Форум общения  больных людей. Неизлечимых  болезней  нет!


Вернуться   Форум общения больных людей. Неизлечимых болезней нет! > Болезни и методы лечения > Рак, онкологические больные

Ответ
 
Опции темы Опции просмотра
Старый 04.09.2018, 13:55   #31
ІК Юглон
Пользователь
 
Регистрация: 31.08.2018
Сообщений: 35
Спасибо: 0
Спасибо 3 в 3 постах
Репутация: 10
По умолчанию

Цитата:
Сообщение от alyona.eltsova Посмотреть сообщение
Простите но крик души, хочу написать, поделиться, может кому то тоже нужна помощь, как и мне когда то. Я вот обращалась к нетрадиционной медицине, и мне помогло, диагноз был: рак матки! Обращалась к человеку который проверен людьми , он лечит онкологию и даёт 100% гарантию! Если кому то интересно или хотите обратиться, пишите мне на почту:alyona.eltsova@yandex.ru
отвечу всем, дам контакты этого целителя! Вот я была в такой ситуации , что готова была руки на себя наложить! Здоровья Вам и вашим близким!
В онкологии проблемы не только в лечении но и в диагностике.
Не берите на себя слишком много. К тому целителю или кто он там, и без Вас потянутся люди
ІК Юглон вне форума   Ответить с цитированием
Старый 05.09.2018, 11:59   #32
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Кето-диета имитирует голод, в том числе и на молекулярном уровне. Кетоновые тела, в отличие от глюкозы, приводят к образованию не пирувата, а ацетоацетата, из которого в митохондриях образуется ацетил СоА, идущий в цикл Кребса. В результате полной прокрутки цикла Кребса мы получаем 3 NADH, 1 FADH2, но в целом в клетке соотношение создаваемых NADH/FADH2 у молекулы глюкозы 5:1, у жиров (в зависимости от длины цепей) примерно 2:1.
Повышенное образование NADH при метаболизме глюкозы требует восстановления NAD+. Глюкоза потр***яет больше NAD+, мешая тем самым активации SIRT1 и других NAD+ зависимых белков. Так, глюкоза восстанавливает 111 молекул NAD+ на 1000 созданных АТФ, кетоны восстанавливают лишь 41 NAD+ на 1000 созданных АТФ.

Для онкологов в кето-диете важна индуцированная NAD+ активация SIRT1. SIRT1 – это деацитилаза, действующая в клетке в ответ на сигнал недостатка питательных веществ, в первую очередь глюкозы.
Ядерные эффекты SIRT1 (деацетилирование целевых генов приводит к изменению их выраженности):
активация p53 – антиопухолевого гена, который снижает смертность от рака;
PGC-1α – который запускает процессы митохондриального биогенеза, переключения с углеводов на бета-оксидацию жиров, контролирует анаболизм жира, модулирует роль инсулина и многое другое.

Мой комментарий: в целом и при кето-диете клетка получает достаточно глюкозы, а если и недостаточно, то у сепаратных генов все равно будет преимущество. Но кетоновые тела за счет альтернативного способа получения ацетил СоА целевым образом поддерживают гены надстройки, а также тормозят метаболический мутагенез (активация р53, торможение образования свободных радикалов и т.д.).

Она активирует при этом симпато-адренальную систему, что сразу исключает применение кето-диеты при раке простаты (см. выше). Также своеобразное и очень интересное ментальное состояние на кето – результат работы не только кетоновых тел, но и катехоламинов.

У нас есть ряд почти гликолитичных клеток, например эритроцитов и астроцитов мозга, чью функцию кето не улучшит, но за счет сдвига в сторону окисления жиров и за счет снижения pH может иметь негативное влияние. Кетоны – метаболические кислоты, снижают pH мочевыделительной системы, увеличивают на нее нагрузку на недели вперед, что не есть хорошо при опухолях почек и мочевыводящих путей.

В целом, тематические исследования и пилотные рандомизированные контролируемые исследования у людей показывают, что ограничение углеводов может задержать рост раковых клеток при многих видах злокачественных опухолей при использовании с обычными методами лечения (такими как химиотерапия).

Другие же исследования показывают связь между гипергликемией и повышенной активностью рака. Поэтому если вы или любимый человек страдает от рака, то настоятельно рекомендуется поговорить с онкологом, диетологом и вашим домашним врачом, прежде чем использовать кетогенную диету в качестве части вашего плана лечения.

Последний раз редактировалось albert52; 05.09.2018 в 12:03..
albert52 вне форума   Ответить с цитированием
Старый 01.08.2019, 06:07   #33
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Длина всей ДНК в клетке человека примерно 1,5 метра, ДНК всех генов в ней занимает всего 3 - 10 % . Некоторые авторы сравнивают гены с островками в безбрежном океане ДНК. Нас интересуют гены инфраструктуры, выделение которых является нетривиальной задачей.

Начать надо с рассмотрения гликолиза. Его ферменты находятся в цитоплазме клеток, но это не значит, что они свободно плавают в ней. Кстати, цитоплазма представляет из себя довольно густой гель, в котором свободно не поплаваешь. По современном представлении ферменты гликолиза образуют своего рода суперкомплекс, правда довольно динамичный, так как полноценная фиксация ферментов может быть только на поверхности или, еще лучше, внутри мембран. Подходящий пример - фиксация ферментов дыхательной цепи внутри мембраны митохондрий.

Для фиксации ферментов гликолиза наиболее подходят элементы цитоскелета. Напоминаю, что в цитроскелете клеток различают актиновые филаменты (микро - филаменты), промежуточные филаменты и микротрубочки. Актиновые филаменты в основном сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт. Все это говорит за то, что для фиксации ферментов гликолиза они не очень подходят.

Микротрубочки — крайне динамичные структуры. Они играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы — кинезин и динеин), образуют основу аксонемы ундулиподий и веретено деления при митозе и мейозе. Все это также говорит против них.

Промежуточные филаменты состоят из разного рода субъединиц и являются наименее динамичной частью цитоскелета. В отличие от микрофиламентов и микротрубочек свободные мономеры промежуточных волокон едва ли встречаются в цитоплазме. Их полимеризация ведёт к образованию устойчивых неполярных полимерных молекул.
Промежуточные филаменты достаточно специализированы в зависимости от типа клеток, в которых встречаются. В большинстве животных клеток ПФ образуют «корзинку» вокруг ядра, откуда направлены к периферии клеток. Это самые долгоживущие компоненты цитоскелета, они участвуют в фиксации органелл и наиболее подходят на роль динамичной фиксации ферментов гликолиза. Кстати, ПФ - наиболее древние элементы цитоскелета, с возрастом и при онкогенезе их доля в цитоскелете увеличивается.

Среди клеточных органелл ПФ больше всего вокруг митохондрий. Ферменты гликолиза, оседая на ПФ, образуют функциональные блоки, часть ферментов можно обнаружить даже на наружной мембране митохондрий. В клетках опухолей они смещаются к митохондриям и даже могут полностью лежать на них, что можно рассматривать как компенсаторную реакцию клетки.
albert52 вне форума   Ответить с цитированием
Старый 01.08.2019, 08:48   #34
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.
Гликолиз - это последовательность 10 реакций превращения глюкозы в пируват. Это линейная последовательность, а не цикл (нет обратной связи), однако можно отметить три этапа регуляции гликолиза:
Во-первых, на уровне гексокиназной реакции, продукт которой Гл-6-Ф аллостерически подавляет активность фермента гексокиназы.
Во-вторых, регулирование связано с фосфофроктокиназой, активность которой возрастает при повышении содержания АДФ и Фн, но подавляется повышенными концентрациями АТФ.
В-третьих, этап регуляции осуществляется на уровне фермента пируваткиназы, активность которой угнетается ее продуктом АТФ в высоких концентрациях, а также ацетил-СоА.

В том случае, если гликолиз не предполагает продолжения в виде кислородного дыхания, к нему добавляется еще одна реакция, а именно восстановление пировиноградной кислоты (пирувата) до молочной кислоты (лактата). Ее истинный главный продукт – это кофактор НАД+. Дело в том, что запасы кофакторов в клетках обычно очень малы - их молекулы оборачиваются в одних и тех же реакциях несчетное число раз. Но если молекулы НАД+ уже загружены водородом (то есть перешли в состояние НАДH), то использовать их для новых актов гликолиза невозможно. Чтобы продолжить переработку поступающей в клетку глюкозы, нужно сначала окислить НАДH до НАД+, вернув кофактор в рабочее состояние. На ученом языке это называют регенерацией НАД+. Вот именно для этого реакция образования лактата и нужна. Сам лактат является тут только побочным продуктом. А гликолиз вместе с реакцией образования лактата складывается в процесс, который называется молочнокислым брожением.

Человек, конечно, не способен полностью перейти на брожение, но тем не менее наши клетки могут на него временно переключаться в случаях, когда дыхательные ферменты не успевают до конца окислять глюкозу – например, при очень сильных мышечных нагрузках. Это та самая ситуация, когда молочная кислота накапливается в мышцах. После прекращения нагрузки накопившуюся молочную кислоту приходится все‑таки метаболизировать: с кровью она поступает в печень и там вновь превращается в пируват, который уже можно использовать в кислородном дыхании. Там именно кислород забирает у восстановленного НАДH атомы водорода, которыми тот нагружен.

Вот зачем, собственно, и нужен кислород при дыхании: чтобы послужить окислителем, отбирающим электроны у НАДH.
albert52 вне форума   Ответить с цитированием
Старый 01.08.2019, 21:58   #35
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вообще, само дыхание – это окислительно‑восстановительная реакция. В процессах гликолиза и цикла Кребса, происходящих соответственно в цитоплазме клетки и матриксе митохондрий, окислителем являются молекулы НАД+: НАД+ + 2H ⇌ HAДH + H+

Молекула НАД+ присоединяет один атом водорода целиком (электрон и протон), а от второго – только электрон. Оставшийся от второго атома протон уходит в окружающий раствор.

В дыхательной цепи, наоборот, НАДН является восстановителем, отдавая протон и электроны водорода. В конце цепи на одну молекулу кислорода (O2) тратится четыре электрона (e–) и четыре протона (H+), давая в результате две молекулы воды (H2O). Электроны приходят по мембранной цепи, их переносящей, а протоны захватываются из водного раствора.

Белки дыхательной цепи энергию потока электронов используют не для синтеза АТФ, а для транспорта протонов. Это типичный активный транспорт: протоны принудительно переносятся из матрикса (где их и так меньше) в межмембранное пространство (где их и так больше - «протонный резервуар»). Причем такие встроенные системы сопряженного транспорта есть подряд в нескольких белках дыхательной цепи, через которые последовательно проходят переносимые электроны. В результате изнутри наружу суммарно выбрасывается 64 протона на каждую исходную молекулу глюкозы. И таким образом, снаружи от внутренней мембраны становится не просто больше, а намного больше протонов, чем внутри.

Согласно законам биоэнергетики, энергию протонного потенциала всегда можно конвертировать в энергию АТФ: ∆μH ⇌ АТФ. Именно это и делает встроенная во внутреннюю мембрану митохондрии протонная АТФ‑синтаза. С белками дыхательной цепи она не связана. Она просто пропускает накопившиеся протоны снаружи (где их больше) внутрь (где их меньше), а за счет высвобожденной при этом энергии синтезирует АТФ. Тот самый АТФ, благодаря которому мы живем.

Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов Н+ в день, образуя протонный потенциал. За это же время Н+-АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а процессы, использующие АТФ, гидролизуют всю эту массу АТФ назад в АДФ и фосфат.
albert52 вне форума   Ответить с цитированием
Старый 02.08.2019, 21:07   #36
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

В клетке образующийся из глюкозы глюкозо-6-фосфат распределяется между гликолизом и пентозофосфатным путем, причем чем интенсивнее клетки размножаются, тем больше удельный вес последнего пути (но в норме не больше 20-30% поступающей в клетку глюкозы). Этот путь состоит из 2-х этапов.

На окислительном этапе образуются пентозофосфаты и НАДФH.
Быстроделящиеся клетки, такие как клетки костного мозга, кожи и слизистой кишечника, используют пентозы для синтеза РНК, ДНК и таких коферментов, как АТР, НАДН, ФАДН2 и кофермент А. В других тканях важным продуктом пентозофосфатного пути являются не пентозы, а донор электронов НАДФН, необходимый для восстановительного биосинтеза и защиты от повреждающего действия радикалов кислорода, например, для восстановление глутатиона. Наибольшую потребность в НАДФН испытывают те ткани, в которых происходит активный синтез жирных кислот (печень, жировая ткань, молочные железы) или холестерина и стероидных гормонов (печень, надпочечники, половые железы).

Неокислительный этап – это совокупность большого количества обратимых реакций, но в конце этапа пентозофосфаты превращаются в глюкозо-6-фосфат, то есть получается цикл, правда с потерей одной молекулы глюкозо-6-фосфата. Он является источником моносахаридов с разным числом углеродных атомов. Это строительный материал для разных синтезов, в том числе для синтезов различных олигосахаридов, которые входят в состав клеточных рецепторов.

Все ферменты, принимающие участие в пентозофосфатном пути, как и при гликолизе, локализованы в цитоплазме.

Опухолевые клетки в принципе нуждаются в интенсификации этого пути потр***ения глюкозы. Но между ферментами глюколиза и пентозофосфатного пути существуют конкуренция за субстрат и быстрый гликолиз (см. выше) побеждает. Кроме того, в клетках опухолей часто наблюдается недостаток кислорода (гипоксия), что также тормозит пентозофосфатный путь. В результате страдает синтез нуклеотидов и других важных для деления клеток веществ.
albert52 вне форума   Ответить с цитированием
Старый 04.08.2019, 07:10   #37
alex_rodchenko
Новичок
 
Аватар для alex_rodchenko
 
Регистрация: 03.08.2019
Сообщений: 1
Спасибо: 0
Спасибо 0 в 0 постах
Репутация: 10
Сообщение Что такое рак - теория Александрова Б. Л.

Добрый день, друзья.

Я бы хотел описать теорию, откуда берется рак, и что это такое. Вывел это Александров Борис Леонтьевич, доктор наук, профессор, который более 20 лет, и по сей день занимается вопросом онкологии.

1) Основными источниками подпитки злокачественной опухоли являются: внешнее облучение нейтронами, которое приводит к преобразованию, переработки нашей нормальной материи, состоящей на 65-70% из молекул легкой воды, в онкологическую за счет преобразования молекул легкой воды в молекулы тяжелой воды, и поступление из нашей пищи и воды тяжелых молекул воды, что приводит к дополнительному нарастанию опухоли. Поэтому надо максимально перекрыть каналы поступления в организм, как молекул тяжелой воды, так и потока нейтронов, а те нейтроны, которые попадают в организм перехватывать их химическими элементами, обладающими высоким сечением захвата нейтронов. В связи с этим, серьезное внимание должно быть уделено питанию, воде и травам.

2) Очень полезно провести курс лечения для избавления организма от возможного наличия паразитов. Паразиты, находясь в нашем организме, своими инкриментами отравляют и закисляют наш организм, т.е. снижают иммунитет. Сегодня в аптеках продают готовые таблетки, либо можно использовать советы травников, например, метод Кларка и Ниши (зеленая оболочка грецкого ореха, листья полыни и плоды гвоздичного дерева – см. стр. 45 в монографии. Монографию надо приобрести через интернет, сделав запрос по названию книги –«Рак глазами физика» или по фамилии –Александров Борис Леонтьевич).

Уже давно известно, что при вскрытиях многих людей, которые проводились не с целью найти опухоли, а по различным другим причинам, врачи находили внутри мелкие опухоли в различных частях тела людей. Но эти опухоли не давали о себе знать, так как организм сам их выводил, благодаря иммунитету. Это медицински доказанные факты. Поэтому, можно утверждать, что правильное питание, минимальное количество нервных переживаний и хотя бы общий здоровый образ жизни - дает возможность организму бороться с данной болезнью самостоятельно. И Вы даже никогда и не узнаете, что у Вас внутри такое было.

Но бывает и так, что организму не хватает сил бороться. И опухоль начинает разрастаться. И самое первое, и ошибочное действие, которое делают врачи, доктора, они назначают химиотерапию, которая убивает иммунитет окончательно, или же пройти облучение на гамма-пушке(или других вариантах пушек), абсолютно не понимая принцип работы ни самой опухоли, ни этих пушек. Особенно в нашей стране, просто покупают технологию и готовую пушку размером в 2-х этажный дом и "лечат" людей. А когда спрашиваешь у них, какой принцип работы то? "Я не знаю, вот же технология, куда надо нажимать кнопку. Мне не надо больше".

Тем самым доктора делают первую неверную вещь - убивают иммунитет. А этого делать нельзя.

Но как же остановить рост, если он уже стремительно набирает обороты? Понимая принцип возникновения раковой опухоли, а также состав, можно понять, каким образом можно остановить рост. Как раз об этом и говорит Александров Борис Леонтьевич. Он нашел такой препарат, который останавливает рост. А точнее сказать, он вывел препарат и научился его производить. Так как ранее такого производства нигде не было, ему пришлось это сделать самому.

Поэтому чаще всего можно онкологию "лечить" профилактикой заранее, чтобы она никогда в жизни себя не проявила. Делать это с помощью правильного питания и поддержания своего иммунитета на должном уровне.

Благодарю за внимание.
С уважением, Александров Алексей.
alex_rodchenko вне форума   Ответить с цитированием
Старый 06.08.2019, 13:07   #38
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Еще в 1976 году Лю Б. Н. была высказана идея: в активно функционирующих предопухолевых и опухолевых клетках повышаются уровни свободного О2 и его парциального давления вследствие уменьшения потр***ения О2 отчасти дефектными в них митохондриями. «Гипоксия» при гипероксии является характерным состоянием активной истинно неопластической клетки. С повышенным в ней рО2 и избыточным перекисным окислением биологических молекул, прежде всего липидов, в конечном счете связываются дестабилизация всех мембранных структур, изменение активности многих ферментов и вынужденное зависимое от активных форм О2 перепрограммирование части генома.

Указанные представления легли в основу общей кислородно-перекисной концепции канцерогенеза. Исходя из тех же представлений впервые многие противоопухолевые агенты и факторы чётко подразделены на 2 категории – антиоксидантные, снижающие уровень окислительного стресса в опухолевых клетках, и прооксидантные, напротив, усиливающие его до летального уровня.

В дальнейшем кислородно-перекисная концепция была распространена на другие фундаментальные биологические процессы – окислительный митогенез, старение, возрастные патологии, апоптоз и окислительный цитолиз клеток. Под все эти феномены, как и под канцерогенез, подведено индуцирующее их начало в виде соответствующих «специализированных» дисбалансов Δ (ПО –АО) между прооксидантными (ПО) и антиоксидантными (АО) составляющми в клетке.

Отметим, что «зазор» между ПО- и АО-составляющими существует постоянно, травмируя прежде всего чувствительные к окислительным повреждениям митохондрии – основные О2-потр***яющие органеллы в клетке. В результате значения рО2 и Δ (ПО –АО) в клетке постепенно повышаются, и возникающий окислительный стресс становится объективной первопричиной нормального клеточного старения, возрастных патологий, в том числе атеросклероза, сахарного диабета, болезни Альцгеймера и спонтанного канцерогенеза. При более сильном возрастании Δ (ПО –АО) реализуются апоптоз и некроз. Это не исключает того, что в некоторых случаях негативные внешние воздействия (радиация, химические агенты и др.), особенно избыточные, могут одновременно прямо влиять на геном и создавать впечатление о единственности такого пути повреждающего их действия.

В постулируемой достаточно условной градации дисбалансы связаны между собой неравенствами
∆i (ПО – АО) < ∆p (ПО – АО) < ∆k (ПО – АО) < ∆ц (ПО – АО)
где ∆i (ПО – АО) соответствует клетке в покое, ∆p (ПО – АО) - в состоянии митоза, ∆k (ПО – АО) - при канцерогенезе, ∆ц (ПО – АО) вызывает гибель клетки. Следует подчеркнуть, что каждый из рассмотренных дисбалансов представляет определённый диапазон изменений, а не одну какую-то величину. Кроме того, для каждой ткани и даже клетки все эти переменные параметры индивидуальны по величинам и диапазону своего проявления.

При дефиците О2 в клетках деградируют митохондрии в соответствии с принципом: нефункционирование живой структуры есть способ её саморазрушения. Вместе с тем сокращение общей «мощности» митохондрий в клетке можно рассматривать как адаптивную реакцию на гипоксию и аноксию. Если степень сокращения митохондриальной базы слишком велика и энергообеспеченность серьёзно нарушена, то такая клетка, скорее всего, погибнет. Это крайний случай. Для многих же клеток более вероятна ситуация, когда утрата части митохондрий ведёт к некоторому снижению потр***ения О2, причём даже при слабых поступлении и утилизации О2 в зависимости от их соотношения в клетке могут устанавливаться разные уровни рО2 и, следовательно, ∆ (ПО – АО), от низких и вплоть до ведущих к избыточной пероксидации. Значит, эта категория клеток, хотя и с замедленной скоростью, также будет проходить через все указанные выше состояния.
albert52 вне форума   Ответить с цитированием
Старый 06.08.2019, 17:59   #39
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.
В ответ на рост рО2 в земной атмосфере живая природа реализовала систему защитных механизмов, предохраняющих клетку от избыточного накопления в ней токсических продуктов ПОЛ (перекисного окисления липидов). Антиоксидантная система защиты, по общему мнению исследователей, является иерархической и осуществляется не менее чем на трёх уровнях.

Первая и основная ступень защиты – антикислородная. За счёт активности дыхательных ферментов и специальной группы соединений, депонирующих избыточный О2, данная ступень поддерживает внутри клеток довольно низкие значения рО2, порядка 1-5 мм рт. ст., достаточные, однако, для тканевого дыхания и энергообеспечения. Измеренное в цитозоле клеток (кардиомиоциты, гепатоциты и др.) значение рО2 составляет всего 0,4-4,0 мм рт. ст. Непосредственно же около митохондрий предположительно рО2 1 мм рт. ст., а в их матриксе – 0,01-0,1 мм рт. ст., т.е. на уровне критического рО2 для цитохромоксидазы как терминального фермента дыхательной цепи.

Антикислородная линия защиты не в состоянии, вероятно, полностью предотвратить возможные негативные последствия избыточного ПОЛ, поскольку необходимые для него свободные радикалы образуются в процессах нормального метаболизма. Поэтому существуют последующие более «тонкие» ступени защиты – антирадикальная и антиперекисная, надёжная работа которых зависит от исправного функционирования антикислородной линии защиты.

В клетках неоплазмы воспроизводится состояние фиктивной гипоксии, при которой даже избыток О2 не может быть эффективно использован для дыхания, а степень повышения рО2 в значительной мере определяется степенью инактивации дыхательных ферментов и деградации митохондрий. Таким образом, «гипоксия» при гипероксии является, по-видимому, характерным состоянием истинно опухолевой клетки.

Следует особо отметить, что в своей биохимической теории рака Варбург прошёл мимо указанных идей, особенно ключевой идеи о внутриклеточной гипероксии, детермини -руемой снижением интенсивности дыхания. По Варбургу возникновение опухолей связано с фактическим постоянным недостатком О2, вызванным теми или иными затруднениями в снабжении О2, развитием в этих условиях высокой гликолитической активности, которая компенсирует возникший дефицит энергии. Как я уже указывал, такое наблюдается далеко не всегда. Низкое рО2 внутри неоплазм может быть результатом их нерегулируемого роста, объёмного расположения и относительности бедности капиллярной сети, но не отражением какого-то характерного свойства самих опухолевых клеток вообще.

Установлено, что размножающиеся клетки в различных зонах опухоли располагались преимущественно около поддерживающей стромы. На периферии опухолей и вдоль нормально функционирующих в них кровеносных сосудов должен существовать определённый, непрерывно воспроизводимый слой гипероксических опухолевых клеток, величина рО2 в которых постоянно превышает таковую в гомологичных им нормальных клетках. Эта особенность клеток предопределяет, в частности, устойчивое распространение опухолевого процесса «вширь» за счёт незатухающей активности периферийного слоя. Чем больше объём опухоли, тем меньшую долю в нём будет занимать узкий активно растущий периферийный слой.

И, наконец, падение уровня ATФ при дегенерации митохондрий – необходимый регуляторный момент для начала и облегчения репликации ДНК, а повышение уровня ATФ в ядерном компартменте угнетает репликацию ДНК и клеточную пролиферацию.
albert52 вне форума   Ответить с цитированием
Старый 08.08.2019, 18:18   #40
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Как я уже говорил, почти во всех клетках около 90 % потр***яемого кислорода восстанавливается в цепи тканевого дыхания с участием цитохромоксидазы (окисление, сопряженное с фосфорилированием АТФ, выполняет энергетическую функцию). Остальной О2 в норме используется в основном в оксигеназном пути, моно - в микросомах и митохондриях, и диоксигеназном. В митохондриях происходит гидроксилирование (при участии НАДФН2, цитохромР450), при этом образуются окисленный продукт, вода и НАДФ.

Монооксигеназная система митохондрий выполняет также биосинтетическую функцию: синтез холестерола; стероидных гормонов (кора надпочечников, яичники, плацента, семенники); желчных кислот (печень); образование витамина D3 (почки).

Второй вид реакций монооксигеназного пути окисления объединяется под названием микросомальное окисление. Этот вид реакций происходит в микросомах, в основном в печени. В этом виде окисления участвует мультиферментная мембраносвязанная система, включающая НАДФН2, особые ФП(флавопротеины) и цитохромР450. Здесь в субстрат включается один атом кислорода. Второй атом О2 используется для образования воды. Одна молекула цитохрома может за секунду передать несколько тысяч молекул кислорода. По этой причине количество цитохрома в клетке ограничено.
Этот тип окисления является защитной реакцией организма, т.к. происходит окисление различных чужеродных веществ. При этом они переходят в безвредные или становятся более растворимыми в воде и легко выводятся из организма.

В процессе диоксигеназного окисления в молекулу субстрата включаются оба атома кислорода. Эти реакции протекают на поверхности гладкого эндоплазматического ретикулума(ЭПР) и таким образом окисляются циклические структуры типа бензола с разрывом цикла.

И наконец пероксидазный путь окисления является побочным путем окисления, обычно наблюдается при повреждении цитохромной системы или гипероксии клетки, а также
когда субстрат не окисляется другим путем, например, мочевая кислота. Здесь окисление субстрата происходит путем дегидрирования. Два атома водорода переносятся на молекулу кислорода с образованием перекиси. Затем в норме в действие вступают пероксидазы, превращающие перекиси в воду.
При гипероксигенации клетки, прямой или непрямой, пероксидазы не справляются с потоком перекиси, что приводит к повышению уровня активных форм кислорода (АФК) в клетке. В норме в организме образуется около 2% АФК от всего кислорода, процесс образования идет спонтанно и подавить его трудно.

АФК образуются в результате последовательного присоединения электронов к молекуле кислорода. В ходе реакций образуются сначала супероксидный анион (или перекись), затем очень реакционноспособный гидроксильный радикал и другие кислородные радикалы. Они оказывают воздействие на различные структурные компоненты клеток: ДНК (повреждение азотистых оснований); белки (окисление аминокислотных остатков, образование ковалентных «сшивок»); липиды; мембранные структуры.
Отщепляя электроны от многих соединений, АФК превращают их в новые свободные радикалы, и инициируют тем самым цепные окислительные реакции. Если в реакцию с АФК вступают ненасыщенные жирные кислоты плазматических мембран, говорят о перекисном окислении липидов.

Продукты ПОЛ необходимы при синтезе некоторых гормонов и белков (например, в синтезе тироидных гормонов), образования простагландинов (ПРГ), для функционирования фагоцитов, для регуляции проницаемости и состава липидов мембран, скорости пролиферации клеток и их секреторной функции.
Увеличение скорости ПОЛ и концентрации продуктов ПОЛ приводит к повреждению мембраны и смерти клетки, так как АФК и продукты ПОЛ в большом количестве:
1) нарушают структуру мембранных фосфолипидов;
2) повреждают ДНК и РНК, вызывая мутации;
3) вызывают денатурацию белков;
4) увеличивают концентрацию внутриклеточного кальция, вызывая деполимеризацию актина и т.д.
Упомянутые мною раньше мутации протоонкогенов метаболического характера(геномная нестабильность) во многом связаны с действием АФК и продуктов ПОЛ.
albert52 вне форума   Ответить с цитированием
Ответ

Социальные закладки

Опции темы
Опции просмотра

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Текущее время: 03:24. Часовой пояс GMT.


Powered by vBulletin® Version 3.8.6
Copyright ©2000 - 2011, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум общения и взаимопомощи больных людей. Советы для выздоровления.