Показать сообщение отдельно
Старый 06.05.2021, 11:43   #98
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 246
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

SUMO PTM представляет собой динамический биомаркер реакции на применяемые в настоящее время химиотерапевтические методы. Кроме того, исследование специфической роли SENP, которые в нормальных клетках жестко контролируют равновесие SUMOylation, может предоставить информацию для дополнительного фармакологического вмешательства в MYC / SUMO-активированный PDAC и другие виды рака. Впрочем, для более точного определения доли PDAC, чувствительной к ингибитору SAE, следует рассмотреть другие маркеры, помимо MYC. Клинические данные на примере рака толстой кишки указывают на ценность комбинации двух или более целевых методов лечения для лечения солидного рака. Кроме того, первый в своем классе ингибитор СУМО, ТАК-981, продемонстрировал иммуномодулирующие свойства.

Каскад SUMOylation уравновешивает передачу сигналов врожденного иммунитета посредством регулирования ответов интерферона I типа (IFN) и активности NF-каппа-B (NF-k B). Так, СУМОилирование IFN-регуляторного фактора транскрипции IRF3 отрицательно регулирует транскрипцию IFNβ. Следовательно, десумоилирование IRF3 с помощью SENP2 индуцирует транскрипцию IFNβ.

Еще одним эффектором нашего врожденного иммунитета является GMP-AMP-синтаза (cGAS), которая воспринимает вирусную ДНК и, следовательно, активирует стимулятор генов интерферона (STING). Впоследствии STING стимулирует IFN 1-го типа. Лигаза E3 TRIM38 SUMOилирует cGAS и STING, что приводит к их стабилизации на ранних стадиях после заражения. В позднем инфекционном состоянии SENP2 де-СУМОилирует cGAS и STING, что приводит к их деградации и, таким образом, снижает иммунный ответ. Напротив, также было обнаружено, что SUMOylation подавляет потенциал восприятия ДНК cGAS, который может быть снят с помощью SENP7, показывая в целом подавляющий эффект SUMOylation на активацию иммунной системы (см. выше).

Фенотипическими характеристиками, иллюстрирующими потерю SUMOylation в клетках, являются анеуплоидия и образование хроматинового мостика. Оставшийся участок ДНК между двумя дочерними клетками в случае образования хроматинового мостика мешает клеткам должным образом делиться и запускать свой собственный независимый клеточный цикл. В целом аберрантная экспрессия протеаз SUMO останавливает пролиферацию клеток и приводит к дефектной морфологии ядра и двуядерным клеткам.

Существует все больше исследований, связанных с SUMOylation, и основное внимание уделяется ингибиторам регуляторов SUMOylation. SUMO E1 представляет собой димер, состоящий из субъединиц SAE1 и UBA2 / SAE2 и нокдаун этих субъединиц блокирует пролиферативную способность раковых клеток. Так, ингибиторы лигазы SUMO E1 обладают преимуществами более высокой селективности и меньшего количества побочных эффектов. Первые зарегистрированные ингибиторы SAE1 / 2 представляют собой природные соединения, включая гинкголиновую кислоту, ее структурный аналог анакардиновую кислоту и керриамицин B. Эти соединения ингибируют образование промежуточного соединения SAE1 / 2-SUMO, следовательно, блокируя конъюгацию SUMO с белками-мишенями. Другим природным веществом, блокирующими SAE1 / 2, является дубильная кислота с аналогичный механизм действия.

Ограничения этих натуральных продуктов состоят в том, что они в основном функциони -руют в микромолярном диапазоне и не нацелены только на сумоилирование. Известно, что гинкголевая кислота нацелена на провоспалительные молекулы, такие как простагландины и лейкотриены, и дубильная кислота может также вызывать гибель раковых клеток через активацию апоптоза, а не через ингибирование прогрессирования клеточного цикла, как ожидается для ингибитора SUMOylation.

Полипептиды цистеиновых протеаз могут действовать как аналоги SENP и обладают способностью отщеплять SUMO от целевого белка и / или расщеплять форму предшественника SUMO с высвобождением его активной формы.

Пять регуляторов SUMOylation (PIAS1, PIAS3, SENP8, SUMO4 и TRIM27), которые присутствовали в сигнатуре риска. Большинство этих регуляторов обладают значительным активационным эффектом в пути клеточного цикла, а в пути RAS / MAPK обладают значительным ингибирующим действием. Биологические эффекты этих регуляторов в онкогенезе и развитии разнообразны.
Эти регуляторы могут быть потенциальным индикатором прогноза множественных опухолей. Эти регуляторы SUMOylation имеют более низкую общую среднюю частоту мутаций при 33 типах рака, хотя регуляторы SENP1, SENP5, SENP7 и PIAS3 имеют более высокие частоты мутаций. SENP2, SENP5, CBX4 и TRIM27 показали более обширную CNV амплификацию (сopy number variation - - это явление, при котором участки генома повторяются, а количество повторов в геноме варьируется от человека к человеку); напротив, SENP3 и SUMO4 имели более обширные CNV делеции.

SENP1 высоко экспрессируется в образцах рака простаты человека и коррелирует с экспрессией индуцируемого гипоксией фактора 1α (HIF1α). SENP1 индуцирует транс -формацию здоровой простаты в предраковые поражения in vitro и in vivo. PIAS1 и PIAS4 необходимы в процессе репарации после повреждения ДНК. SENP1 может регулировать MMP-2 и MMP-9 через сигнальный путь HIF1α, тем самым способствуя прогрессированию клеточных линий рака простаты и метастазам в кости.

Связанный с аутофагией белок 8 ( Atg8 ) представляет собой убиквитиноподобный белок, необходимый для образования мембран аутофагосом. Временная конъюгация Atg8 с аутофагосомной мембраной посредством ubiquitin-подобной системы конъюгации важна для аутофагии у эукариот. У высших эукариот Atg8 не кодируется одним геном, как у дрожжей, а происходит из мультигенного семейства. Четыре его гомолога уже идентифи -цированы в клетках млекопитающих.
Одним из них является LC3 ( MAP1LC3A ), легкая цепь белка 1, связанного с микротрубоч -ками. Подобно Atg8, LC3 необходимо протеолитически расщеплять и липидировать, чтобы превратить в активную форму, которая может локализоваться на мембране аутофагосомы. Подобно ситуации с дрожжами, процесс активации LC3 запускается истощением питатель -ных веществ, а также в ответ на гормоны. Изоформы LC3 млекопитающих содержат консервативный Ser / Thr12, который фосфорилируется протеинкиназой А для подавления участия в аутофагии / митофагии.
Другими гомологами являются транспортный фактор GATE-16 (усилитель АТФазы, ассоциированный с Гольджи, 16 кДа), который играет важную роль в везикулярном транспорте внутри Гольджи, стимулируя активность АТФазы NSF (N-этилмалеимид-чувствительный фактор) и GABARAP (белок, связанный с рецептором γ-аминомасляной кислоты типа A), который облегчает кластеризацию рецепторов GABAA в сочетании с микротрубочками.
Все три белка характеризуются процессами протеолитической активации, в результате которых они липидируются и локализуются на плазматической мембране. Однако для GATE-16 и GABARAP мембранная ассоциация, по-видимому, возможна даже для нелипидированных форм. взаимодействия с одним из гомологов ATG4 млекопитающих, hATG4A.

Еще одним убитиквиноподобным белком является ATG12 Autophagy related 12); аутофагия - это процесс разрушения большого количества белка, при котором компоненты цитоплазмы, включая органеллы, заключены в двухмембранные структуры, называемые аутофагосомами, и доставляются в лизосомы или вакуоли для деградации.
Аутофагия требует ковалентного присоединения белка Atg12 к ATG5 через систему конъюгации, подобную убиквитину. Конъюгат Atg12-Atg5 затем способствует конъюгации ATG8 с липидным фосфатидилэтаноламином. Было также обнаружено, что Atg12 участвует в апоптозе. Этот белок способствует апоптозу за счет взаимодействия с антиапоптотическими членами семейства Bcl-2 .

Отметим, что ATG5 является ключевым белком, участвующим в расширении фагофорной мембраны в аутофагических пузырьках. ATG5 также может действовать как проапоптотическая молекула, нацеленная на митохондрии . При низких уровнях повреждения ДНК ATG5 может перемещаться в ядро и взаимодействовать с сурвивином .
albert52 вне форума   Ответить с цитированием