородственными членами семейства Klf, которые, как известно, играют ключевую роль в регуляции клеточного цикла, репрограммировании соматических клеток и плюрипотентности.

HNF4α (Hepatocyte Nuclear Factor 4 alpha) совместно регулируется этими тремя факторами транскрипции, и на него может действовать антидиабетический препарат метформин. HNF4α может негативно регулировать «метаболический переключатель», характерный для общего злокачественного фенотипа. Этот метаболический переключатель делает упор на производство промежуточных продуктов для роста и деления клеток, и он регулируется как онкогенами, так и генами-супрессорами опухолей в ряде ключевых путей образования рака.

Путь AMPKα-HNF4α-WNT5A активируется в тканях ранней стадии GC. HNF4α подавляется сигнальной передачей AMPKα и агонистом AMPK метформином; блокада активности HNF4α приводит к подавлению регуляции циклина, остановке клеточного цикла и ингибированию роста опухоли. HNF4α регулирует передачу сигналов WNT через свой целевой ген WNT5A, потенциальный прогностический маркер опухолей желудка диффузного типа.

Потеря гетерозиготности (LOH) или делеция генома - еще один маркер CIN, который часто наблюдается при GC. Геномные делеции могут вызывать потерю генов-супрессоров опухолей, и степень потери генома может иметь прогностическое значение. Например, исследования LOH классифицировали GC на два подтипа: LOH высокого уровня (LOH-H) коррелирует с GC кишечного или смешанного типа, тогда как низкий уровень LOH (LOH-L) коррелирует с GC диффузного типа. Изменение с LOH-L на LOH-H указывает на увеличение CIN во время развития GC на более поздней стадии.

Транслокации, амплификации и перестройка хромосом также могут приводить к образованию химерных генов или генов слияния. Выявлен ген слияния CD44 - SLC1A2 , который возникает из-за хромосомной точки разрыва в SLC1A2, возникающей в результате геномной инверсии. Этот химерный белок может способствовать развитию GC за счет изменения метаболических путей. Также сеть TCGA сообщила об открытии слитого гена CLDN18-ARHGAP26 , возникающего в результате межхромосомной транслокации и в основном встречающегося в геном-стабильных / диффузных GC. Экспрессия CLDN18-ARHGAP26 в эпителиальных клетках желудка приводит к эпителиально-мезенхимальному переходу (EMT).

albert52
11.09.2021, 21:07
Продолжим.

MSI ( микросателлитная нестабильность ) выявляется до 44% случаев при раке желудка, чаще при кишечной форме и связана с гиперметилированием. Наиболее ее заметным эффектом является мутация рецептора TGF-β ( трансформирующего фактора роста ), снижающая его росттормозящие и проапоптические эффекты. Впрочем, на поздних стадиях он вносит существенный вклад в формирование инвазивного фенотипа.
У пациентов с фенотипом MSI определяется высокая частота ошибок репликации (replication errors) в результате вставок/делеции нуклеотидов в микросателлитных повторах, которые возникают вследствие дефектов системы репарации неспаренных оснований (mismatch repair, MMR). Инактивация или дефицит одного или нескольких генов MMR (вследствие мутаций или эпигенетических изменений), в частности, MLH1 или MSH2, индуцирует развитие MSI-фенотипа, что приводит к дополнительным мутациям, или нарастанию генетической нестабильности и развитию опухоли.

В целом в случаях с высоким уровнем MSI мутациям подвергается одновременно множество генов-мишеней, отвечающих за клеточный цикл и апоптоз, при этом микросателлитные нестабильные (MSI) GC демонстрируют меньше хромосомных аберраций, чем микросателлитно-стабильные (MSS) раки.

Помимо нестабильности генома, ремоделирование хроматина также становится важным клеточным путем в развитии рака. Изменения в структуре хроматина клетки могут повлиять на доступность ДНК для регуляторов транскрипции, которые существенно влияют на экспрессию генов. Так, ARID1A кодирует субъединицу комплекса ремоделирования хроматина SWI-SNF и был идентифицирован как часто мутирующий ген ремоделирования хроматина в GC. SWI-SNF участвует в ремоделировании нуклеосом АТФ-зависимым образом, чтобы либо активировать, либо репрессировать транскрипцию генов. Было высказано предположение, что ARID1A действует как супрессор опухолей и подавляет гены клеточного цикла, такие как CCNE1 и E2F1.

В соответствии с его функцией супрессора опухолей, мутации ARID1A в GC распределены по всей кодирующей области и обычно инактивируют его, включая усекающие мутации и вставки / делеции, приводящие к изменениям рамки считывания. Кроме ARID1A , другие сложные члены SWI-SNF ( ARID1B , PBRM1 и SMARCC1 ), что также было установлено, мутировали в GC. Кроме того, обнаружены мутации других комплексов ремоделирования хроматина, таких как комплекс MLL ( MLL2 и MLL3 ), комплекс ISW1 ( SMARCA1 ) и комплекс NuRD ( CHD3 , CHD4 и MBD2 ), а также генов, кодирующих гистон-модифицирующие белки ( SIRT1 и SETD2 ).

Гены клеточной адгезии, цитоскелета и клеточной подвижности (например, FAT4 , CDH1 , CTNNA1 и RHOA ) также мутируют в GC, особенно GC диффузного типа Такие гены функционируют, чтобы регулировать межклеточные и внутриклеточные взаимодействия, и нарушения функции этих генов могут играть ключевую роль в развитии и прогрессии GC. Например, FAT4 является опухолевым супрессором, принадлежащим к семейству кадгеринов, и было показано, что мутации FAT4 нарушают прикрепление клеток к матриксу.

CIMP ( фенотип метилирования островков CpG c глобальным гиперметилированием генома, приводящий к отключению генов-супрессоров опухоли ) присутствует в 15% кишечной метаплазии и 50% аденом. Вообще, метилирование CpG островков может считаться третьим молекулярным фенотипом GC, и гены, имеющие отношение к развитию опухоли, такие как APC ( (аденоматозного полипоза толстой кишки), CDH1, MHL1, CDKN2A, CDKN2B и RUNX3, часто подвергаются метилированию. Причиной инактивации генов CDKN2A, CDH1 и MLH1 чаще является именно метилирование промотора, а не мутации.

RUNX3 – это ген, кодирующий белок, относящийся к семейству транскрипционных факторов, содержащих Runt-домен. Гетеродимер этого домена и бета-субъединицы образуют комплекс, который связывается с основной последовательностью ДНК 5'-PYGPYGGT-3', обнаруженной в ряде энхансеров и промоторов, и может активировать или подавлять транскрипцию. При GC часто наблюдается потеря экспрессии этого гена, в основном из-за гемизиготной делеции (при анэуплоидиях) или гиперметилирования. Этот ген экспрессирован только у 45–50 % пациентов с GC, позитивно регулирует экспрессию BIM и p21 и негативно – сосудистый эндотелиальный фактор роста (VEGF), что сказывается на апоптозе, задержке роста клеток и ангиогенезе. Потеря или существенное снижение экспрессии RUNX3 протеина при РЖ значимо ассоциировано с низкой выживаемостью.

При раке желудка гиперактивированы онкогены EGF, Erb-B2, Erb-В3. Все 3 онкогена – эпидермальные факторы роста – полипептиды, функционирующие как сигналы, стимулирующие пролиферацию опухолевых клеток. Выраженная гиперэкспрессия этих онкогенов, отмечаемая при кишечной форме рака желудка, является индикатором плохого прогноза даже при высокой дифференцировке опухолей. Показано, что антитела к гену Егb-В2 тормозят рост опухолевых клеток.
RHOA принадлежит к семейству Rho, которое функционирует в регуляции актинового цитоскелета, и было показано, что мутации в этом гене придают большую устойчивость к аноикису (разновидность апоптоза) после отслоения от субстрата. Остатки Tyr42, Arg5 и Gly17 являются горячими точками мутации RhoA, обнаруженными в GC.

Мутация супрессорных генов Р53, МСС (мутантный белок колоректального рака, как полагают, отрицательно регулирует развитие клеточного цикла, ингибируя переход в S-фазу), АРС регистрируется у 30-65% больных раком желудка, обычно при кишечной форме. G-17 гастрин – фактор роста, продуцируемый слизистой желудка; как оказалось, он является транскрипционным активатором гепарин связанного эпидермального фактора роста (Heparin binding epidermal growth factor HB-EGF), который усиливает опухолевую пролиферацию.

COX-2 является ключевым ферментом, участвующим в образовании простагландинов из арахидоновой кислоты, а также вовлечен в процесс канцерогенеза. В ткани опухоли простагландины усиливают пролиферативную активность, способствуют ангиогенезу и метастазированию. Показана корреляция между экспрессией COX-2 и VEGF, что говорит об усилении процессов ангиогенеза в этой группе опухолей.

Выявлено двукратное ускорение прогрессирования GC при наличии гомозиготного генотипа 1195AA гена COX-2 в сравнении с гетерозиготным генотипом или гомозиготным по G аллелю, а у носителей АА генотипа экспрессия COX-2 выше, чем у носителей GG генотипа: при этом ткани, инфицированные H. pylori могут стимулировать активность COX-2 промотора, особенно в присутствии А аллеля. В целом отмечена экспрессия COX-2 в высоко- и умеренно дифференцированных карциномах интестинального типа, а также в предшествующих раку изменениях, таких как дисплазия эпителия и кишечная метаплазия

albert52
11.09.2021, 21:23
Вставка.

Метаболическое перепрограммирование при раке желудка

Hp-инфицированные эпителиальные клетки желудка демонстрируют повышенный гликолиз и повышенную экспрессию Lon протеазы 1 (Lonp1), белка, который активирует митохондриальный ответ развернутого белка и поддерживает функцию митохондрий. Дело в том, что после синтеза на цитозольных рибосомах ядерно-кодированные митохондриальные предшественники импортируются в органеллы в их развернутом состоянии из-за ограниченного размера пор митохондрий. Следовательно, после импорта митохондриальные предшественники должны эффективно складываться в свою функциональную структуру, чтобы избежать агрегации из-за воздействия на гидрофобные поверхности. Кроме того, LONP1 осуществляет протеолиз неправильно собранных и поврежденных белков матрикса митохондрий.

Также ассоциированный с цитотоксином ген A (CagA) усиливает экспрессию PKM2 и пируватдегидрогеназы киназы (PDK1). Более того, когда CagA локализуется в митохондриях, он ингибирует активность сиртуина 3 (SIRT3) и способствует стабильности индуцируемого гипоксией фактора 1α (HIF-1α). С другой стороны, вакуолизирующий цитотоксин A (VacA) является другим белком Hp, и он вызывает митохондриальную дисфункцию, способствует митохондриальному делению и уменьшает количество копий митохондриальной ДНК (мтДНК). Взятые вместе, эти данные подтверждают модель, в которой Hp индуцирует GC, способствуя гликолизу и дисфункции митохондрий.

У 62,5% пациентов с GC были обнаружены мутации в митохондриальных генах. Уменьшение количества копий мтДНК также наблюдалось у 54,8% пациентов с GC, особенно у пациентов с прогрессирующим GC. Репликация мтДНК требует топоизомеразы, за исключением митохондриальной топоизомеразы I (TOP1MT). Последний оказывает негативное влияние на регуляцию репликации мтДНК, но играет важную роль в формировании и поддержании областей D-LOOP мтДНК и в поддержании митохондриального гомеостаза. Таким образом, низкие уровни TOP1MT обычно выражены в GC, при этом экспрессия LDHA и гликолиз также увеличивается в отсутствие TOP1MT.

SIRT3 локализуется в митохондриях и в основном участвует в регуляции окислительного стресса. Однако было также показано, что SIRT3 активирует марганецзависимую супероксиддисмутазу, ингибирует уровни митохондриальных АФК, регулирует ответ развернутого белка митохондрий и поддерживает митохондриальный гомеостаз. Таким образом, SIRT3 считается геном-супрессором опухоли.

Профиль гликолиза GC является уникальным и основан на способности клеток GC поддерживать их рост в условиях гипоксии, обеспечивать сырьем для биосинтеза и деления клеток и поддерживать внутриклеточный окислительно-восстановительный гомеостаз.
Следующие шесть белков были идентифицированы как ключевые гликолитические ферменты, на которые влияет метаболическое перепрограммирование в GC:

1. Гексокиназа II
Семейство белков гексокиназы (HK) катализирует превращение глюкозы в глюкозо-6-фосфат (G6P) в качестве первого ограничивающего скорость этапа гликолиза. G6P также участвует в пентозофосфатном пути и процессе глюконеогенеза. Было установлено, что среди белков семейства HK HKII постоянно сверхэкспрессируется в большинстве опухолей, включая GC. В опухолевых клетках HK2 играет критическую роль в фокусной точке двух центральных путей контроля гликолиза - путей c-Myc и индуцируемого гипоксией фактора 1-альфа (HIF1α), чтобы обеспечить опухолевые клетки энергией и метаболическими соединениями для синтеза нуклеотидов и белков.

HKII связывается с зависимыми от напряжения анионными каналами (VDAC) на внешней мембране митохондрий для получения АТФ, необходимого для гликолиза. Однако HKII также может напрямую связываться с внешней мембраной митохондрий (OMM), в частности, через антиапоптотический белок Bcl-2 и проапоптотический белок Bax, чтобы ингибировать апоптоз. Так, связывание HK2 с VDAC является ключевым событием в антиапоптозе опухолевых клеток, которое помогает уменьшить образование переходных пор проницаемости (PTPs) в OMM и предотвращает последующее высвобождение проапоптотических белков, таких как цитохром с.

Таким образом, HKII является отличной мишенью для блокирования потока глюкозы. На сегодняшний день в клинике было разработано несколько стратегий нацеливания на HK2, включая прямую репрессию HK2, такую ​​как 3-бромпируват и лонидамин, а также косвенное подавление HK2, такое как подходы РНК-интерференции и подавление комплексов VDAC-HK. Так, активность гликолиза снижается, когда байкалеин ингибирует HKII, PDK1 и LDHA, а таже он снижает устойчивость клеток аденокарциномы желудка к фторурацилу. Кроме того, солодковый халкон A является новым ингибитором HKII, а также ингибитором пути AKT, который снижает потр***ение глюкозы и выработку лактата в клетках GC, причем последнее состояние вызывает апоптоз.

2. Пируваткиназа М2
Пируваткиназа (РК) является ключевым ферментом на конечной стадии гликолиза, который катализирует превращение фосфоенолпирувата в пируват. Есть четыре члена семейства белков PK, PKM1, PKM2, PKL и PKR. PKM1 и PKM2 кодируются PKM , тогда как PKL и PKR кодируются геном PKLR. Кроме того, PKM1 проявляет высокую активность PK, а PKM2 - нет. Опухолевые клетки обычно экспрессируют высокие уровни PKM2 и низкие уровни PKM1, тем самым способствуя гликолизу и ингибируя митохондриальное окислительное фосфорилирование.
PKM2 может действовать в качестве сенсора аминокислот. В частности, фенилаланин, аланин, триптофан, метионин, валин и пролин способны ингибировать его, а гистидин и серин способны активировать PKM2.

PKM2 могут также транслокациваться в ядро и способствуют транскрипциям HIF-1 и Bcl-XL для дальнейшего повышения гликолиза.
Кроме того, было показано, что взаимодействия между PKM2, β-катенином и октамер-связывающим фактором транскрипции 4 (OCT4) поддерживают стволовые клетки, в том числе раковые. В митохондриях PKM2 взаимодействует с Bcl-2 и активирует его, чтобы ингибировать апоптоз. Также избыточная экспрессия PKM2 способствует слиянию митохондрий, меньшему количеству копий мтДНК, а также подавлению экспрессии и деградации p53. Избыточная экспрессия PKM2, кроме того, снижает уровни цепи переноса электронов сложных белков I, III и V.

3. Пируватдегидрогеназы киназы
Семейство белков PDK включает четыре изоформы. PDK1 обычно экспрессируется на высоких уровнях в опухолях и связан с пролиферацией опухолей, метастазированием и плохим прогнозом. PDK1 ингибирует активность пируватдегидрогеназы (PDH) для стимулирования перехода пирувата в молочную кислоту и помогает регулировать путь AKT / NF-κB. Способность PDK ингибировать активность PDH также приводит к снижению уровня ацетил-КоА, что влияет на синтез липидов de novo.

4. Енолаза
Энолаза (ENO1) катализирует превращение фосфоглицерина в фосфоенолпируват при гликолизе и высоко экспрессируется в GC; сверхэкспрессия ENO1 усиливает пролиферацию и метастазирование клеток GC. ENO1 тесно связан с белком теплового шока бета-1 (также известным как Hsp27) и он влияет на регуляцию антистрессовых путей.

5. Транспортер глюкозы
Как следует из их названия, транспортеры глюкозы (GLUT) 1–4 ответственны за транспорт глюкозы в клетки, а также в GC, где GLUT1 и GLUT4 имеют высокую экспрессию.

6. Транспортер монокарбоновой кислоты
Семейство белков транспортера монокарбоновой кислоты (MCT) имеет 14 членов. В GC MCT1, MCT2, и особенно MCT4, высоко экспрессированы. Эти протонные насосы транспортируют монокарбоновые кислоты, пировиноградную кислоту, молочную кислоту, кетоновые тела и другие вещества для поддержания высокого потока глюкозы. Они также играют важную роль в выживании опухолевых клеток в высококислотных условиях.

При GC уровни липидов и триглицеридов обычно повышаются. Эндоскопические исследования выявили новую ультраструктуру для GC, которая включает в себя белое непрозрачное вещество (WOS). Гистологические исследования показали, что внутренняя часть этого WOS состоит из большого количества липидных капель. Эта новая структура считается отличительной чертой GC, и ее формирование согласуется с наблюдениями, что деградация липидов ингибируется и синтез липидов усиливается.

Между тем, если нарушен липидный обмен, наблюдаются низкие уровни митохондриального окислительного фосфорилирования, и это может быть связано с плохим прогнозом при GC. Кетогенная диета, состоящая из среднего содержания белка, низкого уровня углеводов и обогащенного омега-3 жирных кислот и триглицеридов со средней длиной цепи, приводило к снижению поглощение глюкозы и существенному ингибированию роста GC.

albert52
14.09.2021, 06:52
Продолжим.

Аллостерическая регуляция гликолиза придает метаболическую пластичность по отношению к локальному pO2. Поскольку гликолитический поток номинально быстрее, чем у OXPHOS, эволюционно выбран эффект Пастера, чтобы связать обе скорости метаболизма. Энергетические метаболиты глюкоза-6-P, АТФ и цитрат сдерживают гликолитический поток посредством аллостерического ингибирования ключевых гликолитических ферментов. Ингибирование достигает своего апогея, когда кислород не является ограничивающим субстратом для OXPHOS, что позволяет полностью окислить глюкозу. Когда уровни кислорода ограничены или когда pO2 кол***ется, полное окисление глюкозы и, как следствие, уровни АТФ и цитрата, образующихся окислительно, снижаются. Эффект Пастера сбрасывается до менее выраженного ингибирования, что позволяет ускоренному гликолизу компенсировать дефектное производство АТФ.

Экстремальная ситуация, характеризующаяся полным подавлением эффекта Пастера, встречается при тяжелой гипоксии. Энергетический кризис связан с увеличением клеточных уровней фруктозо-1,6-bisР, АДФ, АМФ и неорганического фосфата (Pi). Эти молекулы вызывают серию аллостерических стимулов, которые ускоряют гликолитический поток. Таким образом, гликолиз становится основным источником клеточного производства АТФ, спасательной ситуацией, позволяющей кратковременное выживание клеток до восстановления pO2.

Oпухолевые клетки из-за стремления к безудержному распространению постоянно теряют доступный запас кислорода, вторгаясь в регионы, удаленные от кровеносных сосудов. Рост также связан с ослаблением изначально плотной сосудистой сети. Эти условия составляют исходную почву для установления устойчивой гипоксии опухоли, которая не может быть долгосрочно преодолена единственно подавлением эффекта Пастера. В формирующихся опухолях опухолевые клетки на дальнем краю кислородного градиента имеют две возможные судьбы: смерть или метаболическая адаптация. Гипоксическая смерть - типичный признак спящих опухолей, то есть микроскопических бессимптомных поражений, характеризующихся динамическим равновесием между пролиферацией оксигенированных клеток и гибелью гипоксических. Для сравнения (и, надеюсь, для нас) стойкое переключение на гликолитический метаболизм - редкое событие, знаменующее вступление опухоли в фазу экспоненциального роста.

Во время гипоксии HIF-1α избегает протеолитической деградации, чтобы мигрировать в ядро ​​клетки, где он связывается с HIF-1β (см.выше). Для инициации транскрипции дополнительно требуется взаимодействие HIF-1 с кофакторами p300 и комплексом ДНК-полимеразы II для связывания с элементами, чувствительными к гипоксии (HRE) генов-мишеней. Генные продукты в основном относятся к двум категориям: такие, как
эритропоэтин, фактор роста эндотелия сосудов (VEGF) и индуцибельная синтаза оксида азота (iNOS), направленные на восстановление местного pO2; и те, кто участвует в ускорении гликолитического потока.

HIF-1, как я уже упомянул, активно влияет на процесс гликолиза. Так, HK2 связываясь с внешней митохондриальной мембраной, не только тормозит апоптоз, но и приобретает нечувствительность к ингибированию отрицательной обратной связью с помощью G6P, тем самым обеспечивая эффективный захват глюкозы опухолевыми клетками.

Фруктозо-2,6-бисфосфат (F2,6BP) - побочный продукт гликолиза и одновременно его ключевой регулятор, действующий как аллостерический активатор PFK1, одного из ферментов, контролирующих скорость гликолиза. F2,6BP продуцируется из фруктозо-6-фосфата (F6P) семейством гомодимерных ферментов, известных как 6-фосфофрукто-2-киназа / фруктозо-2,6-бисфосфатаза (PFKFB).

PFKFB представляют собой бифункциональные ферменты, которые катализируют либо АТФ-зависимое фосфорилирование F6P до F2,6BP (активность PFK2), либо дефосфорилирование F2,6BP до F6P (активность FBPase). Семейство состоит из четырех членов, среди которых PFKFB1, PFKFB2 и PFKFB4 в базовых условиях проявляют одинаковую активность PFK2 и FBPase , тогда как PFKFB3 имеет высокую активность PFK2 и почти не имеет активности FBPase. Транскрипция всех четырех генов PFKFB индуцируется гипоксией, но основная индукция наблюдается для гена PFKFB3, который является мишенью для HIF-1. Гипоксическая стимуляция активности PFK2 PFKFB3 дополнительно усиливается за счет фосфорилирования остатка серина в положении 462, в процессе с участием AMPK. В результате гликолитический поток приобретает еще одно регулирующее ответвление.

Пируваткиназа (PK) имеет четыре изоформы, из которых PKM1 / M1-PK и PKM2 / M2-PK продуцируются альтернативным сплайсингом транскриптов гена PKM, гена-мишени HIF-1. Альтернативный сплайсинг регулируется гетерогенными ядерными рибонуклеопротеидами (hnRNP) I, A1 и A2 (которые связываются с экзоном 9 и подавляют сплайсинг с PKM1), в свою очередь контролируемых c -Myc. Селекция изоферментов обеспечивает быстрое размножение, наблюдаемое в опухолях.

В отличие от PKM1, PKM2 является характерным изоферментом клеток с высокоскоростным синтезом нуклеиновых кислот, включая нормальные пролиферирующие клетки, эмбриональные клетки, взрослые стволовые клетки, а также, что важно, опухолевые клетки. Во время тканевой дифференцировки в процессе развития эмбриональная PKM2 заменяется тканеспецифичными изоформами. Однако опухолеобразование связано с повторной экспрессией PKM2 вместе с подавлением экспрессии PKM1 и других изоферментов. Эта «гликолитическая дедифференцировка» предлагает ключевое преимущество с точки зрения метаболической пластичности, потому что, в отличие от PKM1 (существующей только в активной тетрамерной форме), PKM2 может экспрессироваться либо как активный тетрамер, либо как димер с низким сродством к фосфоенолпирувату(PEP).

PKM2 в своей высокоактивной тетрамерной конформации обеспечивает в результате гликолиза производство АТФ с высоким выходом, тогда как в своей почти неактивной димерной конформации он обеспечивает метаболическое узкое место, позволяющее перенаправлять гликолитические промежуточные продукты на биосинтез, в частности, подпитка через PPP для синтеза ДНК.

Баланс между тетрамерным и димерным PKM2 - это кол***ющийся феномен, подверженный аллостерической регуляции. Вкратце, тетрамерной активной форме способствует накопление вышестоящего гликолитического промежуточного соединения F1,6BP и побочного продукта биосинтеза серина; инактивирующая димеризация, наоборот, индуцируется, когда концентрация последующих продуктов биосинтеза (аланина, других аминокислот и липидов) увеличивается (см.выше). Димерная конформация дополнительно стимулируется фосфорилированием тирозина 105 несколькими онкогенными тирозинкиназами.

Пируват находится в центре между различными метаболическими путями: он является продуктом гликолиза, продуктом окисления малата в пролиферирующих клетках, основным топливом цикла TCA, предшественником аланина в обратимом трансаминировании, реакции с участием глутамата в качестве донора азота и субстратом окислительно-восстановительной реакции с образованием лактата. Последняя реакция, сочетающая восстановление пирувата с окислением NADH до NAD +, позволяет пополнить пул NAD +, необходимый для самодостаточности гликолиза.

Восстановление пирувата до лактата также позволяет гликолитическим клеткам поддерживать уровни пирувата на достаточно низком уровне; эта обратимая реакция катализируется семейством тетрамерных ферментов ЛДГ. LDH образуются путем расположения до четырех копий двух различных субъединиц: субъединица LDH-H кодируется геном LDH-B и повсеместно экспрессируется в здоровых тканях, тогда как субъединица LDH-M кодируется HIF-1-мишенью - геном LDH-A и, следовательно, индуцируется гипоксией.

Расположение субъединиц с образованием активных тетрамеров может привести к образованию пяти различных ферментов, от LDH1 до LDH5. LDH5 / LDH-4M предпочтительно катализирует восстановление пирувата в лактат и играет ключевую роль в поддержании высокого гликолитического потока и устойчивости к апоптозу. LDH1 / LDH-4H предпочтительно катализирует окисление лактата в пируват, а LDH2, LDH3 и LDH4 обладают промежуточной ферментативной активностью. Повышенная экспрессия LDH5 имеет н***агоприятное прогностическое значение для многих опухолей человека. Напротив, LDH1 / LDH-4H чаще всего подавляется в гликолитических раковых клетках.

albert52
16.09.2021, 05:10
Продолжим.

Пируватдегидрогеназа (PDH), фермент, заставляющий пируват вступать в цикл TCA, подвергается фосфорилирующему ингибированию PDK1. PDK1 контролирует митохондриальную активность: при активации предотвращает попадание пирувата в цикл TCA; в неактивном состоянии пируват превращается в ацетил-коА и может служить предшественником для производства катаплеротических продуктов цитрата и изоцитрата (инициируя биогенез липидов), глутамата (генерирующего глутамин) и малата (для производства НАДФН и пирувата через яблочную кислоту). При этом НАДФН, продуцируемый либо из PPP, либо из малата, выполняет две основные функции: он является необходимым кофактором для липогенеза (стадия HMG-CoA редуктазы) и используется в качестве восстановителя для регенерации глутатиона (GSH) из его окисленной дисульфидной формы. (GSSG). Как антиоксидант, GSH выводит токсины на АФК.

В условиях гипоксии ингибирование PDH преследует две основные цели: ориентировать пируват на реакцию LDH5 для производства НАД + и предотвратить чрезмерное производство активных форм кислорода (АФК) митохондриями. В самом деле, хотя кислород является основным акцептором электронов, производимых дыхательной цепью, электроны передаются воде, чтобы произвести ROS, когда кислорода не хватает. Как продукт гена-мишени HIF-1, PDK1 связывает гипоксию с ослаблением активности дыхательной цепи. Подобно HK2, было показано, что HIF-1 кооперируется с c-Myc для трансактивации PDK1. Высокая экспрессия PDK1 сильно коррелирует с плохим исходом рака головы и шеи.

Реакция LDH5 дает эквимолярные концентрации лактата (из пирувата) и протонов (из NADH). Чтобы избежать внутриклеточного закисления и гибели, гликолитические клетки должны экспортировать протоны. Некоторые системы адаптированы для транспорта протонов, среди которых MCT1, MCT2, MCT3 и MCT4 являются пассивными лактат-протонными симпортерами. MCT4 (Km лактат = 22 мМ) имеет самое низкое сродство к лактату, кодируется геном-мишенью HIF-1 и поэтому адаптирован для экспорта молочной кислоты из гликолитических опухолевых клеток. Он играет важный вклад в регуляцию внутриклеточного pH (pHi): хотя он имеет только низкое сродство к лактату, его высокая скорость обмена обеспечивает эффективный экспорт протонов.

MCT1 (Km лактат = 3,5–10 мМ) имеет промежуточное сродство к лактату и повсеместно экспрессируется в здоровых и раковых тканях. При раке он способствует поглощению лактата окислительными опухолевыми клетками в недавно описанном метаболическом пути, включающем окисление лактата в пируват, чтобы подпитывать цикл TCA . MCT2 (Km лактат = 0,5 мМ) и MCT3 (Km лактат = 5 мМ) имеют самое высокое сродство к лактату и специализируются на импорте лактата в специфические ткани, такие как печень (цикл Кори), почки и сетчатка. Недавно было показано, что высокая экспрессия как MCT1, так и MCT4 коррелирует с инвазивностью клеток рака легких.

Метаболический симбиоз предложен в качестве обоснования эффективной доставки глюкозы в компартмент гипоксических опухолевых клеток. Он основан на обмене лактата: гипоксические / гликолитические опухолевые клетки производят лактат, а нормоксические / окислительные опухолевые клетки потр***яют лактат окислительно. Последний процесс включает окисление лактата в пируват с помощью LDH1.
Ядром симбиоза является метаболическое предпочтение оксигенированных опухолевых клеток лактата по сравнению с глюкозой в качестве окислительного топлива, что, как следствие, улучшает распределение глюкозы по областям гипоксической опухоли. Обоснование метаболического предпочтения включает конкуренцию между LDH1 и гликолитическим ферментом GAPDH за NAD + (LDH1 является более эффективным путем в сочетании с тем фактом, что лактат ингибирует активности HK и PFK1. В симбиотической модели MCT4 служит для экспорта лактата из гликолитических опухолевых клеток, а MCT1 является основным помощником поглощения лактата окислительными опухолевыми клетками.

В то время как HIF-1 эволюционировал для облегчения производства энергии посредством гликолиза в условиях гипоксии, c-Myc, напротив, способствует биогенезу митохондрий в нормоксических условиях. Оба пути являются взаимоисключающими в нормальных клетках, но во многих опухолях, однако, обнаружено, что c-Myc сверхэкспрессируется следствие амплификации генов, измененного контроля транскрипции и хромосомной транслокации.

Поскольку мРНК HIF-1α содержит полипиримидиновые участки, обычно считается, что PI3K / Akt / mTOR стимулирует кэп-зависимую трансляцию мРНК HIF-1 посредством активации двух нижестоящих мишеней mTOR, p70S6K и 4E-BP1; здесь активация HIF-1α опосредуется VHL-независимым путем. Поскольку индукция активности HIF-1, по-видимому, играет решающую роль в метаболизме рака, ингибирование HIF-1 было вовлечено в блокирование роста и прогрессирования опухоли.

Любая пролиферирующая клетка в организме подвергается метаболическому переключению, в первую очередь состоящему из разъединения цикла TCA и OXPHOS. Таким образом органические кислоты, такие как цитрат, изоцитрат и малат, могут просачиваться из митохондрий. При этом самоавтономный аэробный гликолиз является неотъемлемой частью пролиферативного фенотипа рака.

В процессе канцерогенеза основные факторы плюрипотентности OCT4, SOX2 и Nanog занимают многие регионы генов гликолитических ферментов и участвуют в прямой транскрипционной регуляции гликолиза. Недавнее исследование показало важную роль некодирующей РНК, Lncenc1, для экспрессии связанных с гликолизом генов. Удаление гена Lncenc1 снижает потр***ение глюкозы и продукцию лактата более чем на 50%, что указывает на нарушение гликолиза. Lncenc1 взаимодействует с двумя РНК-связывающими белками, полипиримидиновым белком, связывающим тракт 1 (PTBP1) и гетерогенным ядерным рибонуклеопротеином K (HNRNPK), оба из которых регулируют экспрессию гликолитических генов для поддержания способности раковых клеток к самообновлению. Поскольку комплекс, содержащий Lnecn1, PTBP1 и HNRNPK, занимает промоторные области генов гликолиза, Lncenc1, PTBP1 и HNRNPK могут напрямую усиливать транскрипцию этих генов.

Митохондрии в гипоксических раковых клетках имеют глобулярную форму, а их кристы слабо развиты и незрелы, что может использоваться как индикатор начинающейся плюрипотентности. Отмечается низкое количество копий митохондриальной ДНК, а митохондрии обычно локализуются в перинуклеарной области. Кроме того, мутация erv1-подобного фактора роста увеличивает экспрессию ГТФазы, связанной с динамином 1 (Drp1), фактором, который участвует в делении митохондрий, что затем вызывает крайнее деление митохондрий.

Несвязанный белок 2 (UCP2) шунтирует пируват из митохондрий, тем самым смещая производство АТФ от OxPhos к гликолизу. Кроме того, UCP2 отделяет ETC от производства АТФ, предположительно для того, чтобы уменьшить образование активных форм кислорода (ROS). Известно, что OxPhos в митохондриях генерирует АФК, которые потенциально могут повредить белки, липиды и нуклеиновые кислоты в клетках. Благодаря UCP2, ESCs поддерживают продукцию ROS на низком уровне и обладают относительно низкими уровнями окисленных белков, липидов и ДНК.

Несвязанный белок 2 (UCP2) в ESCs шунтирует пируват из митохондрий, тем самым смещая производство АТФ от OxPhos к гликолизу. Кроме того, UCP2 отделяет ETC от производства АТФ, предположительно для того, чтобы уменьшить образование активных форм кислорода (ROS). Известно, что OxPhos в митохондриях генерирует АФК, которые потенциально могут повредить белки, липиды и нуклеиновые кислоты в клетках. Благодаря UCP2 продукция ROS поддерживается на низком уровне и клетки обладают относительно низкими уровнями окисленных белков, липидов и ДНК. Во время первой стадии онкогенеза UCP2 подавляется, что, вероятно, способствует увеличению АФК и геномной нестабильности, в то время как он запускается и сверхэкспрессируется на более поздних стадиях развития рака, вызывая устойчивость злокачественных клеток к терапии и агрессивность опухоли в основном за счет антиапоптотических механизмов, индуцированных ослаблением продукции АФК.

albert52
20.09.2021, 02:03
Продолжим.

Несвязанные белки (UCPs) представляют собой митохондриальные белки-переносчики анионов, локализованные во внутренней мембране митохондрий. В настоящее время у млекопитающих идентифицировано пять членов семейства UCP. Среди них UCP2 широко распространен по всему организму, что предполагает различные и широкие функции этого митохондриального разобщающего белка. В основном, антиоксидантная роль UCP2 обусловлена ​​его способностью снижать митохондриальный потенциал и рассеивать протонный градиент. Это предотвращает чрезмерное увеличение протонодвижущей силы, тем самым уменьшая количество активных форм кислорода (АФК), особенно супероксид-ионов, образующихся в результате утечки электронов из транспортной цепи митохондрий.

UCP2 - это чувствительный к окислительно-восстановительному потенциалу белок, функционирующий как митохондриальный окислительно-восстановительный датчик. В результате окисления UCP2 активируется, становясь важным компонентом механизмов антиоксидантной обратной связи, обычно участвующих в цито-защитных событиях, контролирующих выработку митохондриальных ROS и регулирующих окислительно-восстановительные цитозольные сигнальные пути.

Антиоксидантную функцию UCP2 можно рассматривать как перекресток между эффектом Варбурга и регуляцией аутофагии в раковых клетках.Вообще, эффект Варбурга можно рассматривать как метаболическую адаптацию раковых клеток, несущих митохондрии с дефицитом антиоксидантов. В межмембранном пространстве митохондриального матрикса канал, образованный этими белками, может также способствовать оттоку из митохондрий в сторону цитозоля пирувата и промежуточных продуктов цикла Кребса, тем самым ограничивая митохондриальное окисление глюкозы и поддерживая эффект Варбурга (см. выше).

UCP2 опосредует цитозольную стабилизацию гликолитического фермента глицеральдегида-3-фосфатдегидрогеназа (GAPDH). ROS, продуцируемые ингибированием UCP2, способны стимулировать окисление этого гликолитического фермента, определяя его конформационные изменения, которые способствуют его транслокации в ядро, где он может впоследствии активировать экспрессию GAPDH-регулируемых генов, таких как решающий аутофагический ген Atg12. Также сверхэкспрессия UCP2 активирует фосфофруктокиназу 2 / фруктозо-2,6-бисфосфатазу 2 (PFKFB2), тем самым усиливая гликолиз (см. выше). Напротив, siRNA-опосредованное ингибирование PFKFB2 вызывает заметное снижение гликолиза, пролиферации и трансформации клеток в сверхэкспрессируемых UCP2 клетках.

Опухолевые стволовые клетки (ОСК)

Раковые клетки имеют много общего с эмбриональными стволовыми клетками (ЭСК). Например, агрессивный рак и ESC имеют общую сигнатуру экспрессии генов, которая включает сотни генов. Поскольку гены ESC не присутствуют в большинстве тканей взрослого человека, они могут быть идеальными кандидатами-мишенями для диагностики и лечения рака. Так, SALL4, член семейства spalt-подобных (SALL) генов (от SALL1 до SALL4) играет важную роль в поддержании плюрипотентных и самообновляющихся свойств эмбриональных стволовых клеток (ESC). После рождения экспрессия SALL4 подавляется и отсутствует в большинстве тканей взрослого человека. Однако SALL4 повторно экспрессируется при различных формах рака. Так, в солидных опухолях SALL4 был впервые изучен в опухолях зародышевых клеток, например, опухолей семенных клеток яичка и злокачественных зародышевых опухолей яичников.

SALL4-положительные клетки HCC имеют паттерн экспрессии генов, подобный паттерну экспрессии фетальных печеночных клеток-предшественников. Эти ГЦК имеют тенденцию быть более агрессивными и связаны с плохим прогнозом. PTEN был идентифицирован как ключевой нижестоящий целевой ген для SALL4, который напрямую взаимодействует с репрессорным комплексом NuRD и рекрутирует его в промоторную область PTEN. Что касается гликолиза, то нокдаун SALL4 приводит к ингибированию поглощения глюкозы и активности HK-2.

Согласно теории ОСК, основная масса опухоли состоит из множества гетерогенных дифференцированных раковых клеток, подпитываемых редкой популяцией ОСК (от 1% до 10%), характеризующихся способностью к самообновлению и дифференцировке. Основная регуляторная сеть для поддержания и самообновления эмбриональных стволовых клеток OCT4, SOX2, KLF4, NANOG и SALL4 аномально экспрессируются в образцах опухолей человека, что свидетельствует о наличии раковых стволовых клеток. Фактор транскрипции Zscan4 также связан с фенотипом стволовых клеток в плоскоклеточной карциноме головы и шеи человека (HNSCC); его сверхэкспрессия связана с повышенным гиперацетилированием гистона 3 на промоторах NANOG и OCT4.

Способность к развитию множественной лекарственной устойчивости (МЛУ) у ОСК связана с активизацией транспортеров аденозинтрифосфат-связывающей кассеты (ABC), которые представляют собой насосы оттока, экспрессирующиеся на высоком уровне на мембране клеток-предшественников, и отвечают за защиту популяции стволовых клеток от токсичных молекул. Кроме того, после медикаментозного лечения другие молекулярные пути могут действовать в поддержании выживания РСК. Так, аутокринная передача сигналов VEGF / VEGFR-1 (Flt) активируется в субпопуляции высоко онкогенных клеток в ответ на лечение цисплатином (CDDP) и характеризуется экспрессией генов плюрипо -тентности OCT4, NANOG и BMI1.

WNT регулирует киназу пируватдегидрогеназы, PDK1, путем фосфорилирования и инактивации ферментного комплекса пируватдегидрогеназы (PDH), ответственного за превращение пирувата в ацетил-КоА. Уменьшение входа ацетил-КоА в ТСА и окисли -тельного фосфорилирования приводит к снижению митохондриального дыхания и, следовательно, к снижению уровней АФК. Передача сигналов Notch1 также играет роль в регуляции метаболизма в ОСК. В частности, при связывании с лигандом Jagged1 Notch1 активирует нижестоящий каскад, который посредством взаимодействия с PTEN-индуцированной киназой 1 (PINK1) приводит к активации mTORC2 / AKT, что в свою очередь, фосфорилирует SOX2 и OCT4 и, следовательно, положительно способствует поддержанию стволовости. mTORC2 также участвует в репрессии FoxO3, фактора транскрипции, который отвечает за ингибирование гликолитического пути.

Стволовые клетки рака желудка (GCSC) демонстрируют отчетливую экспрессию нескольких поверхностных маркеров. К ним относятся: CD44 (кластер дифференцировки 44), EpCAM (молекула адгезии эпителиальных клеток), LGR5 (богатый лейцином, содержащий повторы, рецептор 5, связанный с G-белком), ALDH1 (альдегиддегидрогеназа 1), CD133 и SOX2. Степень выраженности этих маркеров связана с инвазией сосудов и лимфатических узлов, размером опухоли и ответом на химиотерапевтические препараты.

Экзогенная абсорбция или эндогенный синтез липидов играет важную роль в поддержке самообновления ОСК во время процесса туморогенеза. Так, ингибирование АТФ-цитратлиазы, фермента, ответственного за превращение цитозольного цитрата в ацетил-КоА, приводит к подавлению транскрипционного фактора Snail, ключевого регулятора фенотипа стволовости раковых стволовых клеток. FASN, ключевой липогенный фермент, который превращает ацетил-КоА и малонил-КоА в пальмитат, резко активируется при многих раковых заболеваниях. Ингибирование активности FASN церуленином вызывает регресс в образовании опухолевых сфер со снижением экспрессии маркеров стволовости, таких как нестин и CD133, и увеличением экспрессии маркеров дифференцировки.
Вообще, ОСК поддерживают свою стволовость, синтезируя большее количество мононенасыщенных липидов (МНЖК). Этот процесс опосредуется специфическими ферментами, такими как стеароил-КоА-десатураза-1 (SCD1), которая при раке желудка активируется, что приводит к плохому прогнозу.

Nanog, маркер стволовых клеток, перепрограммирует метаболизм опухолевых стволовых клеток (TIC), подавляя экспрессию генов OXPHOS и активируя окисление жирных кислот (FAO). Подавление СРТ1, фермента, ограничивающего скорость FAO, снижает устойчивость к 5-ФУ и оксалиплатину.

albert52
21.09.2021, 02:44
Продолжим.

FA обеспечивают еще один путь топлива для CSC. Экспрессия транслоказы FA (также известная как CD36), которая способствует захвату липидов, коррелирует с плохим прогнозом при различных формах рака, а CD36 считается маркером стволовых клеток в опухолях груди, головного мозга и жировой ткани.

Наряду с метаболизмом жирных кислот, метаболизм холестерина также является признаком рака. В частности, увеличение уровней SREBP2, фактора транскрипции, ответственного за биосинтез и гомеостаз холестерина, коррелирует с увеличением основной массы опухолевых стволовых клеток. Глутамин в раковых стволовых клетках используется в качестве основного источника азота, поскольку он представляет собой хороший донор восстановленного азота для создания пуриновых и пиримидиновых оснований, а также белков.

Кетоновые тела используются в качестве субстрата для производства энергии в раковых стволовых клетках, поскольку они превращаются в ацетил-КоА, который входит в цикл TCA, обеспечивая углерод для производства энергии. Было обнаружено, что новый класс соединений, названных «митокетосцины», нарушает это преобразование, что приводит к ингибированию пролиферации стволовых клеток рака груди.

Выявлена связь между низкими уровнями внутриклеточных АФК и стволовостью рака. Глутатион (GSH) - это антиоксидантный пептид, который широко представлен в митохондриях эукариотических клеток. GSH участвует в поддержании окислительно-восстановительного баланса посредством детоксикации АФК и в защите фосфолипидов в митохондриальной мембране. Высокие уровни внутриклеточного GSH могут быть обусловлены высокой активностью переносчика плазматической мембраны xCT, субъединицы переносчика цистин-глутаматного обмена, который участвует в захвате цистеина, необходимого для синтеза GSH. Интересно, что высокие уровни глутатиона обнаружены в эмбриональных и мезенхимальных стволовых клетках, где они отвечают за поддержание стволовости. Точно так же высокие уровни GSH вместе с GSH-связанными ферментами обнаруживаются в ОСК желудка, печени и рака груди. ОСК поджелудочной железы демонстрируют высокий уровень содержания GSH и активацию нескольких генов, участвующих в передаче сигналов GSH.

Продукция АФК индуцирует активацию киназы ASK1 (Apoptosis signal-regulating kinase 1), которая через активацию MAPK3 / 4/6 приводит к фосфорилированию и активации p38. Фосфорилированный p38 отвечает за активацию апоптоза и остановку роста, таким образом, играя отрицательную роль в онкогенезе. В GCSC взаимодействие CD44v с xCT приводит к увеличению внутриклеточного GSH, что приводит к подавлению ROS-p38 MAPK и усилению развития опухоли. Затем специфическая терапия, направленная на путь CD44v-xCT, может нарушить способность GCSC защищаться от окислительного стресса, повышая чувствительность к доступным методам лечения рака. Действительно, ингибирование транспортера xCT сульфасалазином повышает чувствительность стволовых клеток рака желудка к химиопрепаратам, что положительно влияет на клиническую эффективность химиотерапии.

Сверхэкспрессия некоторых miRNA (oncomiR) из-за геномной амплификации их кодирующей области отрицательно регулирует уровни генов-супрессоров опухолей. Напротив, делеции или мутации потери функции в кодирующих областях miRNA, которые регулируют протоонкогены, приводят к снижению контроля над ростом и дифференцировкой клеток, раскрывая их канцерогенный потенциал. Так, HK-2, первый фермент, ограничивающий скорость гликолиза, может модулироваться miR-181b, которая имеет сайт связывания в 3'-нетранслируемой области транскрипта HK-2 и подавляется в тканях рака желудка.

Также выявлено подавление уровня экспрессии miR-422a, которое обратно коррелирует с размером опухоли и глубиной инфильтрации. miR-422a связана с метаболизмом, поскольку она подавляет активность PDK2, восстанавливая превращение пирувата в Acetyl-CoA через фермент PDH. Также в GC были обнаружены неканонические miRNA, которые независимы от Drosha, фермента, ответственного за процессинг miRNA. В частности, было обнаружено, что miR-6778-5p поддерживает стволовые свойства GCSC путем блокирова -ния оси YWHAE / c-MYC, ответственной за сниженную экспрессию SHMT1, цитозольного изофермента, участвующего в метаболизме одноуглеродного фолат пути.

В GC lnc-MSCC1-AS1 способствует устойчивости к химиотерапии за счет перепрограммирования метаболизма липидов. Эту роль приписывают антагонизму с miR-145-5p, которая способствует апоптозу опухолевых клеток за счет увеличения уровней ROS и токсичности, связанной с лекарством.

Опухолевые клетки обладают способностью ретродифференцироваться в незрелые состояния под влиянием своего микроокружения. Важно отметить, что это фенотипическое преобразование происходит параллельно с метаболической перестройкой, и согласно теории метаболизма, метаболическое перепрограммирование представляет собой первый шаг эпителиально-мезенхимального перехода (EMT) и приобретения черт стволовости. Помимо провоспалительных цитокинов, которые, как известно, инициируют процесс ретродифференцировки, высвобождение катехоламинов в микроокружении опухоли может модулировать как ЕМТ, так и метаболические изменения в раковых клетках за счет активации факторов транскрипции ЕМТ (ZEB1, Snail или Slug (SNAI2)).

В отличие от нормальных клеток, опухолевые клетки обычно подвергаются неполной ЭМП, которая наделяет клетки способностью избегать апоптоза, аноикиса и старения и избегать иммунного надзора (см. выше). Они могут переходить из состояния покоя в состояние пролиферации и / или совершать дифференцировку, при этом производные дифференцированные клетки способны ретродифференцироваться к состоянию CSC. Так, воспалительная среда, содержащая трансформирующий фактор роста TGF-β1, интерлейкин IL-6 и фактор некроза опухоли TNF-α, запускает EMT и направляет дифференцированные опухолевые гепатоциты в программу ретродифференцировки по отношению к клеткам, несущим CSC фенотип. Также при раке груди IL-6, секретируемый опухолевыми клетками, участвует в инициации EMT, что приводит к обогащению субпопуляции CSC-подобных CD44 + клеток с мезенхимальным фенотипом и инвазивными свойствами.

Перепрограммирование от гликолиза к окислительному фосфорилированию (OXPHOS) происходит во время дифференцировки эмбриональных стволовых клеток, в то время как обратный сдвиг от OXHPOS к гликолизу происходит во время генетического репрограммирования соматических клеток в индуцированные плюрипотентные стволовые клетки. (ИПС). Принятие гликолитического метаболизма может быть вызвано ограничениями микросреды, такими как гипоксическая среда, или вызвано дисфункцией митохондрий. К сожалению, высокая пластичность опухолевых клеток позволяет им перемещаться по осям метаболизма / дифференцировки, чтобы адаптироваться к окружающей среде. Это свойство способствует устойчивости к химиотерапии и рецидиву рака.

albert52
22.09.2021, 09:18
Продолжим.

В основе регуляции стволовых клеток кишечника лежит постоянное перекрестное взаимодействие между эпителиальными и лежащими в основе мезенхимальными клетками в нише стволовых клеток кишечника. Эти перекрестные связи опосредуются ключевыми путями, включая пути Wnt, Hedgehog (HH), Notch, PI3K и BMP. Нарушения в этом тонко регулируемом взаимодействии могут как инициировать опухоли кишечника, так и в сочетании с дополнительными генетическими изменениями или эпигенической активацией эмбриональных процессов, таких как эпителиально-мезенхимальный переход (EMT), приводить к инвазии и метастазированию опухоли.

Так как передача сигналов Wnt является важным детерминантом стволовости кишечника, был идентифицирован ген-мишень для Wnt, Lgr5 / GPR49, который экспрессируется исключительно в столбчатых клетках основания крипт (CBCs). CBCs расположены между клетками Панета, а позже были предложены как ISCs. Они также экспрессируют Msi-1, который важен для передачи сигналов Notch путем ингибирования экспрессии репрессора Notch Numb.
Lgr5 / GPR49 может также экспрессироваться в компартменте стволовых клеток других эпителиальных тканей, включая волосяной фолликул, молочную железу, эпителий желудка и, что важно, также в базальных областях крипт толстой кишки.

Связывание лигандов Wnt с их рецепторами, Fzd / LRP5 / 6, предотвращает деградацию основного эффекторного β-катенина комплексом деструкции, содержащим APC и Axin1 / 2. Β-Catenin перемещается в ядро, где он действует как активатор транскрипции после связывания с членами семейства TCF / LEF (см. выше). Недостаток TCF4 приводит к истощению компартмента эпителиальных стволовых клеток в тонкой и толстой кишке. Другие мишени Wnt включают c-myc и cyclin D1, которые вместе с передачей сигналов Notch регулируют переключение ISC на транзитные амплификации клеток-предшественников секреторного эпителия крипт. Также наблюдается повышенная экспрессия гена-мишени Wnt сурвивина, который также считается предполагаемым маркером стволовых клеток. Впрочем, дифференциальная экспрессия генов-мишеней Wnt указывает на то, что эффекты передачи сигналов Wnt координируются посредством взаимодействия с другими сигнальными путями.

Почти все колоректальные аденомы и карциномы человека обнаруживают генетические изменения в одном из компонентов пути Wnt, в основном APC с потерей функции или мутации, активирующие β-catenin (см. выше). Мутации APC приводят к переходу от асимметричного к симметричному делению ISCs.

Сорок процентов всех колоректальных карцином человека показывают активированный путь PI3K-Akt, в основном из-за инактивации PTEN. Более того, наследственные мутации PTEN (синдром Каудена) приводят к возникновению гамартоматозных полипов кишечника. Передача сигналов PI3K усиливает самообновление ISC, что может быть объяснено связью между передачей сигналов PI3K и путем Wnt: p-Akt может фосфорилировать β-catenin, главный эффектор канонического пути Wnt. PTEN экспрессируется в градиенте между криптой и просветом с наиболее сильной экспрессией в клетках просвета эпителия и, таким образом, может участвовать в ограничении передачи сигналов Wnt к основанию крипты.

Костные морфогенетические белки (BMP) связываются с рецепторами BMP I или II типа (BMPR1 или BMPR2). Это приводит к фосфорилированию SMAD1, 5 или 8, которые затем образуют гетеродимер с SMAD4, перемещаются в ядро ​​и действуют как активаторы транскрипции. В кишечнике BMP4 секретируется межворсинчатыми стромальными клетками, а BMPR1 экспрессируется во всех эпителиальных клетках кишечника, способствуя их дифференциации. Так, ювенильный полипоз человека связан с мутациями в генах SMAD4 / DPC4 или BMPR1A. Физиологическими ингибиторами пути BMP являются Noggin и Gremlin, которые связывают и инактивируют BMP; эти антагонисты BMP экспрессируются в субэпителиальных миофибробластах кишечника в основании крипт.

Ингибирование передачи сигналов BMP в эпителиальных клетках кишечника с помощью Gremlin активирует передачу сигналов Wnt. Более того, BMP стабилизирует PTEN, тем самым приводя к снижению активности Akt и последующему снижению накопления ядерного β-катенина.

Передача сигналов Notch контролирует решения клеточной судьбы в развитии многих тканей. Лиганды Delta или Jagged связываются с рецептором Notch, тем самым вызывая его протеолитическое расщепление γ-секретазой. Фрагмент расщепления Notch, NCID, перемещается в ядро, где он действует как фактор транскрипции после димеризации с помощью RBP-jκ / CSL. Это индуцирует экспрессию фактора транскрипции bHLH, воздействующего на энхансер Hes, который в конечном итоге активирует факторы, участвующие в контроле пролиферации и дифференцировки. Нокаут RBP-jκ или Hes1 приводит к увеличению количества секреторных эпителиальных клеток, а регулируемое снижение передачи сигналов Notch в сотрудничестве с активацией специфических факторов bHLH, таких как Atoh1 и NeuroD, индуцирует специфическую дифференцировку в кишечные эпителиальные клоны.

Морфогены Sonic hedgehog (Shh) и Indian hedgehog (Ihh) секретируются эпителиальными клетками, а их рецептор Patched (PTCH) экспрессируется в субэпителиальных миофибробластах. Следовательно, передача сигналов Hedgehog (HH) не участвует напрямую в судьбе эпителиальных клеток, но важна для построения правильной общей структуры крипт и ворсинок слизистой оболочки кишечника. Поэтому нарушение передачи сигналов HH также оказывает сильные вторичные эффекты на эпителиальные клетки кишечника. При этом передача сигналов Wnt усиливается, увеличивается пролиферация и в ворсинах образуются атипичные структуры крипт. Эти эффекты могут быть приписаны снижению экспрессии BMP стромальными клетками, которая обычно запускается HH. Более того, Ihh, подавляет экспрессию TCF4 и β-catenin и, таким образом, его паттерн экспрессии с макси -мумом на сайте просвета крипт в эпителии толстой кишки ограничивает передачу сигналов Wnt к основанию крипт.

Упрощенный взгляд на нишу стволовых клеток, который может оказаться гораздо более сложным: предполагаемые перекрестные связи передачи сигналов, определяющие нишу стволовых клеток и нишу дифференцирующихся клеток. В верхних областях крипт Ihh запускает экспрессию BMP в стромальных клетках, что затем активирует экспрессию PTEN в эпителиальных клетках. Все три фактора прямо или косвенно ингибируют передачу сигналов Wnt.
В самой нише стволовых клеток окружающие стромальные клетки секретируют ингибиторы BMP Noggin и Gremlin, что приводит к ослаблению репрессии передачи сигналов Wnt. Кроме того, строма обеспечивает лиганды Wnt для индукции передачи сигналов Wnt через рецепторы Fzd в стволовых клетках и транзитно-амплифицирующих клетках.

На продвинутой стадии аденомы эпителий обнаруживает большие области незрелого фенотипа, напоминающий ограниченную зону транзита-амплификации в нижних частях нормальных крипт и указывающий на рост популяции пролиферативных клеток. Более того, ядерный β-catenin все чаще обнаруживается на всем протяжении крипт и ассоциируется в аденомах человека с повышенной дисплазией .

Рак можно рассматривать, по крайней мере частично, как следствие нерегулируемого контроля стволовых клеток. Обоснование, подтверждающее происхождение опухолей кишечника стволовыми клетками:
1. В отличие от короткоживущих дифференцированных кишечных эпителиальных клеток, в этой высокооборотной ткани ISC являются долгоживущими, что позволяет накапливать критические генетические изменения.
2. При колоректальном раке наиболее частые, ограничивающие скорость мутации, такие как мутации, встречающиеся в гене APC, усиливают передачу сигналов Wnt, которая оказывается решающим регулятором ISC.
3. Типичные колоректальные аденокарциномы человека и соответствующие метастазы неоднородны и демонстрируют множество стадий дифференцировки в пределах отдельной опухоли, что соответствует происхождению стволовых клеток.
4. Концепция раковых стволовых клеток, первоначально разработанная для гематопоэтических неоплазий, становится общепринятой для солидных видов рака, включая колоректальный рак.

albert52
23.09.2021, 15:52
Продолжим.

Предполагается, что дифференцированная активация передачи сигналов Wnt регулирует разные функции дозозависимым образом. Так, инициирующие мутации (APC или β-catenin) приводят к слабой активации передачи сигналов Wnt, достаточной для нарушения нормальной регуляции ISC. Дополнительные соматические мутации, например, как показано для KRAS, или триггеры окружающей среды характорны для наиболее распространенных колоректальных аденокарцином человека. При этом динамическое микроокружение опухоли с гипоксией и воспалением может быть ответственным за варианты опухолевых клеток через геномную нестабильность и через эпигенетические изменения, что делает опухоль непредсказуемо разнообразной и трудно поддающейся лечению.

Также в эпителиальных клетках молочной железы человека активаторы EMT, например FoxC2, также могут придавать свойства стволовых клеток эпителиальным клеткам. А Lgr5 необходим для поддержания стволовых клеток рака груди и выявлена положительная корреляция между высокой экспрессией Lgr5 и более короткой выживаемостью пациентов.

Маркеры рака желудочно-кишечного тракта :
Колоректальный CD133 CD44, EpCAM, CD166
Гепатоцеллюлярный CD133 CD133
Поджелудочной железы, CXCR4 CD24, CD44, CD326 / ESA
играют важную роль в определении ISC и контроле кишечного морфогенеза и дифференцировки. Lgr5 также известный как рецептор, связанный с G-белком 49 (GPR49), является «сиротским» рецептором, принадлежащим к семейству G-белковых рецепторов (GPCR). Lgr5 модулирует силу канонической передачи сигналов Wnt посредством связывания со своим лигандом R-spondin. Нацеливание на клетки Lgr5 + антител, конъюгированных с различными лекарствами, демонстрирует высокую эффективность в уменьшении размера опухоли и пролиферации клеток рака толстой кишки. Впрочем, повторное появление Lgr5 + клеток после полного устранения Lgr5 + колоректального рака может быть результатом пластичности Lgr5- колоректального рака и перехода между Lgr5 + CSCs и Lgr5- CSCs.

Хронические воспалительные заболевания являются общепризнанными причинами рака; так, ось интерлейкин-33 (IL-33) / регуляторных Т-клеток (Tregs) может стать потенциальной терапевтической мишенью для лечения злокачественных опухолей, связанных с воспалением. Одним из ключевых медиаторов, обеспечивающих трансформацию ISC, является антиапоптотический белок BCL-2, который одновременно высоко экспрессируется в Lgr5 + CBC и является геном-мишенью пути Nf-κB. Более того, учитывая способность кишечных эпителиальных клеток к пластичности во время повреждения и регенерации тканей, кажется вероятным, что воспалительные сигналы из окружающей среды создают дифференцированные клетки с таким же онкогенным потенциалом, как и клетки ISC.

Нейтрофилы, рекрутируемые во время воспаления легких, могут инициировать пробуждение спящих раковых клеток.

Обычно считается, что активация воспалительного пути ядерного фактора NF -κB приводит к про-онкогенному воспалительному микроокружению. А комплекс IκB-киназы (IKKα и IKKβ) и его регуляторная субъединица (IKKγ) регулируют передачу сигналов NF-κB, при этом ядерная IκB-киназа α (IKKα) может напрямую связываться с промоторами факторов воспаления и Lgr5, что, в свою очередь, усиливает экспрессию Lgr5, в том числе за счет активации сигнального пути STAT3 во время прогрессирования, например, базальноклеточной карциномы. Впрочем сообщалось о RSPO2-индуцированной, Lgr5-зависимой передаче сигналов Wnt с отрицательной обратной связью, проявляющей в колоректальных опухолях супрессивную активность .

Морфологическая структура ткани кишечника предотвращает быстрое распространение мутировавших клеток, поскольку каждая из этих крипт сама по себе является динамической клеточной нишей без какого-либо обмена клетками между криптами. Однако количество крипт нестабильно из-за двух процессов, называемых делением и синтезом, что означает раздвоение и столкновение крипт соответственно. Эти противодействующие процессы компенсируют друг друга и случаются нечасто, если не происходит повреждение тканей.

В криптах с мутацией Kras наблюдается гораздо более высокая скорость деления. Множественные KRAS мутированные соседние крипты могут окружать CRC, предполагая , что в пределах области от KRAS мутантных крипт одна крипта подверглась дальнейшей трансформации. Таким образом, деление крипт, по-видимому, является важным механизмом злокачественной трансформации и прогрессирования в кишечнике, включая процесс, называемый полевой канцеризацией. Она представляет собой замену популяции нормальных клеток популяцией клеток, примированных к раку, которая может не демонстрировать морфологических изменений.

Как только аденома образуется при разрастании мутировавших крипт и имеет размер не менее 1 см, существует ~ 25% риск того, что эта новообразованная аденома подвергнется в следующие два десятилетия злокачественной трансформации в инвазивную карциному. В аденоматозных криптах присутствует ~ 9 функциональных опухолевых стволовых клеток на сотни клеток в каждой железе. Это контрастирует с процентом клеток Lgr5 +, который обнаруживается в аденомах, примерно ~ 20% от общей популяции (~ 400 клеток на железу), то есть только часть стволовых клеток аденомы являются ОСК.
В случае аденом человека была также продемонстрирована множественная дифференцировка в пределах железистых структур, что предполагает существование мультипотентных стволовых клеток. Уже на ранней стадии туморогенеза также возникает интрааденомное эпигенетическое клональное разнообразие.

Во время роста CRC продемонстрирована явная гетерогенность в динамике роста пула раковых клеток в различных областях опухоли, например, в клетках, расположенных рядом с границей или ближе к центру. Примечательно, что клоногенный рост происходит в основном на границе опухоли, а не в центре опухоли, то есть размножаются в основном окислительные опухолевые клетки, как я уже упоминал, предпочтительно использующие лактат для получения энергии.

albert52
17.10.2021, 18:40
Вставка.

Подавляющее большинство эпителиальных опухолей (раков) различной органной локализации (легкие, предстательная железа, молочная железа) ограничиваются поражениями in situ, которые могут оставаться недиагностированными в течение жизни человека. Это соответствует моей концепции двухэтапного канцерогенеза (см. выше). Большинство генетических изменений, обнаруживаемых в инвазивных и метастатических опухолях, уже присутствуют в фенотипически еще неизмененных клетках, а также клетках с фенотипом предопухолевых изменений (очаговая гиперплазия, мета- и дисплазия) задолго до развития рака. Ткань с накопленными генетическими и эпигенетическими изменениями определяют как поле канцеризации, или опухолевое поле.

Многоступенчатая геномная модель канцерогенеза начинается с приобретения клеткой одной или нескольких геномных или эпигеномных аберраций, обеспечивающих ее пролиферативное превосходство. Затем формируется клональное поле подобных клеток, еще сохраняющих нормальный фенотип и не нарушающих гистоархитектоники ткани.
Трансформация нормальных клеток в опухолевые посредством этих механизмов не обязательно означает развитие рака, так как пролиферация опухолевой клетки может быть прервана апоптозом (если его механизмы не повреждены) и тесно связана с работой гена р53. С накоплением генетических изменений, способствующих увеличению пролиферативного потенциала, и нарастанием фенотипических различий между клональными популяциями одна или несколько клеток приобретают признаки злокачественной трансформации – способность к эпителиально-мезенхимальному переходу, инвазии и метастазированию.

Модель предполагает, что клетки, претерпевшие ранние, но не все необходимые для опухолевой трансформации генетические изменения, и составляют поле канцеризации. Примером опухолевого поля являются предопухолевые заболевания, характеризующиеся повышенным риском развития рака, в частности пищевод Барретта (см. выше).

Среди важнейших детерминант формирования опухолевого поля выделяют старение, действие химических, физических мутагенов и хронического воспаления, а среди механизмов формирования поля большое значение имеют метилирование ДНК и дисрегуляция микроРНК. Изменения в стромальном компартменте ткани (экстрацеллюлярном матриксе, клетках соединительной ткани) могут играть ведущую роль в инициации опухолевого процесса, что определяется появлением особого опухоль-ассоциированного фенотипа фибробластов и макрофагов, а также изменением иммунного статуса ткани.

По мнению одних авторов, поле канцеризации ассоциируется с генетическими и эпигенетическими повреждениями эпителия, граничащего с зоной опухолевого роста, в представлении других оно связано с меняющимся характером экспрессии различных сигнальных молекул (протеаз и их ингибиторов, воспалительных медиаторов и хемокинов), зависящим, в свою очередь, от присутствующей линии фибробластов, макрофагов и накапливаемых в ткани Tregs-лимфоцитов, а также от особенностей локального метаболического (в частности при ожирении и сахарном диабете) и гормонального статуса ткани.

В полях канцеризации регистрируются множественные генетические, эпигенетические и хромосомные изменения, происходящие в гистологически неизмененном эпителии. Повышенное метилирование ДНК в промоторной области генов-онкосупрессоров аналогично механизму делеции хромосомных фрагментов и может способствовать последующему развитию опухоли. Эпигенетически могут быть подавлены и гены, участвующие в репарации повреждений ДНК. Признаком полевой канцеризации являются также мутации митохондриальной ДНК, которые обнаруживаются не только в соседствующем с опухолью эпителии, но еще чаще – в клетках стромы. Так как эпигенетическое подавление генов и митохондриальная дисфункция являются признаками старения, они, вероятно, документируют важную связь между возрастным увеличением риска развития рака и событиями полевой канцеризации. Обнаружено и повышенное метилирование микроРНК с предполагаемой онкосупрессивной функцией, в частности в полях рака желудка.

Гистологически в качестве первых признаков формирования опухолевого поля рассматриваются очаги дисплазии и неоангиогенеза, при этом поле может распространяться на весь орган или составлять его часть. Так, установлено, что в подверженных воздействию солнца, но гистологически неизмененных участках кожи (особенно у стареющих людей) в эпидермисе содержится значительное количество клеток с проонкогенными мутациями р53. Эти клетки определяются в виде кластеров, которые могут увеличиваться в размерах с течением времени. Клеточные популяции с мутациями р53 в гистологически неизмененных тканях также были обнаружены при раке других органных локализаций: в эпителии полости рта, слизистой оболочке бронхов, мочевого пузыря и пищевода.

В качестве важнейших проявлений полевой канцеризации рассматриваются высокая частота мультифокальности рака (множественных поражений первичного происхождения одного и того же или различных гистологических типов), а также синхронные или метахронные опухоли, которые чаще остаются неучитываемыми и неоцениваемыми событиями. Существует большая сложность в установлении различий между действительно независимыми первичными поражениями и поражениями, являющимися результатом отдаленного распространения опухоли.

Как правило, при эпидемиологической оценке мультифокальные опухоли одной органной локализации считаются как один вид рака, а предраковые поражения обычно вообще исключаются из статистики рака, поэтому статистика первично-множественных поражений в действительности значительно занижена. Этот вывод подтверждается огромным числом (до 30–40 % случаев) выявления предраковых и злокачественных поражений при аутопсии в случаях смерти от других причин.

В настоящее время представления о канцерогенезе активно смещаются в направлении важнейшей роли в этом процессе стромы – экстрацеллюлярного матрикса (ЭЦМ), формирующего клеточную микросреду и активно регулирующего важнейшие процессы в жизни клетки (пролиферацию, адгезию, дифференцировку, миграцию, апоптоз), а также клеток соединительной ткани, обладающих широким спектром функциональной активности, в том числе определяющих характер ЭЦМ. Изменения в сигнальной и транскрипционной программах стромальных клеток могут предшествовать изменениям в эпителиальных клетках (или действовать независимо от них) и фактически выступать в качестве драйвера опухолевого процесса.

Понимание концепции опухолевого поля, а значит, предопухолевых изменений при раке различной органной локализации, имеет большое значение для раннего выявления этих изменений, профилактики развития рака, его ранней диагностики и разработки новой тактики таргетной терапии.

albert52
17.10.2021, 19:16
Продолжим.

Основные положения концепции опухолевого поля были также прослежены на примере плоскоклеточного рака кожи (ПКРК), характеризующегося высокой частотой очагов дисплазии и cancer in situ в перитуморозной зоне. В модели ПКРК концепция полевой канцеризации имеет два важных аспекта для управления канцерогенезом. Во-первых, ПКРК возникает из множественных очагов предраковых изменений, но наличие рака хотя бы одной области сопровождается повышенным риском возникновения рака в других областях. Во-вторых, клинический рецидив ПКРК после полного хирургического иссечения может представлять собой развитие нового первичного рака, и риск рецидива может коррелировать со степенью злокачественности поля. Установлено, что пациенты с ПКРК от двух до девяти анатомических областей имеют двукратно повышенный риск рецидива по сравнению с пациентами с раком одной области. Поражение раком десяти и более областей сопровождается 12-кратным увеличением риска местного рецидива.

Важнейшей движущей силой эпидермального канцерогенеза является ультрафиолетовое (УФ) излучение, которое прямо (при длине волны 290–320 нм) или косвенно (при длине волны излучения 320–400 нм) повреждает ДНК клеток эпидермиса, обусловливая соматические мутации: инактивирующие – в генах-онкосупрессорах и активирующие – в онкогенах. Установлено, что и рак, и актинический кератоз, относящеся к важнейшим предопухолевым изменениям кожи и представляющие собой очаги эпидермальной дисплазии, имеют сходные генетические мутации, среди которых чаще встречается утрата функции генов-онкосупрессоров – ТР53 и NOTCH1, которая определяется в 95 % случаев при ПКРК и в 75 % случаев актинического кератоза. При этом чем больше очагов aктинического кератоза в одной анатомической области, тем выше риск развития ПКРК. Вторым эффектом УФ-излучения, способствующим эпидермальному канцерогенезу, оказывается локальная (местная) иммуносупрессия.

Как уже установлено, показатель иммунного статуса влияет на формирование полей канцеризации при опухолях различной органной локализации. В частности, иммунокоррегирующая терапия приобретает большое значение в лечении очагов лейкоплакии, которая рассматривается как предопухолевое заболевание полости рта. Исследование экспрессии PD1 (мембранный белок надсемейства иммуноглобулинов, участвующий в дифференцировке иммунных клеток), CD4+- и CD8+-Т-лимфоцитов в очагах лейкоплакии, подвергшихся и не подвергшихся трансформации в ПКРПР, показало отсутствие различий в экспрессии PD1 и CD4+ и выявило значительное увеличение экспрессии CD8+ в очагах, которые фенотипически эволюционизировали в карциному.

Воспаление может оказывать как стимулирующее, так и подавляющее влияние на канцерогенез, что определяется фенотипической пластичностью макрофагов, выполняющих различные функции при остром и хроническом воспалении. Так, изменения при тесно связанном с хроническим воспалением актиническом кератозе могут быть эффективно устранены при лечении агонистами толл-подобных рецепторов (TLR), вызывающими мощную острую воспалительную реакцию, которая оказывает подавляющее действие на развитие рака. В очаге воспаления макрофаги могут дифференцироваться в так называемый «убивающий» фенотип М1, осуществляющий элиминацию микробов и раковых клеток, и «разрешающий» фенотип М2, направленный на разрешение или сдерживание острого токсического воспаления и связанный с «тлеющим» хроническим воспалением, которое способствует опухолевой трансформации.

Фенотипические особенности макрофагов напрямую определяются опухолевыми клетками и клеточным составом опухолевой микросреды посредством межклеточного обмена различными по составу экзосомами, в том числе содержащими микроРНК (miR). МикроРНК являются эндогенными, некодирующими однонитевыми РНК, которые ингибируют трансляцию и способствуют деградации мессенджерных РНК с комплементарными последовательностями.

Характер экспрессии микроРНК зависит от типов клеток и тканей и играет ключевую роль в регуляции различных биологических процессов на трансляционном и посттрансляционном уровнях. Так, при немелкоклеточном раке легкого miR-130a, miR-1207-5p и miR-125b определяют дифференцировку макрофагов в направлении М1 фенотипа, ассоциирующегося с экспрессией провоспалительных цитокинов: интерлейкина-12 (IL), IL-23, фактора некроза опухоли альфа (TNF-α) и гамма-интерферона (IFN-γ), которые дополнительно увеличивают количество активных форм кислорода, что приводит к эффективному подавлению опухоли.

В подтип M2 макрофаги дифференцируются при воздействии противовоспалительных цитокинов: IL-4, IL-10, IL-13 или трансформирующего фактора роста бета (TGFβ). Активированные макрофаги M1 проявляют бактерицидную, иммуностимулирующую и подавляющую опухоль активность, в то время как макрофаги M2 участвуют в разрешении воспаления, процессах ремоделирования ткани и играют протуморогенную роль.

Опухолевая микросреда, характеризующаяся как гипоксическая, обусловливает активацию генов, ответственных за фактор, индуцируемый гипоксией 1-альфа (HIF-1), являющийся, в свою очередь, модулятором поляризации макрофагов в M2 фенотип.
На этот процесс влияет и активация одних микроРНК (miR-103a, miR-21-5p и miR-320a) и подавление других (miR-4319, miR-130a и miR-155). Опухольассоциированные макрофаги (CAM), имеющие фенотип M2 и экспрессирующие IL-4, IL-10, IL-13, TGF-β, PGE2, в сочетании с высоким уровнем в опухолевой микросреде HIF-1α стимулируют ангиогенез, ремоделирование матрикса, способствуют подавлению иммунитета, развитию эпителиально-мезенхимального перехода, а значит, прогрессированию и метастазированию опухоли.

Исследования канцерогенеза в органах желудочно-кишечного тракта показывают, что воспаление может провоцировать развитие рака, и это подтверждается высокой частотой колит-ассоциированного рака. Сильная причинная связь существует также между инфекцией Helicobacter pylori (H. pylori) и раком желудка, при котором воспаление рассматривается в качестве основной причины. Прямым доказательством этого оказалась возможность инициации желудочного канцерогенеза при трансгенной сверхэкспрессии провоспалительного цитокина IL-1β в слизистой оболочке желудка (СОЖ), а также развитие рака через каскад NF-kB (ядерный фактор «каппа-би») – активирующих цитокинов и рекрутирование иммуномодулирующих клеток.

Повышенная экспрессия IL-1β приводила не только к увеличению пролиферации и трансформации желудочных эпителиоцитов, но и атрофическим изменениям в стромальном компартменте СОЖ (слизистой оболочке желудка). В свою очередь, атрофия стромы и связанное с ней старение фибробластов могут не только вносить значительный вклад в процесс полевой канцеризации, но и играть в нем определяющую роль.
Установлена связь между инфицированием H. pylori и эпигенетическим выключением экспрессии генов-онкосупрессоров посредством микроРНК в фенотипически неизмененной СОЖ. Так, экспрессия miR-21, miR-155 и miR-223 в СОЖ в сравнении с контролем постепенно нарастает в патологическом ряду от хронического гастрита (ХГ) к хроническому атрофическому гастриту (ХАГ) и раку желудка (РЖ). Экспрессия miR-10а, miR-21 и miR135b также постепенно нарастает от зоны неизмененной СОЖ к опухоли.

Интересно, что среди исследованных микроРНК не выявляется разницы в их экспрессии при РЖ кишечного и диффузного типов, которые, как известно, отличаются разными патогенетическими механизмами. Вместе с тем при диффузном РЖ установлена более низкая экспрессия miR-26а. В целом, глобальное снижение уровня активных микроРНК при РЖ и опухолях других локализаций позволяет рассматривать большую часть этих молекул как опухолевые супрессоры.

Валентин555
17.11.2021, 03:35
Часто за потоком теории теряется главное - суть. А суть такова: Клетки заставляют меняться споровые - токсоплазма, которая вызывает доброкачественные опухоли и кандида, вызывающая злокачественные. Все мои онкобольные сдавали анализ крови на антитела к этим патогенам и выбранное дальнейшее лечение было эффективно. Именно споровые создают симбиоз клеток гриба и человеческого организма. Посмотрите с этого угла на вашу теорию. Мое мнение подтверждено практикой.

Forlife
17.11.2021, 11:59
Часто за потоком теории теряется главное - суть. А суть такова: Клетки заставляют меняться споровые - токсоплазма, которая вызывает доброкачественные опухоли и кандида, вызывающая злокачественные. Все мои онкобольные сдавали анализ крови на антитела к этим патогенам и выбранное дальнейшее лечение было эффективно. Именно споровые создают симбиоз клеток гриба и человеческого организма. Посмотрите с этого угла на вашу теорию. Мое мнение подтверждено практикой.

Валентин, у меня также есть средства, которые давят ваши споровые с любого угла, но у Альберта более углубленные знания на эту проблему.

albert52
07.01.2022, 02:01
Продолжим углубленным изучением рака поджелудочной железы.

Всего насчитывают 5 гистологических форм РПЖ, но наиболее распространена аденокарцинома, наблюдающаяся в 80 % случаев рака поджелудочной железы. Чаще всего она исходит из эпителия выводных протоков. Вокруг опухоли желези*стые элементы подвергаются резкой атрофии, выводные прото*ки расширены, а окружающая их ткань склерозирована.

Выявлены три основных предшественника инвазивной аденокарциномы поджелу -дочной железы : интраэпителиальная неоплазия поджелудочной железы (PanIN), IPMN (Intraduktal Papillär Muzinöse Neoplasien) и муцинозно-кистозное новообразование (MCN). PanIN является наиболее распространенным типом предшественников опухоли, возникающих из эпителиальных клеток протоков. Предполагается, что эти поражения проходят путь прогрессирования от интраэпителиальной протоковой гиперплазии (PanIN-1) через умеренную дисплазию (PanIN-2) до дисплазии высокой степени (карцинома in situ) и инвазивной карциномы . По мере увеличения протоковой атипии увеличивается частота генетических изменений; в зрелой опухоли их в среднем около 60.
Хотя IPMN и MCN ответственны только за меньшую часть случаев рака поджелудочной железы (менее 15%), они дают возможность идентифицировать предраковые поражения поджелудочной железы, особенно с увеличением использования неинвазивных процедур визуализации брюшной полости высокого разрешения .
Особенностью РПЖ является выраженный склероз как самой ткани опухоли еще на стадии рак in situ, так и вокруг опухоли, образуя как бы защитный вал. Это обьясняется тем, что на стадии тканевого атипизма вновь образующиеся атипичные протоки (см. ниже) часто тупиковые и агрессивный поджелудочный сок не находя выхода начинает переваривать окружающую ткань железы.

В отличие от большинства опухолей, клетки РПЖ могут образовывать только небольшие островки в обширной строме опухоли. Основными клеточными компонентами являются ассоциированные с раком фибробласты (CAF), преимущественно происходящие из звездчатых клеток поджелудочной железы (PSC) и воспалительных клеток. В склерозированной ткани мало кровеносных сосудов, в результате чего опухолевые клетки находятся в состоянии постоянной гипоксии и выживают наиболее агрессивные субклоны. А изоляция опухолевых клеток задерживает клинические проявления.

Одной из основных проблем, стоящих перед этим заболеванием, является гетерогенность, наблюдаемая среди пациентов в отношении симптомов, клинической эволюции, предрасположенности к раннему метастазированию и чувствительности к лечению. Гетерогенность может возникать на разных этапах эволюции опухоли, начиная с первых генетических мутаций, которые привели к возникновению опухоли, ее взаимодействия с микроокружением и в результате давления отбора и клональной экспансии. Тем не менее, были охарактеризованы два клинических подтипа PDAC: базальный (сквамозный), с худшим прогнозом и классический. Базальный подтип частично - но не полностью - совпадает с типом плоских клеток и с EMT; он, как правило, более устойчив к различным химиотерапевтическим средствам и особенно к схеме лечения, называемой FOLFIRINOX (фолиевая кислота, 5-фторурацил (5-FU), иринотекан и оксалиплатин).
Эти фенотипы PDAC определяются различными эпигенетическими ландшафтами, в частности паттернами метилирования ДНК, которые трансдуцируются на уровне транскрипции и изменяют взаимодействие между опухолью и ее стромой. Так, ключевыми игроками в гетерогенности PDAC являются супер-энхансеры; комплекс SWI / SNF ремоделирования нуклеосом может регулировать эти супер-энхансеры, и, что интересно, генетические изменения у членов этого комплекса часты среди опухолей PDAC. Когда комплекс SWI / SNF не способен правильно собираться, он не может противостоять поликомбо-репрессивному комплексу, локализованному в промоторах и типичных энхансерах генов дифференцировки, и это нарушение равновесия способствует онкогенезу.

Поскольку природа подтипов PDAC не является генетической, можно было бы преобразовать оба подтипа просто путем инактивации MET в базальных или GATA6 в классических выборках, что в опухолях часто и происходит. В запущенных случаях между этими двумя крайними формами опухолевого фенотипа имеется континиум промежуточных состояний.

Согласно современной концепции развития ПАПЖ (протоковой аденокарциномы ПЖ), клетками-родоначальниками ее классического подтипа являются ацинарные клетки. Ключевым инициирующим событием является АПМ. Этот процесс активируется при остром панкреатите и непосредственно связан с регенерацией ПЖ. В норме это заканчивается редифференциацией «протоковых» клеток в ацинарные, однако при появлении дополнительных факторов могут развиться ПанИН-I, II, III и в конечном итоге инвазивная аденокарцинома.
С другой стороны, ацинарные клетки, по-видимому, более чувствительны к распространенным мутациям, вызывающим рак поджелудочной железы, в первую очередь гена KRAS, и имеют тенденцию эффективно развиваться до PanIN и PDAC, тогда как протоковые клетки более устойчивы к мутантному KRAS. Кроме того, было продемонстрировано, что ацинарные клетки могут подвергаться трансдифференцировке с образованием популяции клеток DCLK1 + с фенотипом панкреатобилиарных предшественников, которые затем способствуют инициации и прогрессированию PDAC. Вообще, в практике следует уделять больше внимания идентификации клеточных клонов, а также их ассоциацию с подтипами PDAC.

Согласно новой классификации ПАК ПЖ выделяются четыре главных молекулярных подтипа: сквамозный (квазимезенхимальный), панкреатический классический (из клеток-предшественников), иммуногенный и аберрантно-дифференцированный экзокрино-эндокриноподобный (АДЭЭ).

Сквамозный подтип запускается ЕМТ-программой и характеризуется высокой экспрессией мезенхимальных маркеров и наихудшим прогнозом. Гистологически он включает железисто-плоскоклеточный рак ПЖ. Сквамозные опухоли богаты мутациями генов семейства TP53, отражающими активацию TP63ΔN и его транскрипционную сеть. Ген TP63ΔN стимулирует дифференцировку клеток плоского эпителия в противовес железистой дифференцировке эпителия протоков ПЖ.
Гиперметилирование генов, ответственных за апоптоз (PDX1, GATA6 и HNF1B), способствует развитию дедифференцированного и мезенхимального характера этого подтипа. Множество других фенотипических характеристик патогномоничны для сквамозного подтипа ПАК ПЖ: частые мутации гена KDM6A, ответственного за перестройку хроматина, активация сигнального пути TGF-β, гена MYC и т.д. Клеточные линии сквамозного подтипа более чувствительны к воздействию гемцитабина.

Панкреатический классический (из клеток-предшественников) подтип характеризуется наиболее эпителиальным характером ПАК ПЖ с высоким уровнем экспрессии эпителиальных маркеров, особенно CDH1/E-cadherin. Данный подтип по молекулярному фенотипу подобен KRAS-зависимым клеточным линиям ПАК ПЖ. Также присуща высокая экспрессия генов, способствующих развитию ПЖ (FOXA2/3, PDX2, MNX1 и GATA6); например, PDX2 индуцирует начальную дифференцировку эпителия поджелудочной железы. В отличие от сквамозного, этот подтип происходит из клеточных линий, чувствительных к ингибитору EGFR – эрлотинибу. Любопытна взаимосвязь классического подтипа ПАК ПЖ с развитием “диабета молодых” (MODY).

В подтипе c аберрантной эндокринной-экзокринной дифференцировкой (ADEX) нарушена регуляция генов, играющих роль в ацинарной и эндокринной дифференцировке, которая носит в норме взаимно исключающий характер, также в процессах регенерации и при панкреатите. Часть этих генов связана с активацией KRAS. ПАК ПЖ подтипа ADEX гистологически связан с ацинарно-клеточным раком.
Иммуногенный подтип ПАК ПЖ отличается различными иммуно-ассоциированными транскрипционными программами. Эти программы связаны с сигнальными путями и рецепторами В- и Т-клеток, представлением антигена и приобретенной иммунной супрессией через ключевые моменты соответствующих путей – CTLA4 и PD1. Кроме того, иммуногенный подтип ПАК ПЖ демонстрирует существенное увеличение в инфильтрате В- и Т-клеток. Гистологически ПАК ПЖ этого подтипа проявляются в виде муцинозных некистозных (коллоидных) опухолей и ПАК ПЖ, происходящих из ВПМО.

ПАК ПЖ в целом не чувствительна к новым классам ингибиторов типа анти-i-PD1 иммуномодуляторов (пембролизумаб). Однако ПАК ПЖ иммуногенного подтипа могут быть чувствительными к препаратам этой группы либо сами по себе, либо в сочетании с другими химиотерапевтическими средствами.

albert52
07.01.2022, 02:20
В инфильтрирующей карциноме происходит субклональное развитие генома рака во время прогрессирования опухоли. Клинические последствия субклональной эволюции при раке поджелудочной железы: канцерогенез поджелудочной железы следует за накоплением мутаций как у драйвера (водителя), так и у пассажира, кульминацией которых является образование клетки-основателя, которая станет родительским клоном карциномы. Родительский клон, который инициирует инфильтрирующую карциному, будет продолжать подвергаться клональной эволюции, приводя к образованию субклонов, которые отличаются наличием вновь приобретенных мутаций в гипотетических генах α, β, γ и Δ. Если терапия, нацеленная на субклон с мутантом β, эффективно очистит все раковые клетки, содержащие эту мутацию, со временем оставшиеся субклоны продолжат расти и появятся новые субклоны (например, ε).

Молекулярные изменения, которые накапливаются во время канцерогенеза поджелудочной железы, можно классифицировать на ранние (укорочение теломер и активирующие мутации в KRas в PanIN-1), промежуточные (инактивирующие мутации или эпигенетическое молчание CDKN2A в PanIN-2) и поздние (инактивирующие мутации р53 и SMAD4 в PanIN-3) события. Во время формирования PanIN могут также происходить мутации в других генах, впрочем наиболее значимо накопление мутаций, а не появление их в определенном порядке.
Наиболее распространенной является мутация в онкогене K-ras (встречается в 90% случаев). Приобретение онкогенной мутации KRas в ацинарных клетках поджелудочной железы приводит к их трансдифференцировке в протоковидные клетки. Онкогенные KRas могут также модулировать митохондриальный метаболизм и выработку АФК посредством регуляции рецептора трансферрина (TfR1), который высоко экспрессируется в ракe поджелудочной железы. Кроме того, КRas могут вызвать подавление дыхательной цепи комплекса I и III, приводя к митохондриальной дисфункции (что-то напоминает).

Ген Р16/CDKN2A при РПЖ инактивируется наиболее часто (в 95% наблюдений). Белок р16 играет критическую роль: его инактивация приводит к утрате контроля над клеточным циклом, так как продукт гена p16 INK4а ингибирует взаимодействие циклина D с циклин -зависимой киназой 4 (CDK4). В спорадических опухолях p16 иногда инактивируется гомозиготными делециями и внутригенными мутациями, а в остальном ген INK4a выключается путем метилирования промотора.

Ген-супрессор опухолей DPC4 расположен на хромосоме 18q21 и кодирует ядерный фактор транскрипции Smad 4 - важный элемент TGF-ß сигнального пути. При раке поджелудочной железы DPC4 был инактивирован в 55% наблюдений, а при других злокачественных опухолях инактивация этого гена происходит очень редко.
Канонический каскад передачи сигналов Smad инициируется фосфорилированием рецептор-регулируемых факторов транскрипции Smad (R-Smads) Smad2 и/или Smad3 активированным ALK5 (Anaplastic Lymphoma Kinase). Это позволяет связывать R-Smad с Smad4 и транслокацию комплекса в ядро, где он может привлекать транскрипционные коактиваторы или корепрессоры к Smad-связывающим элементам (SBE) в промоторах генов-мишеней TGF-β. Отметим, что потеря функции SMAD4 почти всегда происходила в связи с генетической инактивацией TP53 , но не наоборот, указывая на то, что изменения SMAD4 были связаны с генетическими изменениями TP53 .
Эта взаимосвязь также предполагает, что инактивация SMAD4 происходит позже, чем инактивация TP53. Трансформирующий фактор роста (TGF -β) действует как супрессор опухоли во время инициации рака, но как промотор опухоли во время прогрессирования опухоли. Рост опухолевых клеток TGF-β способен ингибировать путем тормозного взаимодействия с циклином D1.

При инвазивной карциноме гиперактивирован сигнальный путь Hedgehog; эта активация может быть зависимой от лиганда Hedgehog (при РПЖ) или из-за мутации Patched (при базально-клеточном раке кожи). Ингибирование этого пути препаратом циклопамином останавливает рост опухоли в эксперименте.

Ген р53. При раке поджелудочной железы инактивация этого гена-супрессора опухолей определяется в 50-70% наблюдений. р53 — это ядерный ДНК-связывающий белок, который влияет на старение клетки и контролирует клеточный цикл, запускает процесс клеточной гибели (апоптоз). Мутации в гене TP53 отменяют его функцию, приводя к генетической нестабильности и прогрессированию опухоли. р53 ингибирует клеточный цикл путем прямой инактивации CDK4 и косвенной инактивации p21, то есть функционирует на переходе G1 / S, блокируя вход в S-фазу, вызванный повреждением ДНК. Функции p53 также поддерживают геномную стабильность.
Потеря p53 связана с анеуплоидией, выдающейся особенностью карциномы поджелудочной железы; вообще на сегодняшний день большинство генов, которые считаются супрессорами метастазирования, демонстрируют признаки гаплоиндуцированности. Инактивация TP53 при SMAD4 дикого типа сильно обогащена нулевыми мутациями (нонсенс, делеция или сдвиг рамки), а при сопутствующей потере SMAD4 - миссенс-мутациями. При этом потеря SMAD4 частично устраняет остаточные цитостатические или апоптотические функции миссенс-мутантных белков TP53.

Специфические ингибиторы COX2 (СОХ — группа ферментов, участвующие в синтезе простаноидов, таких как простагландины, простациклины и тромбоксаны) могут предотвращать канцерогенез и вызывать апоптоз опухолевых клеток. Также путь липооксигеназы (LOX) превращает арахидоновую кислоту в мощные сигнальные медиаторы, такие как лейкотриен B4 (LTB4), способствующий развитию и прогрессированию рака человека. Сверхэкспрессия рецепторов LOX и LTB4 при раке поджелудочной железы человека образует аутокринную петлю, которая стимулирует пролиферацию клеток.

Активированные гены подтипа предшественников поджелудочной железы в основном участвуют в развитии поджелудочной железы (например, GATA6, BMP2, PDX1 и SHH) и передаче сигналов Ras (например, KITLG и RASA3). Плоскоклеточный (сквамозный) подтип демонстрирует обогащение путей с сильным онкогенным потенциалом (например, PI3K-AKT, Hippo и WNT), способствующим EMT (например, передача сигналов TGFβ) и дерегулирование генов, участвующих в пролиферации, дифференцировке и апоптозе клеток (например, YAP1, CD44 , MYC и E2F7). Отметим, что устранение Kras приводит к переключению в сторону плоскоклеточного подтипа.

Впрочем подтипы опухолей лучше определяются специфическими эпигенетическими, транскрипционными и стромальными ландшафтами, чем генными мутациями (см. выше). А если эпигеном является основным фактором, ответственным за фенотипы PDAC, главное заключается в том, что это обратимое явление, а генетические мутации - нет.
Некоторые из эпигенетических регуляторов, обнаруженных в PDAC, являются H3K4-метилтрансферазой MLL2 и SETD3 и H3K-ацетилтрансферазой KAT2A, которые активируют транскрипцию. Другим регулятором, сверхэкспрессированным во всех образцах PDAC, является энхансер Zeste Homolog 2 (EZH2). Этот фермент является функциональным компонентом субъединицы 2-го репрессивного комплекса ремоделяции хроматина (PRC2) и катализирует триметилирование H3K27, в результате чего хроматин плотнее окутывает ДНК и мешает транскрипции.
Поликомб-репрессированные комплексы подавляют гены-супрессоры опухолей и гены пути Hedgehog (см. выше). Первый в своем классе пероральный селективный ингибитор EZH2, таземетостат показал благоприятные результаты у пациентов с рефрактерной В-клеточной неходжкинской лимфомой и запущенными солидными опухолями. NUPR1 является белком, который сверхэкспрессируется во время острого панкреатита, и участвует в ремоделировании хроматина посредством его взаимодействия с белками группы поликомб. Спиральные пептиды, предназначенные для нацеливания на NUPR1, оказывают кратковременный лечебный эффект.

Метилирование ДНК таким образом является эпигенетической меткой, которая вызывает молчание генов, удерживая ДНК в транскрипционно спокойном состоянии. Зебуларин, известный ингибитор метилирования ДНК, подталкивает стволовые клетки PDAC к более пролиферативному фенотипу с повышенной чувствительностью к современным химиотерапиям. Существует также подгруппа опухолей PDAC, которые были чувствительны к хорошо изученному децитабину.

Гистондеацетилаза 1 (HDAC1) является еще одним эпигенетическим модификатором, который сверхэкспрессируется в PDAC и может нарушать регуляцию паттерна ацетилирования гистона, что в целом активирует транскрипцию. В частности, более высокие уровни экспрессии HDAC 1, 7 или 8 связаны с худшей общей выживаемостью. Ингибирование HDAC может привести к активации генов-супрессоров опухоли.

Некодирующие РНК (нкРНК) транскрипты играют роль эпигенетических модификаторов, взаимодействуя с гистоновыми модифицирующими комплексами или с DNMT (DNA methyltransferase). Среди нкРНК лучше всего изучены микроРНК (миРНК), которые действуют как посттранскрипционные репрессоры, а в предраковых поражениях PDAC подавление miR-148, наряду с miR-217 и miR-375, является мета-сигнатурой PDAC. Различные стратегии доставки могут быть выполнены для восстановления уровней экспрессии miRNA. Одним из них является использование «нановекторов», которые состоят из липидных наночастиц. Они были успешно использованы для доставки miR-34a из транскрипционной сети p53 и кластера miR-143/145, который подавляет экспрессию KRAS2 в раковыклетках.

В целом, развитие эпигенетических лечебных препаратов сталкивается с несколькими проблемами, одной из наиболее важных из которых является отсутствие специфичности: все эпигенетические методы лечения влияют на общий геном. Кроме того, следует учитывать гетерогенность, поскольку маловероятно, что одно эпигенетическое лекарственное средство, отдельно или в сочетании с современными методами лечения, будет эффективным для всех опухолей.

albert52
07.01.2022, 03:21
Вставка.

Поджелудочная железа состоит из трех основных типов клеток: эндокринных клеток, ацинарных клеток и протоковых клеток. Их развитие строго контролируется регуляторной сетью факторов транскрипции, которые модулируют экспрессию генов. В эту сеть включены факторы транскрипции гомеобокса (PDX1, Pbx1, HB9), факторы транскрипции гомеопротеинов парного бокса (Pax4, Pax6), факторы транскрипции Forkhead Вох (Foxa1, Foxa2) и факторы транскрипции основной спирали-петли-спирали (bHLH) (ptf1a / p48, Mist1, нейрогенин3, NeuroD).

Самыми ранними генами, избирательно экспрессируемыми в препанкреатической энтодерме, являются два фактора транскрипции, фактор гомеодомена парахокс PDX1 и PTF1A. Ptf1a предпочтительно собирается в тримерный комплекс транскрипции PTF1 с белком E и Rbpj (или Rbpjl). Регулятор транскрипции RBPJ, иначе известный как CSL, представляет собой высококонсервативный ДНК-связывающий белок, который обеспечивает каноническую передачу сигналов Notch, являясь частью его транскрипционного комплекса. В развитии поджелудочной железы Ptf1a незаменим для контроля роста мультипотентных клеток-предшественников, а также для спецификации и поддержания ацинарных клеток.

Факторы транскрипции bHLH особенно важны для событий развития и дифференцировки из-за комбинаторной природы этих белков. Факторы bHLH подразделяются на две основные группы - белки класса A, которые включают широко экспрессируемые белки E12 / E47 / HEB, и белки класса B, которые демонстрируют ограниченный тканью паттерн экспрессии.
В большинстве случаев предпочтительный комплекс bHLH представляет собой гетеродимер, состоящий из члена класса A и члена класса B. Эти гетеродимеры связываются с сайтами E-box, обнаруженными в промоторных и энхансерных областях генов-мишеней, чтобы регулировать их транскрипцию. Было показано, что четыре белка bHLH класса B демонстрируют паттерн экспрессии, ограниченный поджелудочной железой (Neurogenin3, NeuroD, ptf1a / p48, Mist1).
Ген Neurogenin3 является нижестоящей мишенью передачи сигналов Notch и необходим для развития всех клонов эндокринных клеток поджелудочной железы. NeuroD, нижестоящий ген-мишень Neurogenin3, служит ключевым регулятором транскрипции гена инсулина в β-клетках.

Как только идентичность поджелудочной железы установлена, морфогенез ветвления в MPCs ведет к разделению на клетки кончиков (верхушки) и ствола, которые являются предшественниками ацинарных и протоковых структур, соответственно. В концевых клетках Ptf1α индуцирует Nr5a2, который сам напрямую регулирует Ptf1a в петле обратной связи, а также Gata4 и Rbpjl, тогда как клетки ствола определяются активностями генов Hnf1b, Sox9, Hnf6 и Hes1. Кроме того, расширение и поддержание экзокринного компартмента дополнительно поддерживается ингибированием пути Hippo для репрессии специфичных для эндокринной системы генов TF, включая Pax6, Ngn3, Isl1 и Nkx6-1. Активные сигналы Hippo также способствуют эндокринной судьбе, противодействуя активности Yap .

В дополнение к будущим судьбам ацинарных и протоковых клеток, эндокринный компартмент появляется в отдельных клетках внутри ствола, которые активируют Ngn3, предположительно за счет латерального ингибирования, организованного путем Notch. Временные волны экспрессии TF инициируют их созревание, чтобы гарантировать однонаправленную спецификацию уникальных типов клеток, включая Neurod1, Insm1 и Rfx6, потеря которых ставит под угрозу идентичность и функцию клеток островков.

Идентичность ацинарных клеток поддерживается несколькими взаимодействующими ТФ, такими как Ptf1α (см. выше) и Mist1. Подавление этих TF приводит к приобретению характеристик клеток-предшественников и усилению образования ADM и PanIN, что подчеркивает важность поддержания экспрессии этих факторов идентичности для предотвращения инициации опухоли.

MIST1 представляет собой пионерский фактор транскрипции, принадлежащий к семейству В белков с основной конфигурацией (доменом) спираль-петля-спираль (bHLH). MIST1 экспрессируется в серозных экзокринных клетках, включая ацинарные клетки поджелудочной железы. Вне поджелудочной железы MIST1 экспрессируется в ацинарных клетках слезных, околоушных и поднижнечелюстных слюнных желез, главных клетках желудка, альвеолярных клетках лактирующих молочных желез и секретирующих клетках, выстилающих простату и семенные пузырьки. В поджелудочной железе MIST1 локализуется в ядрах ацинарных клеток. Не наблюдается экспрессии MIST1 в протоковых или центроацинарных клетках. MIST1 является мишенью транскрипционного фактора XBP1, который также играет физиологическую роль в ацинусах поджелудочной железы. Белок MIST1 может также образовывать гетеродимеры с другими факторами транскрипции bHLH, что типично для этих белков. Однако, в отличие от других белков bHLH, MIST1, по-видимому, преимущественно работает как гомодимер.

Экзокринные клетки с выпадением Mist1 гена имеют дефект митохондриальной локализации и движения кальция, что, вероятно, является основной причиной снижения базального и регулируемого экзоцитоза, проявляемого этими клетками. При этом репрессируется Atp2c2 (ген, кодирующего секреторный путь Ca 2+АТФаза 2 (SPCA2), который участвует в поступлении кальция из клеточного депо. MIST1 также нацелен на p21 pCIP / WAF, вызывая задержку роста ацинарных клеток, что позволяет предположить, что в отсутствие MIST1 фенотип зрелых ацинарных клеток более пластичен. Также может наблюдаться спонтанный панкреатит и большая чувствительность к разным повреждающим факторам.
MIST1 также снижает способность онкогенного Kras вызывать PanIN. Отсутствие MIST1 в присутствии KrasG12D значительно ускоряет образование PanIN, и в эксперименте мыши становятся нежизнеспособными из-за почти полного отсутствия ацинарной ткани, замещенной протоковым эпителием. Эти аффекты отменяются принудительным выражением MIST1. Mist1 также активирует экспрессию p21 CIP1 / WAF1 посредством уникального пути Sp1.

Gata6 необходим для терминальной дифференцировки и гомеостаза ацинарных клеток и установления полярности и его инактивация вызывает массовую потерю ацинарных клеток, способствуя развитию ADM в поджелудочной железе. GATA6, среди других генов, кодирующих TF, определяющих судьбу энтодермальных клеток, подавляется в плоскоклеточном подтипе PDAC посредством гиперметилирования промотора. В соответствии с этим, экспрессия GATA6 преимущественно выявлялась в хорошо дифференцированных опухолях низкой степени злокачественности.

albert52
07.01.2022, 13:57
Продолжим.

Многочисленные сигнальные пути через стимулированные рецепторы факторов роста передают свои последующие эффекты через факторы обмена гуанином RAS (RAS-GEFs), которые активируют белки семейства RAS, KRAS, HRAS и NRAS. Напротив, негативные регуляторные пути индуцируют белки-активаторы ГТФазы RAS (RAS-GAP), которые осла***ют передачу сигналов RAS. Онкогенные мутации KRAS - в кодонах 12, 13 и 61 - продуцируют конститутивно активные формы KRAS, устраняя необходимость в восходящих индуцирующих сигналах и делая белок нечувствительным к ингибированию. Активированный KRAS задействует множество эффекторных путей, в частности, киназу, активированную митогеном RAF (MAP-киназу), фосфоинозитид-3-киназу и пути RalGDS.

В дополнение к роли в инициации опухоли, похоже, что активация KRAS необходима для поддержания онкогенного роста установленного PDAC, поскольку нарушение активности KRAS - через интерференцию РНК, антисмысловую РНК или экспрессию доминантно-отрицательного KRASN17 - осла***ет онкогенность клеточных линий PDAC. Следовательно, активность KRAS, по-видимому, необходима на всех этапах канцерогенеза протоков поджелудочной железы, и, таким образом, активированный KRAS или его эффекторы, вероятно, будут подходящими мишенями для профилактики и лечения этого злокачественного новообразования.

Экспрессия онкогенного Kras в ацинарных клетках индуцирует трансдифференцировку в протоковые клетки во время ADM; этот процесс предшествует формированию повреждений PanIN и в конечном итоге вызывает PDAC. Инициация PDAC может также развиваться отдельно от ацинарных или протоковых клеток по PanIN-независимому механизму. Сходным образом экспрессия Kras G12D в сочетании с гаплонедостаточностью Smad4 ведет к последовательному прогрессированию поражений MCN в сторону отдельного класса PDAC.

Ptf1α поддерживает идентичность ацинарных клеток и сдерживает Kras-опосредованный туморогенез. Тем не менее, Ptf1a подавляется во время индуцированного воспалением ADM и в ацинарных клетках, трансформированных совместной активацией KrasG12D и Notch. В частности, подавление Ptf1a является необходимым и ограничивающим скорость шагом в ADM и неопластической прогрессии до PanINs и PDAC. Кроме того Ptf1a эпигенетически замалчивается в клетках ADM и PDAC, несущих онкогенный аллель Kras.

FoxA2 считается пионерским фактором, отвечающим за открытие хроматина регуляторных областей генов. Его сайты связывания расположены в регуляторной области гена Pdx1, за счет чего происходит активация последнего. Активация Pdx1 также может происходить по пути Hnf1β-Hnf6-Pdx1. FoxA2 также влияет на экспрессию гена SOX9, впрочем Pdx1 также связывается с регуляторной областью гена SOX9, и наоборот, что указывает на возможность взаимной регуляции экспрессии друг друга. Однако зависимость экспрессии Pdx1 от SOX9 наблюдается на более поздних стадиях, где Pdx1 не силен. Отмечу, что SOX9 для поджелудочной железы также является пионерским фактором транскрипции. Sox9 и второй фактор протока поджелудочной железы, Onecut1, эктопически экспрессируются в метапластических ацинарных клетках в непосредственной близости от поражений PDAC. Поддержание экспрессии генов SOX9 и Pdx1 может также происходить за счет авторегуляции.

Ген Pdx1 часто подавляется гиперметилированием во время прогрессирования в сторону плоскоклеточного подтипа PDAC. С другой стороны, PDX1 является частью транскрипционной сети, определяющей судьбу клеток энтодермы в сторону поджелудочной железы, и его присутствие приводит к лучшему прогнозу для подтипа предшественников PDAC. Но в целом (и не он один) Pdx1 действует как контекстно-зависимый TF во время инициации и прогрессирования PDAC: он переключается с защиты идентичности ацинарных клеток во время раннего туморогенеза на онкоген после установления ADM.

Экспрессия Sox9 в поджелудочной железе взрослого человека ограничена цитокератин-положительными клетками протока, включая центроацинарные клетки. Во время опухолеобразования было показано, что Sox9 индуцируется в ADM и PanIN и поддерживается в подтипе PDAC предшественника поджелудочной железы (классический вариант). Важно, что ADM и PanINs, происходящие из ацинарного компартмента, нуждаются в эктопической индукции Sox9. Совместная экспрессия онкогенного Kras и Sox9 дикого типа способствует индукции предшественников поражений из ацинарного компартмента. В целом ADM, зависит от комбинированной экспрессии Sox9 и Hnf6, поскольку сверхэкспрессия Hnf6 также запускает ADM.
Сверхэкспрессия SOX9 не влияет на частоту IPMN, но снижает риск образования PDAC, в том числе благодаря тому, что Sox9 является основной нижестоящей мишенью Arid1a (AT-rich interacting domain-containing protein 1A), части комплекса ремоделирования хроматина SWI/SNF (см. выше) и предотвращает прогрессирование опухоли, способствуя протоковой дифференцировке. В конце концов, Sox9 является критическим медиатором идентичности протоков или их предшественников. Из-за его встраивания в множественные сигнальные пути и петли обратной связи в спецификации клеточного типа, его дерегулированная экспрессия в конечном итоге связана с ранним туморогенезом.

В поджелудочной железе взрослых экспрессия Notch мишени Hes1 (hairy and enhancer of split-1) ограничена центроацинарными и протоковыми клетками, при этом регуляция Hes1 с помощью активной передачи сигналов Notch наблюдалась во время формирования ADM и PanIN. Гены Hes кодируют ядерные белки, подавляющие транскрипцию, и Notch-индуцированный Hes1 контролирует рост недифференцированной популяции клеток, а активация Notch сенсибилизирует ацинарные клетки к мутантному Kras-индуцированному инициированию и прогрессированию ADM / PanIN.
Кстати, при потере Hes1 может произойти ускорение онкогенеза PDAC за счет образования опухоли по прямому пути от ADM к PDAC, который пропускает предраковые поражения PanIN.

Таким образом, формирование PDAC зависит от ранних предопухолевых событий, таких как ADM, который основан на подавлении TF, которые контролируют идентичность ацинарных клеток, включая Gata6, Mist1 и Ptf1α, и прироста TF, которые способствуют протоковой спецификации, включая Pdx1, Sox9 и Hes1. Клетки ADM также приобретают свойства, не похожие на протоки, за счет активации Pdx1, приобретая более сходные с клетками-предшественниками характеристики.

Активация определенных нижестоящих медиаторов KRAS способна способствовать переходу к плоскоклеточному (сквамозному) подтипу. Сверхэкспрессия Etv1 (Variant Transcription Factor 1, участвует в хромосомных транслокациях, которые приводят к множественным гибридным белкам) индуцирует все основные EMT-TF и молекулярные маркеры, связанные с мезенхимальным фенотипом (например, Vim, Mmp3 и Mmp9), тогда как нокдаун Etv1 снижает уровни Zeb1. Отметим, что в норме Zeb1 является критичным для спецификации клонов эмбриональных клеток в правильных соотношениях и для тканевого гомеостаза в поджелудочной железе взрослых, а в PDAC способствует метастазированию. Также повышение HAS2 (Hyaluronan Synthase 2) способно подпитывать самоподдерживающуюся петлю обратной связи CD44 и ZEB1, дополнительно способствуя EMT. Отмечу, что гиалуроновая кислота (ГК), рецептором которой и является CD44 (см. выше), обеспечивает межклеточную матрицу, через которую клетки могут мигрировать.

Повышающая регуляция MAPK или инактивация TP53 приводит к сверхэкспрессии KLF7, способствуя росту опухоли и метастазированию. Экспрессия KLF7 стабилизирует целостность аппарата Гольджи и, таким образом, гликозилирование белков для усиления секреции факторов роста, способствующих развитию рака.

Yap1 ( (yes-associated protein 1) это регулятор транскрипции, который является критической нижестоящей регуляторной мишенью в сигнальном пути Hippo и играет ключевую роль в контроле размера органа и подавлении опухоли за счет ограничения пролиферации и стимулирования апоптоза. В сотрудничестве с Myc Yap1 поддерживает экспрессию метаболических генов, необходимых для пролиферации и выживания. При удалении Yap1 подмножество опухолевых клеток было способно восстанавливать уровни Myc, обеспечивая выживание клеток за счет индукции генов, кодирующих EMT-TFs Snail, Zeb2, Twist2 и фактор стволовости Sox2, тем самым компенсируя потерю Yap1.

При а***ции KrasG12D были идентифицированы другие компенсаторные механизмы, включая индукцию репрессора транскрипции Gli2, нижестоящего медиатора пути SHH (Sonic hedgehog). При этом индукция GLI2 способствует переключению сигнатуры гена с панкреатического предшественника на плоскоклеточный подтип, что сопровождается снижением маркеров эпителиальной идентичности (E-кадгерин, ESRP1, GATA6 и SHH) и повышением экспрессии EMT / маркеров стволовости (ZEB1, VIM, CK14, SOX2 и CD44).

albert52
09.01.2022, 12:18
Продолжим.

Рост первичной опухоли и метастатический рост также можно подавить путем удаления SPP1 (секретируемый фосфопротеин 1), нижестоящей мишени GLI2, что подчеркивает его роль в повышении агрессивности опухоли. Синтезируемый SPP1 белок остеопонтин является внеклеточным структурным белком и органическим компонентом кости, но не только. Кстати, остеопонтин также вызывает чрезмерное образование рубцов, и был разработан гель, препятствующий его действию.
Остеопонтин при PDAC экспрессируется как один из трех вариантов сплайсинга , при этом остеопонтин-а экспрессируется почти во всех PDAC, экспрессия остеопонтина-b коррелирует с выживаемостью, а остеопонтин-с коррелирует с метастатическим заболеванием. Хотя точные механизмы передачи сигнала остеопонтином при PDAC мало изучены, он связывается с CD44 и интегринами, запуская такие процессы, как прогрессирование опухоли и ингибирование комплемента.
Остеопонтин также стимулирует метастазирование, вызывая высвобождение сосудистого эндотелиального фактора роста (VEGF) и матриксной металлопротеазы (MMP), которые ингибируются путем нокдауна остеопонтина. Этот процесс стимулируется никотином, который является предполагаемым механизмом, с помощью которого курильщики испытывают повышенный риск РПЖ. Разрабатываются антитела против остеопонтина, в том числе hu1A12, которые ингибировали метастазирование в исследовании in vivo, а также при гибридизации с антителом против VEGF бевацизумабом.

Плоскоклеточный подтип обнаруживает обогащение для передачи сигналов TGFβ; центральным игроком в канонической передаче сигналов TGFβ является SMAD4 (см. выше). Гетерозиготная инактивация Smad4 способствует прогрессированию и росту первичной опухоли, в то время как потеря оставшегося аллеля дикого типа приводит к высокометастатическому заболеванию. Runx3 способствует метастатической колонизации, но зависит от состояния Smad4.

Повышенная регуляция пионерского фактора FOXA1 связана с классическим подтипом РПЖ, тогда как его экспрессия низка при «плоскоклеточном» (квазимезенхимальном) подтипе. Оба этих подтипа впрочем являются сильно метастатическими, с небольшими различиями в общей выживаемости пациентов. Белок регулятора транскрипции BACH1 помимо репрессии FOXA1 активирует SNAI2, который дополнительно способствует EMT, что оценивается по инактивации генов в линиях клеток человека.

Также во время туморогенеза HNF4α напрямую активирует HNF1A, а потеря первого делает возможным переход к более плоскому фенотипу. Более того, HNF4α непосредственно репрессирует мезодермальные и нейральные дифференцировочные TF SIX1 / 4, повышенная экспрессия которых связана с плоскоклеточным подтипом.

HNF1α подавляет активность ингибиторов апоптоза и модулирует экспрессию генов клеточного цикла. Но, с другой стороны, HNF1A является онкогеном, необходимым для регуляции популяций раковых стволовых клеток (CSC) в PDAC, способствует независимому от закрепления клеток росту, пролиферации, а также инвазивной и миграционной способности. Эти противоречивые данные могут быть объяснены гипотезой о том, что клеточная пластичность и, следовательно, способность индуцировать частичную EMT необходима для приобретения стволовости, тогда как обращение к эпителиальному фенотипу является критическим для роста метастазов. Таким образом, повторная экспрессия TF, связанных с подтипом предшественников поджелудочной железы, важна для успешной колонизации печени.

Также Prrx1a (Paired related homeobox 1) усиливает самообновление, снижает инвазивность и способствует метастатическому разрастанию. Изоформа b, с другой стороны, способствует инвазии, EMT и дедифференцировке, способствуя экспрессии Hgf, предполагая, что обе изоформы отчетливо регулируют EMT и MET с образованием явных метастазов. Кроме того, эти две изоформы могут образовывать гомо- и гетеродимеры, влияя на транскрипционную активность. Отметим, что генетическая делеция Prrx1 переводит фибробласты CAF в высокоактивированное состояние, что приводит к повышенному отложению ECM. Этот специфический фенотип CAF приводит к улучшенной дифференцировке опухоли, повышенной чувствительности к химиотерапевтическому лечению и нарушает системную диссеминацию опухоли.

Истощение глутамина способствует метастазированию за счет индукции EMT за счет активации Snai2 посредством передачи сигналов ERK и активации ATF4. А одновременная инактивация Snai1 и Twist вызывает сдвиг EMT-равновесия в более эпителиально-подобное состояние в первичной опухоли, одновременно усиливая метастазы в печень. В целом усиление эпителиальных свойств и, следовательно, клеточной пластичности необходимо для метастатической компетентности.

В совокупности эти находки и исследования основных EMT-TF при других формах рака показывают, что их индивидуальный вклад в инвазию и метастазирование сильно зависит от клеточного контекста, то есть в первую очередь эпигенетики. Так, геномный анализ PDAC человека показал, что до 10% мутаций выявляются в генах ремоделирования хроматина. Более того, эпигенетический ландшафт PDX показал, что подтипы предшественников плоскоклеточного и панкреатического генов также можно классифицировать по паттернам метилирования ДНК и регуляторным элементам генов. В частности, мутации гистонолизиндеметилазы 6a (KDM6A) в сочетании с изменениями p53 были связаны с плоскоклеточным подтипом PDAC. Потеря только KDM6A достаточна для индукции плоскоклеточного подтипа за счет активации участков энхансеров ΔNp63 (TP63), MYC и RUNX3.

Активация гистон-метилтрансферазы Nsd2 увеличивает глобальное накопление метки активации H3K36me2, тем самым обогащая сигнатуру плоскоклеточных генов. Напротив, потеря Nsd2 снижает H3K36me2, что приводит к обогащению маркеров подтипа предшественников поджелудочной железы. Эти находки указывают на то, что накопление диметилирования в H3K36 необходимо для клеток, чтобы претерпевать EMT. Интересно, что H3K36me2 транскрипционно влияет на активность энхансеров и, таким образом, на экспрессию большинства генов ЕМТ-ТФ (Zeb1 / 2, Snai1 и Twist2) и других ТФ, способствующих метастазированию (см. выше).

Эпигенетическая регуляция также необходима для преодоления подавляющих опухоль эффектов передачи сигналов TGFβ, то есть индуцированного старения и апоптоза, прежде чем он сможет действовать как триггер индукции EMT. Поразительно, что повышение NFATc1 (Nuclear factor of activated T-cells, cytoplasmic 1) имеет pешающее значение для преодоления TGFβ-индуцированной остановки роста за счет противодействия H3K27ac модуляции и активации генов-мишеней TGFβ, включая Birc5, Ccnd1 и Plk1.

В целом эпигенетические состояния определяют молекулярные подтипы PDAC в очень динамичном процессе. Изменения в эпигенетическом ландшафте являются ключевыми особенностями прогрессирования PDAC в сторону злокачественности, поддерживая приобретение клеточной пластичности.

albert52
14.01.2022, 21:39
Считается, что РПЖ происходит в основном из ацинарных клеток, чувствительных к мутантному KRAS, но хотя при РПЖ эти клетки претерпевают изменения, больше дистрофические, но так как РПЖ обычно является следствием многократно повторяющего воспаления (явного или скрытого), то ацинарные клетки при этом метаплазируют скорее в подобие центроацинарных клеток, образуя как бы разветвленный воротник вокруг ацинуса. Со временем вследствие накапливающихся мутаций связи между клетками в этом воротнике слабеют и он разрывается, образуя клеточные обрывки. Эти обрывки и дают начало раку, большая их часть попадает под власть генов-предшественников и далее дают начало классическому подтипу, меньшая часть превращается в псевдомезенхимальные клетки и дает начало сквамозному (плоскоклеточному) подтипу (см. выше).

Так как все начинается с воспалительной реакции, то рассмотрим поподробней основных участников этих как бы старых песен о главном. В начальной стадии онкогенеза важнейшую роль играет NF-κB, причем в предраковых клетках p65-субъединица NF-κB функционирует как супрессор опухолей, но затем экспрессия онкогенного Ras заставляет p65 переключать свою функцию на промотор опухоли, чтобы защитить трансформированные клетки от иммунного надзора. Отметим, что NF-κB конститутивно активируется при раке поджелудочной железы, и имеются существенные доказательства, подтверждающие его участие в образовании плотной стомы с инфильтрацией врожденными иммунными клетками.

NF-κB способен модулировать воспалительные макрофаги через прямое регулирование GDF-15 (growth differentiation factor 15), который впервые был идентифицирован как ингибирующий макрофаги цитокин-1 путем негативной регуляции фактора роста TGF-ß, который активирует киназу 1 (TAK1), что, в свою очередь, вызывает подавление экспрессии целевых генов NF-κB Tnf и iNOS. В отсутствие TNF и NO макрофаги больше не способны уничтожать опухолевые клетки.

Хроническое воспаление может привести к выработке провоспалительных цитокинов, таких как интерлейкин-6 (IL-6), который активирует специфические рецепторы, например пути Janus-Kinase-Signal Transducer и Activator of Translation3 (JAK-STAT3), митоген-активируемую протеинкиназу (MAPK) и способствует развитию PanIN.
Миофибробластоподобные панкреатические звездчатые клетки (PSC) находятся в состоянии покоя в нормальной поджелудочной железе, но переходят в активированное состояние при патологических состояниях, таких как воспаление или рак. Секреция PSC содержит высокий уровень IL-6.

IL-6-JAK2-STAT3 способствует росту и развитию поджелудочной железы. Это естественным образом ингибируется SOCS3, который в целом предотвращает пролиферацию клеток. Во время онкогенеза сдерживающее действие SOCS3 снимается посредством гиперметилирования его промотора ДНК-метилтрансферазой 1.
IL-6 может также независимо активировать Pim-1-киназу, протоонкогенную мишень STAT3. Связанная с прогрессированием клеточного цикла и контрольными точками G1 / S и G2 / M, Pim-1-киназа необходима для пролиферации клеток. Активация IL-6 через STAT3 придает клеткам ПК резистентность к аноикису, что в конечном итоге усиливает метастазирование.

Воспаление поджелудочной железы приводит к связанным с повреждением молекулярным паттернам (DAMPs) и активации факторов роста, такие как фактор роста эндотелия сосудов (VEGF) во время последующего заживления. DAMP, возникающие в результате воспаления и повреждения клеток, могут стимулировать TLR и, следовательно, индуцировать передачу их сигналов, что поддерживает воспалительное микроокружение. DAMP, также известные как alarmins, представляют собой молекулы, высвобождаемые стрессированными клетками, подвергающимися некрозу, которые действуют как эндогенные сигналы опасности, способствуя и усиливая воспалительный ответ.

Toll-подобные рецепторы (TLR) являются мембранными рецепторами, способствующими распознаванию образов врожденной иммунной системы. Передача сигналов TLR2 и TLR4 опосредует активацию NF-κB. Было показано, что синергизм с TLR4 опосредует эффекты DAMP HMGB1 и HSP70. Триггерный рецептор (TREM-1) является новым членом суперсемейства иммуноглобулинов, присутствующих в моноцитах и ​​нейтрофилах. TREM-1 является положительным регулятором воспалительных реакций.

Эндогенные лиганды, такие как белки теплового шока, фибриноген и фрагменты гиалуроновой кислоты, возникающие в результате повреждающих событий, вызванных воспалительными процессами, индуцируют TLR2, -4 и -9. Сигнализации TLR4 активирует PI3K-Akt путь, тем самым вызывая секрецию раковыми клетками различных воспалительных медиаторов и цитокинов. TLR4 стимулирует ангиогенез рака поджелудочной железы посредством повышающей регуляции VEGF через PI3K -АКТ.

Фактор некроза опухолей-α (TNF-α) является основным регулятором воспаления и ключевым игроком в сети цитокинов. TNF-α является трансмембранным белком типа II с сигнальным потенциалом в качестве мембранно-интегрированного белка или в виде растворимого цитокина, высвобождаемого при его протеолитическом расщеплении. Стимуляция TNF-α сильно увеличивает инвазивность с умеренным антипролиферативным эффектом.
Существует два конкретных обьекта для TNF-α: TNFR1 и TNFR2. Активация TNFR1 вызывает образование каспазсодержащих комплексов и через множество сложных путей, включая активацию проапоптотических белков семейства Bcl-2 и апоптоз, индуцирует активные формы кислорода (АФК).

IL-1-α при раке поджелудочной железы экспрессируется исключительно злокачественными клетками опухоли и его высокая экспрессия связана с плохим клиническим исходом. В присутствии IL-1-α в PSC индуцировался специфический профиль экспрессии, который характеризовался повышенной экспрессией MMP1 и MMP3, а также сниженными уровнями MMP2, TIMP2 и TIMP3. Ранее было обнаружено, что TIMP3 преимущественно ингибирует активность MMP1 и MMP3, и снижение экспрессии TIMP3 может усиливать их протеолитическую активность, что приводит к ремоделированию опухолевой стромы.

IL-4 может оказывать стимулирующее рост и проинвазивное действие в некоторых раковых опухолях, включая поджелудочную железу. Он обнаружен в большом количестве в окружении опухолевых клеток и секретируется инфильтрирующими лимфоцитами, а также самими опухолевыми клетками. Было показано, что избыточная экспрессия одной из его рецепторных цепей, IL-4Rα была связана с местно-распространенной стадией опухоли, повышенной склонностью к метастазированию и плохой общей выживаемостью.

albert52
17.01.2022, 11:49
Продолжим.

Интерлейкин-8 (IL-8) является провоспалительным фактором, принадлежащим к семейству CXC-хемокинов. РПЖ продуцирует IL-8, который может способствовать ангиогенезу и инвазии опухолей. Было обнаружено, что IL-8 может имитировать роль VEGF, трансактивировать VEGFR2 и способствовать ангиогенезу. При остром панкреатите IL-8 еще выше и считается надежным показателем при оценке тяжести воспаления и некроза. Здесь также отметим ключевую роль интерлейкина-1β (IL-1β), который может стимулировать аутофагию в макрофагах и индуцировать стресс эндоплазматического ретикулума, который вызывает высвобождение Са2 + в цитоплазме. Это вызывает последующую активацию трипсиногена в области центроаценарных клеток и усугу***ет повреждение. Отметим еще, что IL-1β играет важную роль в нейроэндокринных опухолях, поскольку он направляет раковые клетки на нейроэндокринную дифференцировку.
IL-8 также является основным хемоаттрактантом для нейтрофилов, которые известны как клетки «первого ответа» врожденной иммунной системы. Степень их инфильтрации коррелирует со стадией опухоли при глиомах и раке поджелудочной железы. В ответ на присутствие растворимых иммунных медиаторов в месте опухоли эти ассоциированные с опухолью нейтрофилы (называемые TAN) приобретают либо противоопухолевые, либо проопухолевые функции, в зависимости от их поляризации в сторону фенотипа TAN1 и TAN2 соответственно.

Циклооксигеназа-2 (COX-2 ) является ключевым ферментом, участвующим в воспалении, и сообщается, что она повышена при раке поджелудочной железы. Высокие уровни COX-2 коррелируют с плохим прогнозом. Множество связывающих элементов было идентифицировано в промоторе COX-2 для TP53, NF-κB и других факторов транскрипции. Сигнальная ось SP1 / COX-2 может быть образована Sp1, который транскрипционно активирует экспрессию COX-2, что имеет значение для РПЖ.

Мутация в ингибиторе сериновой протеазы Kazal type-1 (ген SPINK-1) увеличивает вероятность развития у человека хронического панкреатита (ХП) в 12 раз. Мутации в гене SPINK-1 приводят к преждевременной активации трипсиногена и, как следствие, к панкреатиту. Заболевание является аутосомно-рецессивной и в то время как до 2% населения в целом имеют мутации SPINK1, фактическое число людей с панкреатитом, ассоциированным с SPINK-1, встречается крайне редко. Распространенность мутаций SPINK1 у пациентов с идиопатическим ХП, по сообщениям, составляет от 16% до 23%.

Во время панкреатита физиологическая роль аутофагии состоит главным образом в очистке от поврежденных органелл для поддержания гомеостаза клетки, гарантирующего лучшее выживание клеток поджелудочной железы. Вероятно, что по крайней мере одна часть защитного эффекта аутофагии во время острой фазы этого заболевания связано с секвестрацией зерен зимогена, которые содержат ферменты пищеварительных соков, ответственных за самоочищение пораженных участков при панкреатите. Зимофагия (гранулы аутофагии зимогена) сама по себе уменьшает доступность пищеварительных ферментов

В ацинарных клетках поджелудочной железы индукция аутофагии сопровождается активацией экспрессии гена Vacuole Membrane Protein 1 (VMP1). VMP1 кодирует трансмембранный белок, который был идентифицирован и клонирован в 2002 году именно благодаря его необычайной активации во время острой фазы панкреатита. Сверхэкспрессия VMP1 может вызывать аутофагию во многих клетках. VMP1 участвует в образовании фагофора после его прямого взаимодействия с аутофагическим белком беклин-1, индуцибельным p53 ядерным белком 2 (TP53INP2), и, возможно, его аналогом TP53INP1.
Аутофагия индуцируется и поддерживается мутацией онкогена KRAS и сильно усиливается при панкреатите. Гипотеза гласит, что аутофагию чаще всего вызывают панкреатит, основанный на сверхэкспрессии VMP1, что обеспечивает энергетическую потребность клеток, имеющих активную мутацию онкогена KRAS, что позволяет их трансформацию.

Клетки устраняют избыточные внутриклеточные АФК за счет экспрессии антиоксидантных генов, регулируемых машиной для детоксикации АФК. Экспрессия мутантного онкогенного KrasG12D, обычно присутствующего в PDAC, поддерживает повышенный уровень транскрипционного фактора NRF2 (см. выше) для усиления антиоксидантного ответа.

Хемокины представляют собой многофункциональные секретируемые пептиды, играющие важную роль в регуляции миграции лейкоцитов. Они разделены на 4 подгруппы (СС, СХС, СХ3С и ХС) в соответствии с характерным цистеиновым мотивом. Наиболее известным представителем рецепторов хемокинов является D6, который расположен на лимфатическом эндотелии и контролирует большинство воспалительных CC хемокинов. У здоровых людей D6 нейтрализует хемокины CC и тем самым отключают воспаление, делая хемокины недоступными. В отсутствии этих рецепторов хемокиновый лиганд-3 (CCL3), аберрантно (в избытке и в течение более длительного времени) привлекает CD3+ Т-клетки и тучные клетки, делая воспаление протуморогенным.
CXCL-12 представляет собой хемокин, также известный как производный стромы фактор 1 (SDF-1). Известно, что он является лигандом рецепторов CXCR4. Высокая экспрессия активации рецепторов CXCL-12 и CXCR4 в опухолях усиливает рост и ограничивает иммунный надзор в опухоли посредством локальных аутокринных и паракринных механизмов. Активация CXCR4 при раке поджелудочной железы приводит к повышенной экспрессии маркеров Smoothened, Gli1 и EMT.

Взаимодействие CXCR4 и SHH способствует обширному отложению стромы и создает физический барьер, который может объяснить отсутствие сосудистой сети в опухолях поджелудочной железы даже при повышенной экспрессии VEGF. Кроме того, периферическая и центральная передача сигналов, опосредованная CXCL-12, оказывает контрастирующее действие на ноцицепцию, то есть опосредованную CXCL-12 анальгезию посредством модуляции клеток Шванна; это объясняет снижение болевых ощущений у пациентов с раком поджелудочной железы.

Инфламмасомы — макромолекулярные комплексы, которые содержат множество копий рецепторов, распознающих молекулярные структуры патогенных (инфекционных) агентов и повреждающих факторов (PAMP и DAMP), а также включают молекулы белка-адаптора ASC и прокаспазы-1. Описаны впервые в 2002 году, когда Юрг Чопп и его коллеги сообщили, что подвид NLRs (Nod-подобных рецепторов), известный как NLRP1, может олигомеризоваться и собираться в комплекс, который активирует каскад каспазы 1, приводящий, в конце концов, к образованию провоспалительных цитокинов, особенно IL-1β и IL-18. Этот комплекс, формируемый NLRP1, был назван инфламмасомой.

NLRP3 (белок 3, содержащий NOD-, LRR- и пириновый домены) представляет собой внутриклеточный сенсор, который обнаруживает широкий спектр микробных мотивов, эндогенные сигналы опасности и раздражители окружающей среды, что приводит к образованию и активации инфламмасомы. Сборка инфламмасомы NLRP3 приводит к зависимому от каспазы 1 высвобождению провоспалительных цитокинов IL-1β и IL-18, а также к опосредованной гасдермином D пироптотической гибели клеток. Инфламмасома активируется в макрофагах, инфильтрирующих поджелудочную железу. Механизмы активации инфламмасом при панкреатите, вероятно, связаны с ROS (например, в результате повреждения митохондрий) или клеточными компонентами DAMP, такими как высвобождаемый из некротических клеток белок группы box-1 .

albert52
18.01.2022, 13:46
Вставка
Хроническое воспаление и рак

В то время как острое преходящее воспаление является важным фактором контроля и восстановления повреждений тканей, связанное с опухолью воспаление, которое встречается практически во всех опухолях, является хроническим, не разрешенным типом, что способствует прогрессированию опухоли. Во время туморогенеза раковые клетки, клетки врожденного иммунитета [такие как дендритные клетки или опухолево-ассоциированные макрофаги (ТАМ)] и активированные резидентные клетки [такие как связанные с раком фибробласты (CAF) или эндотелиальные клетки] в ответ вырабатывают различные цитокины и хемокины к сигналам опасности, исходящим от опухоли.

Хронические медиаторы воспаления оказывают плейотропное действие при развитии рака. С одной стороны, воспаление способствует канцерогенезу, росту опухоли, инвазии и метастазированию; с другой стороны, воспаление может стимулировать иммунные эффекторные механизмы, которые могут ограничивать рост опухоли. Связь между раком и воспалением зависит от внутренних и внешних путей. Оба пути приводят к активации факторов транскрипции, таких как NF-κB, STAT-3 и HIF-1, и к накоплению онкогенных факторов в опухоли и микроокружении.
STAT-3 и NF-κB взаимодействуют на нескольких уровнях и тем самым усиливают воспаление, связанное с опухолью, которое может подавлять противоопухолевые иммунные ответы. Так, STAT-3 продлевает ядерное удержание RelA во время онкогенного и хронического воспаления, действуя в качестве ко-транскрипционного фактора для RelA, таким образом способствуя постоянной активации NF-κB во время хронического воспаления и канцерогенеза. Отметим, что STAT-3 способствует ядерной локализации RelA путем ацетилирования, опосредованного ацетилтрансферазой p300, влияющего на взаимодействие NF-κB / IκBα и предотвращающего его ядерный экспорт.

Связанное с раком воспаление представляет собой седьмую отличительную черту в развитии рака. При инфекциях помимо токсинов, онкопротеины и факторы роста могут воздействовать на хозяина посредством активации рецепторов распознавания образов (PRR), которые взаимодействуют с патоген-ассоциированными молекулярными структурами (PAMP). Эти рецепторы включают в себя члены семейства Toll-подобных рецепторов (TLR), нуклеотидсвязывающие доменные (NOD-подобные) рецепторы олигомеризационных доменов (NLR), рецепторы лектина С-типа (CLR), запускающие рецепторы на миелоидных клетках (TREM) и индуцируемые ретиноевой кислотой ген-I-подобные рецепторы (RLR). Связывание PAMP с этими рецепторами приводит к инициации иммунного ответа хозяина путем активации воспалительных клеток.

На начальном этапе развития опухоли медиаторы воспаления, такие как цитокины, активные формы кислорода (ROS) и активные формы азота (RNS), полученные из фильтрующих опухоль иммунных клеток, вызывают эпигенетические изменения в предраковых клетках и молчание генов-супрессоров опухолей. Во время прогресии опухоли иммунные клетки секретируют цитокины и хемокины, которые действуют как факторы выживания и пролиферации для злокачественных клеток (см. выше). Так, аберрантная экспрессия тканевой трансглутаминазы (TG2) индуцирует EMT в эпителиальных клетках. Другими типичными маркерами EMT являются кадгерин-11 и фибробласт-специфический белок (FSP -1), которые связаны с повышенной подвижностью клеток. Twist необходим для подавления транскрипции E-cadherin.

Во внутренних путях канцерогенеза важную роль играет мутация КRAS, активация которого сопровождается индукцией сигнальных каскадов, включая каскад RAF / MEK / ERK-киназ, путь PI3K / AKT и белки RalGDS. Последние принадлежат к семейству нуклеотид-обменных факторов, активирующих небольшие GTPases, такие как RalB. Посредством комплекса октамерного белка exocyst, участвующего в прикреплении везикул к мембранам, RalB стимулирует TANK-связывающую киназу-1 (TBK-1), что приводит к активации NF-κB посредством фосфорилирования IκBα (см. выше).
В раковых клетках конститутивная активация этого пути посредством хронической активации RalB ограничивает инициацию апоптоза после онкогенного стресса. TBK-1 также активирует факторы транскрипции IRF (регуляторный фактор интерферона) -3 и IRF-7 , что приводит к выработке медиаторов роста и воспаления.
Активация NF-κB в свою очередь активирует медиаторы клеточного цикла (циклин D1, c-Myc), антиапоптотические (c-FLIP, сурвивин, Bcl-XL) и молекулы адгезии (ICAM-1, ELAM-1, VCAM-17), протеолитические ферменты (например, MMP, uPA) и провоспалительные факторы (PGHS-2, цитокины), которые стимулируют инвазивный фенотип. Присутствие конститутивно активного NF-κB связано с плохим клиническим исходом.

INOS (синтаза оксида азота) является еще одним важным медиатором воспаления, который вызывает выработку NO макрофагами, связывающими хроническое воспаление и онкогенез. NO-опосредованное ингибирование репарации ДНК позволяет клеткам, несущим эпигенетические изменения, избежать апоптоза; это приводит к клональной экспансии предраковых клеток и, как следствие, к канцерогенезу. Кроме того, NO способствует росту опухоли путем трансактивации HIF-1α, экспрессии VEGF и подавляет p53.

RANKL, член суперсемейства цитокинов TNF, был первоначально обнаружен в Т- и дендритных клетках (DC). RANKL поддерживает дифференцировку и выживание эффекторных клеток, а также способствует онкогенезу, прежде всего в молочной железе, но не только. Так, в плоскоклеточном раке головы и шеи экспрессия RANKL способствует EMT и прогрессированию опухоли, индуцируя VEGF-независимый ангиогенез.

Мембраносвязанный IL-1α в злокачественных клетках индуцирует противоопухолевые иммунные ответы, тогда как внутриклеточные предшественники IL-1α контролируют гомеостатические функции, включая экспрессию генов, дифференцировку и рост клеток. Что же касается секретируемого IL-1β, то его низкие концентрации подавляют воспалительные реакции и иммунные механизмы, тогда как высокие концентрации способствуют повреждению тканей, связанному с воспалением, и опухолевой инвазивности.
При раке поджелудочной железы IL-1 придает хеморезистентность посредством повышения уровня PGHS-2 и способствует ангиогенезу во время прогрессирования опухоли. IL-1α и IL-1β проявляют идентичные агонистические действия, связываясь с рецептором IL-1 типа I (IL-1RI).

albert52
27.01.2022, 18:34
Продолжим.

Изучение РПЖ подтверждает правильность моей теории: на фоне хронического воспаления мутации, прежде всего KRAS, но не только, снимают ограничения на поступление к клетку питательных веществ, и усиленный гликолиз в сочетании с хронической гипоксией ведут клетку по пути канцерогенеза. При этом происходит перепрограммирование не только метаболизма, но и всей клеточной стратегии несмотря на сопротивление генов надстройки на путь автономного развития, крайней формой которого является ЕМТ.

Опухолевые клетки, происходящие из EMT, избыточно продуцируют многие провоспалительные медиаторы, тем самым создавая регуляторную петлю, которая может способствовать поддержанию как фенотипа EMT, так и провоспалительного контекста. Связанные с опухолью EMTs редко включают полное переключение клонов, а скорее генерируют промежуточные состояния (гибридные фенотипы) с разной степенью агрессивности, которые распределяются по спектру эпителиально-мезенхимальной дифференцировки. Соответственно, существует множество молекулярных репертуаров EMT, участвующих в генерации этих гибридных фенотипов. Так, сигнатура EMT в аденокарциноме легких связана с повышенной экспрессией нескольких иммунных контрольных точек (PD-1 / PD- L1, CTLA-A, TIM-3 и другие), высокой плотности Foxp3-позитивных Treg-клеток, иммуносупрессивной продукции цитокинов (TGF-β, IL-10 и IL-6) и, наконец, сильной воспалительной реакции.

Опухолевые клетки способны подавлять направленный против них иммунный ответ двумя способами: во-первых, избегая иммунологического надзора путем уменьшения экспрессии молекул HLA или продукцией неканонических форм этих молекул, а также уменьшая экспрессию опухоль-ассоциированных антигенов на своей поверхности, и, во-вторых, непосредственно блокируя активацию Т-лимфоцитов, вызывая анергию опухоль-специфичных клонов. В последнем случае один из молекулярных механизмов инвазии основан на передаче ингибирующего сигнала от рецепторов CTLA-4 или PD-1 на цитотоксические Т-лимфоциты.
Опухоль не только уклоняется от иммунной системы, но и эффективно извлекает пользу из инфильтрирующих клеток, изменяя их функции, создавая микроокружение, благоприятное для развития опухоли (см. выше).

Циркулирующие раковые клетки

Раковые клетки, которые переходят из первичных опухолей в систему кровообращения, известны как циркулирующие опухолевые клетки (CTC). Известно, что метастазирование включает несколько последовательных этапов, называемых «метастатический каскад». Гипотеза «семя и почва», выдвинутая в 1889 году, описывает раковые клетки как «семена», которые должны искать подходящее микроокружение органов или «почву», которая будет поддерживать их устойчивый рост, если они хотят процветать.

Дистальный участок, приобретаемый для метастатического прогрессирования, может быть определен по специфическим генным паттернам или сигнатурам внутри первичной опухоли, которые относятся к определенным участкам органов. Количество СТС, которые могут быть обнаружены у пациента в любой момент времени, по-видимому, связано с количеством «успешных» метастатических событий.

CTC подвергаются воздействию ряда влияющих факторов во время циркуляции, включая абсолютные стресс жидкости (FSS), гипоксию, недостаток питательных веществ / метаболизм глюкозы. Только около 0,1% единичных CTC выживают в кровотоке более 24 часов, при этом период полураспада CTC составляет около 1 часа, что влияет на способность клеток метастазировать. Богатые тромбоцитами тромбы, которые, как считается, окружают CTC во время их первоначального попадания в систему кровообращения, обеспечивают им физическую защиту от сдвига жидкости (FSS).

Дело в том, что текущие кровь и лимфа создают силу трения, параллельную эндотелиальной поверхности, которая называется напряжением сдвига жидкости (FSS). Величина FSS прямо пропорциональна скорости и вязкости жидкости и обратно пропорциональна диаметру сосуда. При низких уровнях FSS тромбин-активированные тромбоциты способны вызывать 5-кратное увеличение адгезии эндотелия в клетках рака шейки матки.
FSS может также стимулировать внутрисосудистую выживаемость CTC за счет активации гликолиза, опосредованного гексокиназой 2 (HK-2). Вообще, добавление тромбоцитарной оболочки в этих условиях может обеспечить CTC метаболическим преимуществом в циркуляции, предпочтительно шунтируя метаболизм СТС в сторону гликолиза.

Маркеры раковых стволовых клеток (CSC) часто экспрессируются CTC в образцах крови пациентов. В настоящее время не существует руководящих принципов для определения фенотипа CTC-CSC, хотя общая классификация CSC с высокой экспрессией CD44 и низкой экспрессией CD24 (CD44 + / CD24 - / низкая ), часто используется при раке молочной железы и опухолях молочной железы с этой экспрессией. Отметим, что протоонкоген HER2 определяет особенно агрессивную субпопуляцию СТС, которая при экспрессии СТС больных раком груди может указывать на плохой прогноз.

Прокоагулянтная природа микротромбов, используемых СТС, способствует привлечению иммунных клеток, таких как нейтрофилы, которые активируют эндотелиальные клетки и способствуют экстравазации СТС из кровотока. Предполагается, что белки свертывания способствуют гиперкоагуляции среды, которую СТС используют на пути к гематогенным метастазам. Как я уже раньше упоминал, подвижные раковые клетки используют фибрин выпота в опухоль как рельсы, по которым они движутся к капиллярам.

Происходящие из тромбоцитов TGF-β и прямые взаимодействия тромбоцитов с опухолевыми клетками гармонично активируют пути TGF-β / SMAD и NF-κB в раковых клетках, что приводит к их переходу к инвазивному фенотипу MET с усилением метастазирования. Сами тромбоциты диктуют формирование ранних метастатических ниш, способствуя рекрутированию гранулоцитов независимо от сигналов опухоли за счет высвобождения хемокинов CXCL5 / 7.
Например тромбоцитарный аутотаксин (ATX), секретируемый фермент, важный для образования липидной сигнальной молекулы лизофосфатидовой кислоты (LPA), взаимодействует с опухолевым интегрином αVβ3, способствуя метастазированию клеток рака груди в кости. Поскольку ATX физиологически присутствует в крови, CTCs, покрытые тромбоцитами, могут использовать этот механизм в кровотоке для метастазирования в кость.

СТС ускользают от иммунного обнаружения из-за экспрессии иммунных рецепторов-ловушек, таких как CD47 и PD-L1 (см. выше). Все это а также циркулирующие нуклеиновые кислоты / внеклеточные везикулы могут влиять не только на фенотип СТС в кровотоке, но также на его молекулярный состав и клеточную судьбу в периферическом кровообращении.

У пациентов с метастатическим раком наблюдается глобальная гиперактивность тромбоцитов, что может способствовать риску тромбоза. Действительно, венозные тромбоэмболии (ВТЭ) являются частым осложнением у онкологических больных, при этом частота высока при злокачественных новообразованиях поджелудочной железы, головного мозга и гинекологических заболеваниях.

Сами СТС экспрессируют TF рецептор факторов свертывания крови VIIa и X, который действует как главный инициатор коагуляции. TF играет ключевую роль в содействии протеолизу, опосредованному тромбином, и образованию микротромбов, связанных с опухолевыми клетками. Связывание TF с фактором VIIa может способствовать адгезии СТС к эндотелиальным клеткам, а также стимулировать активацию нескольких клеточных сигнальных путей (MAPK, PI3K, AKT, mTOR), ремоделирование внеклеточного матрикса и пролиферацию клеток. Экспрессия и передача сигналов TF участвует в формировании метастатической ниши и может активироваться в раковых стволовых клетках.

albert52
30.01.2022, 15:38
Как я уже писал раньше, в результате хронического воспаления центроацинарные клетки образуют полиповидные разрастания со всем спектром PANIN, но агрессивный рак образуется, когда эти полипы разрываются с образованием фрагментов разной величины. Более крупные фрагменты образуют трубчаые структуры, более мелкие - рыхлые пласты плоских клеток. Метастазируют и те, и другие, только судьбв метастазов разная.
Блуждающие клетки классического подтипа образуют (простите за тавтологию) классические метастазы, напоминающие исходную структуру опухоли, только клетки сцеплены часто крепче, что впрочем не мешает им интенсивно размножаться. Более стойкие псевдомезенхимальные клетки плоскоклеточного подтипа могут долго блуждать, постепенно дичая и превращаясь в настоящих лангольеров и образуя скопления разных размеров по всему телу (их число может достигать сотек и даже тысяч).

Зрелые клетки протоков и ацинусов благодаря стройной системе генов дифференцировки и их защитников, в том числе эпигеномных, наскоком не возьмешь. В протоках могут образовываться сравнительно редко метастазирующие IPMN и MCN (см. выше), а клеткам ацинусов, когда им плохо, есть во что превращаться; первичный ацинарный рак наблюдается очень редко.

Теперь, если я хочу придерживаться соей теории, мне надо рассмотреть гены инфрастуктуры и кодируемые ими белки, являющиеся главными действующими агентами ракового перерождения клеток; и начну пожалуй с МУС.
МУС (от вируса Myelocytomatosis) представляет собой семейство генов-регуляторов и состоит из трех родственных генов человека: c-myc (MYC), l-myc (MYCL) и n-myc (MYCN), которые кодируют основные факторы транскрипции спираль-петля-спираль лейциновой молнии (bHLH-Zip). C-myc был первым геном, обнаруженным в этом семействе и назван так из-за гомологии с вирусным геном v-myc, здесь С возможно от слова common - всеобщий; MYCN впервые выявлен в нервной ткани, а MYCL - в легочной. По строению и фкнкциям эти гены похожи и не являются пионерными факторами транскрипции, а влияют на уже активированные гены, модулируя их.

В покоящихся дифференцированных клетках (в стадии G0) эти гены почти не экспрессируются, а их белки разрушаются максимум через полчаса, их время приходит когда клетки начинают расти и размножаться. Повышенные уровни белков MYC обнаруживаются в 60–70% всех случаев рака, причем сами опухоли могут зависеть от постоянной экспрессии MYC (онкогенная зависимость). Белки MYC были впервые описаны как факторы транскрипции, образующие гетеродимерные комплексы с MYC-ассоциированным фактором X (MAX).
В настоящее время известно, что комплексы MYC – MAX распознают консенсусную последовательность ДНК, известную как Enhancer box («E-box»), модулируя транскрипцию генов. Отметим, что что в геноме человека имеется приблизительно 20 000 сайтов E-box, только часть которых дифференциально связывается с MYC специфическим для типа клеток способом. Впрочем как активирующая, так и репрессирующая функции MYC зависят от рекрутирования модифицирующих хроматин кофакторов, которые ремоделируют структуру хроматина вблизи сайтов связывания («селективная амплификация»).

В незлокачественных клетках экспрессия MYC активируется факторами роста посредством энхансеров. Комплекс MYC-МАХ активирует транскрипцию генов, содержащих E-боксы с высокой аффинностью. При недостатке питательных веществ или гипоксии трансляция MYC, стабильность белка и димеризация MYC / MAX ингибируются. Чрезмерная активация MYC активирует контрольные точки ARF и p53, что приводит к гибели или аресту клеток, в то время как ARF может ингибировать функцию MYC. Ниже AKT белки FOXO3a противодействуют активации MYC.
В раковых клетках конститутивная активация фактора роста и передачи сигналов mTOR, потеря контрольных точек, вовлечение атипичных энхансеров или амплификация или транслокация MYC может увеличивать уровни MYC до надфизиологических уровней независимо от факторов роста, вызывая связывание MYC / MAX с сайтами более низкой аффинности в дополнение к сайтам с высокой аффинностью. При этом потеря контрольных точек ARF или p53 обеспечивает неконтролируемый рост клеток.

Со времнем выявляется все большее количество модифицирующих хроматин кофакторов, в том числе «писателей», «читателей» и «стирателей» хроматина (см. выше), которые прямо или косвенно взаимодействуют с комплексами MYC – MAX, например, член комплекса Polycomb EZH2. Многие из этих межбелковых взаимодействий осуществляются через N-конец MYC, который содержит домен активации транскрипции (TAD) и высококонсервативные элементы последовательности, известные как «MYC-бокс» (MB) 0, I и II, за которым следует MB III и IV в центральном домене MYC. MB I, II и III необходимы для всех биологических функций MYC.

Связывание MYC с проксимальными промоторными последовательностями гена - мишени огсвобождает транскрипционно приостановленную РНК-полимеразу и катализирует удлинение транскрипции. При этом действуя на Pol I, Pol II и Pol III, MYC контролирует трансляцию посредством активизации транскрипции рибосомных субъединиц, тРНК и генов синтеза нуклеотидов. MYC также стимулирует трансляцию путем активации эукариотического фактора инициации трансляции 4E (eIF4E).

Поскольку неделящиеся клетки строго контролируют свою экспрессию метаболических ферментов, чтобы адаптировать метаболизм для гомеостаза, очевидно, что активация MYC избирательно ститмулирует многие метаболические гены, необходимые для строительных блоков, необходимых для роста. С другой стороны, гены, участвующие в непролиферативных клеточных функциях и ингибировании клеточного цикла, вызванного MIZ-1 и ему подобными, будут подавляться MYC.

Мутантный KRAS обычно действуеи в паре с МУС, так как непрерывное поступление питательный веществ в клетку, прежде всего глюкози, ускоряет гликолиз и здесь важную роль играет МУС, высокоаффинные Е-боксы которого имеются во всех важнейших ферментах гликолиза. Это приводит к усилению синтетических процессов в клетке, так как пируват является исходным субстратом для биосинтеза аланина, аспартата и треонина, а непосредственный предшествующий пируват, фосфоенолпи-руват (ФЕП), является исходным субстратом для тирозина, триптофана и фенилаланина. Еще более проксимальный промежуточный продукт гликолиза 3-фосфоглицерат может быть направлен на синтез глицина и серина, а также пуриновых нуклеотидов, а исходный продукт катаболизма глюкозы, глюкозо-6-фосфат, может быть направлен на анаболический пентозофосфатный путь (ППП).
Промежуточные продукты цикла ТСА, такие как цитрат, ***цинилкоэнзим А (КоА) и оксалоацетат, также могут использоваться в немитохондриальных путях биосинтеза для обеспечения дополнительных анаболических субстратов для биосинтеза липидов, аминокислот и нуклеотидов соответственно. Любое последующее истощение этих субстратов из их митохондриальных запасов может быть затем решено путем мобилизации анаплеротических (или «заполняющих») реакций, таких как превращение глутамина в α-кетоглутарат, β-окисление жирных кислот с нечетной цепью до ***цинил-КоА и карбоксилирование пирувата до оксалоацетата.

Последствия враждебной метаболической среды, которая в норме может способствовать угнетению клеточного цикла, могут быть дополнительно смягчены за счет потери проапоптотических путей, опосредованных TP53 и другими супрессорами опухолей.
Экскреция лактата снижает внеклеточный рН, тем самым усиливая внеклеточные протеазы и, таким образом, способствуя инвазивности опухоли и ее метастатическому распространению. Лактат также активирует фактор роста эндотелия сосудов и HIF-1α. Кроме того, лактат, как и Myc, может придавать радиорезистентность некоторым опухолям и способствовать их ускользанию от иммунного надзора.

albert52
01.02.2022, 17:43
Продолжим.

МУС также активирует все ферменты глутаминолиза, который включает производство токсичного аммиака. Способ, которым клетки выводят аммиак, не совсем понятен, кроме того, что мы знаем о цикле мочевины, который находится в специализированных клетках. Некоторые клетки экспрессируют глютаминсинтетазу, которая может продуцировать глютамин из глутамата и аммиака, в то время как трансаминазы могут дезаминировать глютамин и глутамат без образования аммиака.

Поскольку окисление как глюкозы, так и глутамина в митохондриях генерирует активные формы кислорода, необходимо поддерживать достаточные уровни антиоксидантного трипептида глутатиона (L-глутамил-L-цистеинилглицин) или пероксиредоксинов (которые также индуцируются MYC). Глутамат, полученный из глутамина, и глицин, полученный из глюкозы, сами являются субстратами для синтеза глутатиона.
Также MYC-регулируемая SHMT2-зависимая продукция NADPH необходима для окислительно-восстановительного контроля и выживания клеток MYC-трансформированных клеток при гипоксии. Отметим, что SHMT2 (Serine Hydroxymethyltransferase 2) катализирует превращение серина в глицин и производит активированную одноуглеродную единицу, которую можно использовать при синтезе S-аденозилметионина.

MYC регулирует многие гены, участвующие в синтезе пурина и пиримидина. Важно отметить, что генерация глицина из глюкозы и аспартата из глюкозы или глютамина вносят основной вклад в синтез пуринов и пиримидинов соответственно. Отметим, что построение пуринового ядра начинается и полностью протекает на рибозо-5-фосфате (промежуточные соединения — риботиды), в результате чего сразу образуются нуклеотиды (нуклеозид-5′-фосфаты), а не свободные азотистые основания. При этом построение пуринового ядра носит характер последовательной сборки; все реакции носят ферментативный характер. На определённом этапе возникает общий предшест -венник (нуклеотид IMP), из которого образуются другие пуриновые нуклеотиды. Процесс синтеза энергозатратен, так как необходимый для его эффективности сдвиг равновесия отдельных реакций происходит за счёт сопряжённого гидролиза ATP

Регуляторным ферментом в синтезе пиримидиновых нуклеотидов является полифункциональный CAD-фермент, регулируя который МУС обеспечивает сбалансированное образование всех четырёх основных пуриновых и пиримидиновых нуклеотидов, необходимых для синтеза РНК. При этом отметим особую роль DHODH (дигидрооротатдегидрогеназы), единственного фермента пути биосинтеза пиримидина, локализованного в митохондриях, а не в цитозоле. Как фермент, связанный с цепью переноса электронов, DHODH связывает митохондриальную биоэнергетику, пролиферацию клеток, продукцию АФК и апоптоз и его истощение при интенсивной выработке АТФ приводило к снижению мембранного потенциала и замедлению роста клеток.

Кроме того, из-за его роли в синтезе ДНК эффект DHODH преобладает в быстро пролиферирующих клетках, таких как раковые клетки, которые могут быть очень чувствительными к ингибированию синтеза нуклеотидов. Так, в PTEN-мутантных клетках, которые для синтеза пиримидина de novo зависят от потока глутамина, ингибирование DHODH вызывает остановку вилок репликации из-за нехватки пулов необходимых для поддержки репликации нуклеотидов. Отметим, что покоящиеся или полностью дифференцированные клетки получают пиримидины для пролиферации в основном через запасной путь.
В дополнение к глюкозе и глютамину для синтеза нуклеотидов de novo также необходим фолат в качестве кофактора для различных ферментативных стадий. Синтез пуринов de novo происходит на рибозо-5-фосфатном каркасе, полученном из PPP, который происходит из глюкозы. MYC координирует увеличение активности PPP, синтез глицина и фолата и поглощение глутамина для производства нуклеотидов.

В дополнение к своему ответу на стимуляцию факторами роста, MYC также, по-видимому, участвует в восприятии питательных веществ. Так, активность MYC зависит от статуса питательных веществ в клетке, определяемых через mTOR, посредством регуляции им трансляции MYC. Кроме того, PI3K / AKT ингибирует FOXO млекопитающих, которые, будучи активными, противодействуют MYC через несколько механизмов. Так, FOXO3a может трансактивировать антагониста и транскрипционного репрессора MYC MXI-1, который димеризуется с помощью MAX для связывания и ингибирования генов-мишеней MYC.

Вниз по течению от комплекса mTOR 2 или MK5 / PRAK активность FOXO3a также может контролировать уровни MYC посредством индукции miR-34b / c. Кроме того, mTOR-зависимое восприятие питательных веществ контролирует стабильность MYC с помощью аутофагического белка AMBRA1. Когда mTOR ингибируется нехваткой разветвленных аминокислот, AMBRA1 способствует дефосфорилированию серина 62 MYC с помощью протеинфосфатазы 2А (PP2A).

В нетрансформированных клетках эндогенная функция MYC может быть ослаблена гипоксией на нескольких уровнях, включая стабильность белка и функцию белка. При гипоксии уровни белка MYC снижаются за счет протеолитической деградации, которая может быть усилена одновременной депривацией глюкозы. HIF-1α активирует экспрессию MXI-1, который осла***ет индуцированный MYC митохондриальный биогенез. Предполагается также, что HIF-1α может напрямую конкурировать с MYC, связывая MAX.
Отметим, что HIF-опосредованная активация пролилгидроксилаз, в свою очередь по принципу обратной связи снижает уровни белка HIF-1α, а сверхэкспрессированный MYC может как подавлять механизмы снижения АФК, индуцируемые FOXO, так и обходить репрессивную активность HIF на MYC. Следовательно, HIF-1α и MYC могут взаимодействовать, когда MYC сверхэкспрессируется. Напротив, сообщалось, что HIF-2α стимулирует активность MYC-MAX и, следовательно, взаимодействует как с эндогенным, так и с эктопическим MYC.

albert52
08.02.2022, 22:51
Продолжим.

Чтобы перечислть все, на что может влиять МУС, особенно при гиперэкспрессии, надо переписать весь учебник биохимии. Я только упомяну еще одноуглеродный путь (С1) и окисление жирных кислот ( FAO).

Пути гликолиза и глутаминолиза обеспечивают 3-фосфоглицерат (3-PG) и глутамат, соответственно, тем самым подпитывая биосинтез серина (SSP). Серин может быть преобразован в глицин и войти в одноуглеродный метаболизм, включающий циклы фолиевой кислоты и метионина, и путь транссульфирования, которые поддерживают синтез порфирина, тимидина, пурина, глутатиона (GSH) и S-аденозилметионина (SAM). Аминокислоты (серин, глицин, треонин, холин, бетаин, метионин) и витамины также вводятся в одноуглеродный метаболизм. Промежуточные метаболиты могут использоваться в качестве важных предшественников для синтеза белков, липидов, нуклеиновых кислот и других кофакторов, образуя сложную метаболическую сеть. В целом одноуглеродный метаболизм является интегратором нутритивного статуса.

Цикл фолиевой кислоты (фолат — это витамин группы В, пищевые добавки с ним содержат фолиевую кислоту) обеспечивает один углерод для метионинового цикла, а также гомоцистеин, который может быть преобразован в GSH. Метионин необходим для синтеза белка SAM, который может использоваться в качестве донора метила для метилирование гистона, ДНК и РНК.

В условиях с более высокой потребностью в пуриновых нуклеотидах, таких как делящиеся клетки и опухолевые клетки, путь биосинтеза de novo имеет основополагающее значение для пополнения пула пуринов. У людей шесть ферментов катализируют PRPP (фосфорибозилпирофосфат) с образованием IMP (инозинмонофосфат) в 10 строго регулируемых и консервативных стадий. Первые три фермента в пуриновом пути составляют основную каркасную структуру, включая PPAT, GART и FGAMS, тогда как PAICS, ADSL и ATIC, по-видимому, взаимодействуют периферически. Такие пурисомы образуют скопления около митохондрий, так как синтез пуринов энергозатратен (см. выше).

MYC способствует биосинтезу полиаминов за счет активации нескольких ферментов, таких как орнитиндекарбоксилаза (ODC), которая катализирует превращение орнитина в путресцин. Полиамины, в том числе путресцин, спермидин и спермин, присутствуют во всех живых клетках млекопитающих и необходимы для нормального роста клеток. MYC может также косвенно влиять на биосинтез полиаминов через путь mTOR.

Метаболические сходства между разными типами пролиферирующих клеток поразительны: все они в значительной степени зависят от глюкозы и глютамина для удовлетворения своих острых анаболических потребностей. Не случайно Myc поддерживает плюрипотентность и самообновление стволовых клеток, возможно, благодаря своему влиянию на поглощение и метаболизм глюкозы/глютамина. На другом конце спектра находятся непролиферативные, дифференцированные клетки, которые часто метаболически зависят от FAO. Большинство видов рака за некоторыми заметными исключениями (например, рак предстательной железы) зависят от глюкозы/глютамина, а не от FАО.

Дихотомия глюкоза/глутамин против FAO поддерживается как в нормальных, так и в опухолевых тканях с помощью ключевого метаболического явления, называемого циклом Рэндла, иногда просто называемого циклом глюкоза-жирная кислота. Цикл Рэндла относится к природе митохондриальных скоростей окисления пирувата и FAO и сосредоточен на пируватдегидрогеназе (PDH) и карнитинпальмитоил -трансферазе 1 (CPT1), которые являются ферментами, ограничивающими скорость окисления пирувата и FAO, соответственно. При избытке глюкозы и высоком уровне гликолиза концентрация пирувата повышается и ингибирует PDK1, киназу, ответственную за фосфорилирование и подавление PDH.

Результатом устойчивого потока PDH является подавление CPT1 (привратник для FA в митохондриях) и секвестрация жирных кислот в цитозоле вдали от механизма деградации FAO. Затем цитозольные жирные кислоты либо превращаются в капли триглицеридов для питания клетки, либо, в случае пролиферирующих клеток, включаются в ацильные цепи фосфолипидов для синтеза новых мембран.
Было показано, что из-за этого цикла скорость потока PDH сильно коррелирует с липогенезом во многих типах клеток. Цикл Рэндла работает и в обратном направлении, т. е. высокие скорости FАО подавляют утилизацию глюкозы. Точно так же, как AcCoA и NADH, полученные из глюкозы, ингибируют механизм FAO, AcCoA и NADH, полученные из FAO, сильно ингибируют PDH посредством активации PDK1.

Таким образом ключевой темой цикла Рэндла является то, что липогенез связан с окислением глюкозы и что клетки не могут одновременно проводить FAO и FAS. Это связано с тем, что активация FAS за счет цитозольного превращения цитрата в AcCoA и в малонил-CoA будет ингибировать FAO на уровне CPT1. Это может быть причиной того, что пролиферирующие клетки, раковые они или нет, подавляют FAO, так что они могут удовлетворить свою потребность в FAS и синтезе мембран. Естественно, что МУС стимулирует цикл Рэндла в прямом направлении; интересно отметить, что рак предстательной железы, наиболее характерный пример рака с высоким FAO, хорошо известен своей типично медленной скоростью роста.

Все вышесказанное проясняет роль МУС в канцерогенезе: как мощный фактор наращивания массы клетки и подготовки ее к размножению он при гиперэкспрессии влезает в слишком много энхансеров различных генов, заставляя клетку перестраивать свой метаболизм. Когда еще работают супрессоры типа р53 и ему подобные, то перенапряжение клетки ведет к апоптозу или блокировке клеточного цикла, при их мутационном ослаблении МУС провоцирует формирование второго центра управления клеткой наряду с существующим.

albert52
17.02.2022, 13:18
Продолжим.

Чаще всего МУС сверхэкспрессируется при раке толстой кишки (CRC). Хорошо задокументированная эволюция CRC сначала обнаруживает его происхождение как аберрантную крипту, которая превращается в доброкачественный аденоматозный полип, который в конечном итоге трансформируется в спорадический CRC в течение длительного периода времени ~10–15 лет. Эта традиционная модель аденомы-карциномы-метастазы встречается в большинстве случаев CRC (70–90%). Эти фенотипические переходы связаны с накоплением специфических сигнатурных генетических событий «APC-KRAS-TP53», известных как модель Vogelstein; впрочем, последовательность генных событий сейчас «APC-TP53 - KRAS» .

В качестве альтернативы, около 10% CRC могут развиваться по так называемому зубчатому пути неоплазии, характеризующемуся одним из двух проявлений прогрессирования:
(1) сидячий зубчатый путь, при котором микровезикулярный гиперпластический полип прогрессирует в сидячую зубчатую аденому, а затем либо в MSI, либо микросателлитная стабильная (MSS) карцинома
или
(2) традиционный зубчатый путь, при котором гиперпластический полип, богатый бокаловидными клетками, прогрессирует в традиционную зубчатую аденому, а затем в карциному MSS. Эти зазубренные новообразования демонстрируют более высокую частоту активирующих мутаций в BRAF и KRAS, повышенный CIMP, высокую частоту гипермутаций, но редко мутации APC.
Другая специфическая форма CRC, рак, ассоциированный с колитом (CAC), чаще всего появляется у пациентов с воспалительным заболеванием кишечника (ВЗК) и составляет около 2% от CRC и имеет сходство со спорадическим/семейным CRC.

В дополнение к сигнатурным мутациям APC, TP53 и KRAS, углубленное геномное и транскриптомное профилирование выявило гетерогенность заболевания, отражаемую многочисленными низкочастотными мутациями и профилями транскрипции, классифицированными по четырем консенсусным молекулярным подтипам (CMS) : CMS1 (, 14%), характеризуется гипермутацией, MSI и активным иммунным ответом.
CMS2 ((канонический, 37%), эпителиальный, хромосомно нестабильный, с заметной активацией передачи сигналов WNT и MYC;
CMS3 (метаболический, 13%), эпителиальный, очевидная метаболическая дисрегуляция; .
CMS4 (мезенхимальный, 23%), заметная активация TGF-β, стромальная инвазия и ангиогенез.
Образцы со смешанными признаками (13%), возможно, представляют собой переходный фенотип или внутриопухолевую гетерогенность. МУС наиболее выражен в подтипах CMS3 и 4, хотя и в остальных подтипах тоже достаточно активен (всего в 70% CRC).
Классификация CMS обеспечивает основу для прогнозирования и улучшения назначения таргетной терапии в прецизионных исследованиях.

Опухоли с высоким MSI - микросателитной нестабильностью (MSI-H) обладают многими точечными мутациями, которые создают обильные неоантигены, которые могут вызывать воспалительный фенотип, характеризующийся плотной инфильтрацией лимфоцитов. Что же касается хромосомная нестабильность (CIN), то у людей при старении в эпителии кишечника происходит прогрессирующая эрозия теломер, а дисфункция теломер (анафазные мостики) была зарегистрирована при переходе от аденомы к раку, что указывает на то, кризис играет роль в развитии CIN на ранних стадиях CRC человека. Наконец, прогрессирование рака связано с реактивацией теломеразы, которая присутствует в 85–90% всех типов рака, включая CRC.

Отметим, что на ранних стадиях рака груди член семейства TGF-β BMP7 репрессирует обратную транскриптазу теломеразы человека (hTERT) посредством BMP-рецепторов II и SMAD3-зависимым образом. Хроническое воздействие BMP7 на раковые клетки вызывает укорочение теломер раковых клеток и последующий апоптоз, то есть на ранних стадиях рака TGF-β оказывает супрессивное действие, но на поздних стадиях наоборот, способствует ЭМП (см. выше).

Отметим, что в модели «APC-TP53 - KRAS», чаще всего наблюдающейся на фоне хронического колита, частые мутации TP53 можно обьяснить его постоянной активацией, что требует его открытой конфигурации и высокого уровня АФК. Вообще, мутации наблюдаются обычно только у активных генов, так как к молчащим генам плотно прилегают гистоны, защищая их от повреждений. Наиболее открыты гены дифференциации (надстройки), так как для их чтения требуется больше кофакторов, чем для генов инфраструктуры. Но наблюдается это на поздних стадиях канцерогенеза.

Молекулярные изменения в криптах при формировании аденом и затем рака я подробно описал раньше. Отмечу только, что гипотеза о нисходящем развитии рака из-за высокого индекса клеточного деления вроде бы дифференцированных клеток на верхушках крипт легко обьясняется моей теорией: высокий уровень экспрессии МУС в таких клетках заставляет их накапливать клеточную массу и делиться, хотя необходимости в этом нет. Биосинтетические процессы в дифференцированных клетках (на стадии G0) вообще не интенсивны: нормально работающие станки нет необходимости менять. Таким образом при сверхэкспрессии МУС накапливаются преимущественно стройматериалы для последующего деления, а не специализированные белки клеток.
Можно отметить еще его кооперативное взаимодействие с TOR-1 при синтезе белка: без МУС запас компонентов рибосомного синтеза быстро заканчивается и синтез белка останавливается. При гиперэкспрессии МУС все наоборот, что облегчает переход клеточного цикла из фазы G1 к S фазе.

albert52
01.03.2022, 11:15
Продолжим.

Теперь подробнее о CMS классификации. Опухоли CMS1 часто диагностировались у женщин с правосторонними поражениями и имели более высокую гистопатологическую степень, а также демонстрируют высокий статус гиперметилирования; при локализации опухоли в прямой кишке только в 0,1% наблюдений определялся CMS1 подтип. Напротив, опухоли CMS2 были в основном левосторонними и имеют более частое увеличение числа копий в онкогенах и потерю генов-супрессоров опухолей, чем в других подтипах.
Опухоли CMS4, как правило, диагностировались на более поздних стадиях (III и IV) и демонстрировали более высокую хромосомную нестабильность (CIN), измеренную по количеству SCNA (изменению числа соматических копий хромосом или их частей). Также обнаружена лучшая выживаемость после рецидива у пациентов с CMS2. Интересно, что популяция CMS1 имела очень плохую выживаемость после рецидива, что согласуется с недавними исследованиями, показывающими худший прогноз у пациентов с MSI и рецидивирующей CRC с мутацией BRAF.

Отметим, что опухоли с BRAF мутацией обычно имеют плохой прогноз (вспомним меланому) из-за высокого уровня метилирования ДНК, особенно с фенотипом CpG Island Methylator (CIMP). Дело в том, что таких островков особенно много в генах надстройки из-за необходимости их тонкой настройки, и их постоянное метилирование нарушает работу этих генов. Кстати, как я уже упоминал, мутации в генах BRAF и KRAS практически не сочетаются, хотя на перый взгляд опухолевым клеткам это выгодно - гены надстройки слабеют, а инфрастуктуры, наоборот, усиливаются. Видимо для раковых клеток так много счастья, особенно при интактном р53, уже слишком - возникает апоптоз.

CMS1 характеризуется повышенной экспрессией генов, связанных с диффузным иммунным инфильтратом, в основном состоящим из TH1 и цитотоксических Т-клеток, наряду с сильной активацией путей уклонения от иммунной реакции. Отмечена высокая экспрессия хеммоатрактантов к Т-лимфоцитам (CXCL9, CXCL10 и CXCL16) или молекул, участвующих в формировании третичных лимфоидных структур (CXCL13), повышенная экспрессия INFγ и IL15, высокая экспрессия генов, кодирующих PD-1 лиганды. Интересно, что последние также выявлены и при мезенхимальном подтипе.

При каноническом (CMS2) же подтипе снижена презентация белков главного комплекса гистосовместимости I класса, низкая инфильтрация опухоли лимфоцитами. Пролиферация опухолевых клеток была связана с успешным установлением PDX (patient-derived xenograft), что позволило выделить пациентов с плохими клиническими исходами в рамках CMS2. Отмечу, что модели PDX (ксенотрансплантаты, полученные от пациента) используются для создания среды, которая обеспечивает естественный рост рака, его мониторинг и соответствующие оценки лечения исходного пациента. MSI oпухоли могут встречаться при разных подтипах, однако, если они ассоциированы с CMS1 подтипом, то обладают более высокой иммуногенностью за счет большого количества неоантигенов.
Что же касается прогрессирования предраковых поражений диспластического эпителия, таких как колоректальные аденомы, то оно связано с приобретением геномной нестабильности. Часто это касается анеуплоидии или CIN, которые отмечают примерно 85% случаев CRC. Семь аберраций числа копий ДНК были идентифицированы как события, ассоциированные с колоректальным раком (CAE): амплификация хромосомных плеч 8q, 13q и 20q и потеря 8p, 15q, 17p и 18q. С точностью 78%, аденомы, по крайней мере, с двумя из семи CAE могут быть идентифицированы как имеющие высокий риск прогрессирования в злокачественное новообразование; их называют «аденомами высокого риска». Так, AURKA и TPX2, которые играют роль в фазе G2/M клеточного цикла, способствуют управляемой ампликоном 20q прогрессии аденомы в карциному.

В самих аденомах чаще всего наблюдается "метаболический" подтип CMS3, что связано с перепрограммированием их метаболизма вследствие формирования второго центра управления клеткой. Впрочем редкие CMS2 были в значительной степени связаны с аденомами высокого риска, а CMS3 - с аденомами низкого риска; напомню, что только 5% аденом переходят в рак. Наборы генов, обогащенных в аденомах CMS2, были вовлечены в клеточный цикл и пролиферацию, включая гены, которые являются мишенями факторов транскрипции E2F, генов, участвующих в контрольной точке G2/M, сборке митотического веретена, пути PI3K-AKT-mTOR, пути передачи сигнала Wnt-β-катенин или гены, регулируемые MYC.

Сигнатуры «стромальной оценки» и «инвазивного фронта» опухоли показали высокий уровень обогащения в CMS4 CRC по сравнению с аденомами и другими классами CMS CRC; «иммунная оценка» была выше при раке CMS1. Фибробласты в мезенхимальных подтипах способствуют ангиогенезу, рекрутированию провоспалительных клеток и формированию иммуносупрессивного фенотипа.

Конкордантность по CMS подтипам между первичной опухолью и метастазами составила всего 60%, в первую очередь, за счет перехода CMS2 к CMS4 подтипу и изменению экспрессий генов ЭМП. В первую очередь это происходит за счет более высокой вероятности приобретения опухолью CMS4 фенотипа в зоне инвазии и метастазирования; при этом в центральной зоне опухоли превалируют CMS2 и CMS3 подтипы.
Процесс, присущий инвазии и, таким образом, прогрессированию колоректальной аденомы в карциному, представляет собой активацию стромы опухоли. Фактически, строма опухоли представляет собой воспалительный ответ на чужеродные вторжения, а также является каркасом для поддержания вторжения опухолевых клеток. Что же касается метастазов, то если доля пациентов с CMS2 подтипом в метастазах в печени соответствовала встречаемости данного подтипа при левосторонних опухолях, то подтипы CMS1 и CMS3 были в большинстве своем замещены мезенхимальным вариантом (CMS4). Частично это можно объяснить тем, что CMS1 подтип, при котором часто встречается мутация в гене BRAF, а также муцинозные опухоли преимущественно метастазируют по брюшине. Кроме того, несоответствие распределению подтипов в образцах метастазов из печени связано с действием иммуносупрессивного действия микроокружения печени (IL-10, TGFβ) и изменению данных экспрессии под действием химиотерапии.

albert52
05.03.2022, 10:59
Вставка

Опухолевые почки (Tumor budding)

Значительное количество опухолей ведет себя агрессивно, несмотря на то, что они относятся к категории низкого риска на основании их стадии TNM. Таким образом, необходим поиск дополнительных прогностических факторов при оценке колоректальной карциномы. Из изученных на сегодняшний день гистопатологических факторов наиболее многообещающими являются экстрамуральная венозная инвазия, характер наступающего фронта (выталкивающий или инфильтративный), воспалитель -ный инфильтрат, микросателлитная нестабильность и почкование опухоли — наличие небольших дискретных скоплений опухолевых клеток в инвазивном краю.

Опухолевые почки, определяемые как наличие одиночных опухолевых клеток или небольших скоплений до пяти опухолевых клеток на перитуморальном инвазивном фронте (перитуморальные почки) или внутри основного тела опухоли (внутриопухолевые почки), представляют собой гистоморфологический коррелят раковых клеток, подвергшихся ЕМТ.

Почкующиеся гнезда часто обнаруживаются рядом с областями инвазии лимфоваскулярного пространства, причем ряд «зачатков» на инвазивном крае опухоли фактически расположен в небольших лимфатических пространствах. Наличие почкования также связано с повышенным риском отдаленных метастазов. При подслизисто-инвазивной колоректальной карциноме высокая степень злокачественности опухоли, лимфовас -кулярная инвазия и почкование опухоли являются тремя факторами, независимо связанными с метастазами в лимфатические узлы. У пациентов без какого-либо из этих трех признаков была исключительно низкая частота метастазов в лимфатические узлы (1%); при наличии одного фактора риска частота узловых метастазов существенно увеличивалась до 21%, а при наличии двух или трех факторов риск составлял 36%.

Что касается категорий CRCSC, клетки ТБ показали профиль экспрессии генов, соответствующий «мезенхимальному фенотипу» (CMS4), также клетки в основной опухоли чаще всего имели связь с фенотипом CMS4 — большее количество опухолевых зачатков было обнаружено в опухолях CMS4, чем в опухолях CMS2 и CMS3 — и мутациями KRAS. ТБ-клетки у пациентов с CRC также демонстрируют повышенную экспрессию ZEB1 и сопутствующее снижение miR-200b и miR-200c, что подтверждает связь между членами семейства miR-200 и ЕМТ.

Поскольку у пациентов с колоректальной карциномой II стадии исходы сильно различаются, почкование опухоли может быть особенно полезным для выявления подгрупп высокого риска в этой популяции. Наличие почкования опухоли предсказывает плохой ответ на анти-EGFR-терапию у пациентов с метастатической колоректальной карциномой.

Сильное почкование опухоли тесно связано с опухолями, возникающими из опухолей с мутацией гена APC в отличие от микросателлитной нестабильности. В спорадических микросателлитных стабильных и низкочастотных микросателлитных нестабильных опухолях частота отпочковывания опухоли составляла примерно 50%, причем почкование опухоли практически отсутствует при спорадической высокочастотной микросателлитной нестабильной карциноме, что может, по крайней мере частично, объяснить относительно лучший прогноз.

Белки, участвующие в деградации внеклеточного матрикса, такие как MMP-9 и катепсин B, сверхэкспрессируются в опухолевых почках; экспрессируется также белок клеточной локомоции ламинин 5γ2. Другие белки клеточной адгезии, такие как EpCAM ((Epithelial cell adhesion molecule), вовлечены в процесс почкования с потерей мембранной экспрессии; EpCAM активируется путем протеолиза, что приводит к высвобождению EpICD в цитоплазму, которая становится частью транскрипционного комплекса ß-catenin и LEF. Он обладает онкогенным потенциалом благодаря своей способности активировать c-myc, e-fabp и циклины A и E.

Молекула адгезии нейрональных клеток L1 также была идентифицирована как ген-мишень β-катенина и преимущественно экспрессируется в опухолевых зачатках, где она совместно регулируется с ADAM10, металлопротеазой, участвующей в отщеплении внеклеточного домена L1s; L1 индуцирует передачу сигналов NF-κB в клетках колоректального рака, при этом NF-κB участвует в EMT.

Маркер стволовости CD133 преимущественно экспрессируется на переднем фронте инвазивной опухоли, но не внутри самих опухолевых зачатков. Вообще, экспрессия CD133, CD44 и CD90 является редким событием в опухолевых зачатках, что свидетельствует о том, что опухолевые клетки в зачатках подвергаются дифференцировке в мезенхимальный фенотип.
Что же касается экспрессии Lgr5, то обнаружено, что небольшое подмножество зачатков является положительным для этого предполагаемого продуцента стволовых клеток, но в отдаленных метастазах была обнаружена в 6-11,5 раз более высокая степень экспрессии.

В целом считается, что опухолевые клетки, происходящие из ЕМТ, являются гипопролиферативными. В самом деле, опухолевые зачатки демонстрируют цитоплазматическую экспрессию p16. В нормальных условиях ядерный p16 является прямым ингибитором циклина D1, останавливая клеточный цикл, однако считается, что расположенный в цитоплазме р16 связывается с CDK4, блокируя его транспорт в ядро. CDK4 необходим для активации циклина D1, следовательно, в отсутствие CDK4 циклин D1 образует неактивный комплекс с CDK2, что объясняет явно парадоксальную ко-активацию p16 и циклина D1.

В дополнение к их гипопролиферативному состоянию опухолевые зачатки обладают антиапоптотическим действием благодаря их относительному отсутствию иммунореактивности в отношении каспазы 3, что позволяет предположить, что опухолевые зачатки способны противостоять аноикису.

Ген-супрессор опухоли RKIP был связан с EMT на нескольких уровнях, например, как ингибитор сигнального каскада Ras-Raf-MEK-ERK на уровне Raf. Кроме того, RKIP модулирует другие сигнальные пути, включая NFκB-Snail. Отмечена дифференциальную экспрессию RKIP в зонах колоректального рака с постепенной потерей экспрессии по направлению к фронту опухоли.

Нейротрофический тирозинкиназный рецептор TrkB был связан с EMT посредством RAS/MAPK-зависимой передачи сигналов Twist-Snail, и было продемонстрировано, что он является мощным и специфическим супрессором аноикиса, что подтверждается его сверхэкспрессией в опухолевых зачатках. Кроме того, колоректальный рак с мутациями KRAS также сверхэкспрессирует TrkB, что согласуется с известной зависимостью передачи сигналов MAPK от TrkB-индуцированной EMT.

Хемокин CXCL12 связывается со своим рецептором CXCR4, активируя последующие внутриклеточные пути, участвующие в хемотаксисе, выживании клеток и транскрипции генов. Поскольку CXCR4 экспрессируется в клетках многих органов, включая лимфатические узлы, легкие и печень, эпителиальные опухолевые клетки могут использовать принцип самонаведения для направления метастазов CXCL12-положительных опухолевых клеток в CXCR4-положительные органы. CXCL12 также может стимулировать образование капиллярных структур. Было обнаружено, что экспрессия CXCL12 в опухолевых зачатках коррелирует с метастазами в печень и является независимым прогностическим маркером.

Сигналы, происходящие от окружающих мезенхимальных клеток в микроокружении опухоли, могут играть важную роль в фиксации пропочковавшегося фенотипа. Так TWIST1, известный активатор ЕМТ, экспрессируется в опухолевых стромальных клетках; эти клетки демонстрируюи те же неопластические аберрации, что и сама опухоль.

Ангелина7775
30.06.2022, 12:42
Целая научная работа, столько информации , но ответа как такового нет как избавиться от рака

Александр Иванович 55
21.09.2022, 11:06
- показали красоту биохимии
- собирать такую инфу по сотням тысяч публикаций это большой труд.

видов раков очень много
но совсем недавно, их называли лишь по внешнему виду новообразования