Форум общения  больных людей. Неизлечимых  болезней  нет!

Форум общения больных людей. Неизлечимых болезней нет! (http://forumjizni.ru/index.php)
-   Рак, онкологические больные (http://forumjizni.ru/forumdisplay.php?f=3)
-   -   Очерк натуральной онкологии (http://forumjizni.ru/showthread.php?t=19372)

albert52 27.09.2022 06:14

Продолжим.

Рост первичной опухоли и метастатический рост можно подавить путем делеции гена SPP1 (секретируемый фосфопротеин 1), нижестоящей мишени GLI2, что подчеркивает его роль в повышении агрессивности опухоли. Синтезируемый SPP1 белок остеопонтин является неколлагеновым костным белком, важнм для взаимодействия клетки с матриксом кости. В коже остеопонтин вызывает чрезмерное образование рубцов, и был разработан гель, препятствующий его действию.
При PDAC обнаружено трм варианта его сплайсинга , при этом остеопонтин-а экспрессируется почти во всех PDAC, экспрессия остеопонтина-b коррелирует с выживаемостью, а остеопонтин-с коррелирует с метастатическим заболеванием. Хотя точные механизмы передачи сигнала остеопонтином при PDAC мало изучены, он связывается с CD44 и интегринами, запуская такие процессы, как прогрессирование опухоли и ингибирование комплемента.

Остеопонтин также стимулирует метастазирование, вызывая высвобождение сосудистого эндотелиального фактора роста (VEGF) и матриксной металлопротеазы (MMP), которые ингибируются путем нокдауна остеопонтина. Этот процесс стимулируется никотином, который является предполагаемым механизмом, с помощью которого курильщики испытывают повышенный риск РПЖ. Разрабатываются антитела против остеопонтина, в том числе hu1A12, которые ингибировали метастазирование в исследовании in vivo, а также при гибридизации с антителом против VEGF бевацизумабом.

Плоскоклеточный подтип обнаруживает обогащение для передачи сигналов TGFβ; центральным игроком в канонической передаче сигналов TGFβ является SMAD4 (см. выше). Гетерозиготная инактивация Smad4 способствует прогрессированию и росту первичной опухоли, в то время как потеря оставшегося аллеля дикого типа приводит к высокометастатическому заболеванию. Runx3 способствует метастатической колонизации, но зависит от состояния Smad4.

Повышенная регуляция пионерского фактора FOXA1 связана с классическим подтипом РПЖ, тогда как его экспрессия низка при «плоскоклеточном» (квазимезенхимальном) подтипе. Оба этих подтипа впрочем являются сильно метастатическими, с небольшими различиями в общей выживаемости пациентов. Белок регулятора транскрипции BACH1 помимо репрессии FOXA1 активирует SNAI2, который дополнительно способствует EMT, что оценивается по инактивации генов в линиях клеток человека.

Также во время туморогенеза HNF4α напрямую активирует HNF1A, а потеря первого делает возможным переход к более плоскому фенотипу. Более того, HNF4α непосредственно репрессирует мезодермальные и нейральные дифференцировочные TF SIX1 / 4, повышенная экспрессия которых связана с плоскоклеточным подтипом.
HNF1α подавляет активность ингибиторов апоптоза и модулирует экспрессию генов клеточного цикла. Но, с другой стороны, HNF1A является онкогеном, необходимым для регуляции популяций раковых стволовых клеток (CSC) в PDAC, способствует независимому от закрепления клеток росту, пролиферации, а также инвазивной и миграционной способности. Эти противоречивые данные могут быть объяснены гипотезой о том, что клеточная пластичность и, следовательно, способность индуцировать частичную EMT необходима для приобретения стволовости, тогда как обращение к эпителиальному фенотипу является критическим для роста метастазов.

Таким образом, повторная экспрессия TF, связанных с подтипом предшественников поджелудочной железы, важна для успешной колонизации печени.Также Prrx1a (Paired related homeobox 1) усиливает самообновление, снижает инвазивность и способствует метастатическому разрастанию. Изоформа ß, с другой стороны, способствует инвазии, EMT и дедифференцировке, способствуя экспрессии Hgf, предполагая, что обе изоформы отчетливо регулируют EMT и MET с образованием явных метастазов. Кроме того, эти две изоформы могут образовывать гомо- и гетеродимеры, влияя на транскрипционную активность. Отметим, что генетическая делеция Prrx1 переводит фиьробласты CAF в высокоактивированное состояние, что приводит к повышенному отложению ECM. Этот специфический фенотип CAF приводит к улучшенной дифференцировке опухоли, повышенной чувствительности к химиотерапевтическому лечению и нарушает системную диссеминацию опухоли.

Истощение глутамина способствует метастазированию за счет индукции EMT вследствие активации Snai2 посредством передачи сигналов ERK и активации ATF4. А одновременная инактивация Snai1 и Twist вызывает сдвиг EMT-равновесия в более эпителиально-подобное состояние в первичной опухоли, одновременно усиливая метастазы в печень. В целом усиление эпителиальных свойств и, следовательно, клеточной пластичности необходимо для метастатической компетентности.

В совокупности эти находки и исследования основных EMT-TF при других формах рака показывают, что их индивидуальный вклад в инвазию и метастазирование сильно зависит от клеточного контекста, то есть в первую очередь эпигенетики. Так, геномный анализ PDAC человека показал, что до 10% мутаций выявляются в генах ремоделирования хроматина. Более того, эпигенетический ландшафт PDX показал, что подтипы предшественников плоскоклеточного и панкреатического генов также можно классифицировать по паттернам метилирования ДНК и регуляторным элементам генов. В частности, мутации гистонолизиндеметилазы 6a (KDM6A) в сочетании с изменениями p53 были связаны с плоскоклеточным подтипом PDAC. Потеря только KDM6A достаточ -на для индукции плоскоклеточного подтипа за счет активации участков энхансеров ΔNp63 (TP63), MYC и RUNX3.

Активация гистон-метилтрансферазы Nsd2 увеличивает глобальное накопление метки активации H3K36me2, тем самым обогащая сигнатуру плоскоклеточных генов. Напротив, потеря Nsd2 снижает H3K36me2, что приводит к обогащению маркеров подтипа предшественников поджелудочной железы. Эти находки указывают на то, что накопление диметилирования в H3K36 необходимо для клеток, чтобы претерпевать EMT. Интересно, что H3K36me2 транскрипционно влияет на активность энхансеров и, таким образом, на экспрессию большинства генов ЕМТ-ТФ (Zeb1 / 2, Snai1 и Twist2) и других ТФ, способствующих метастазированию (см. выше).

Эпигенетическая регуляция также необходима для преодоления подавляющих опухоль эффектов передачи сигналов TGFβ, то есть индуцированного старения и апоптоза, прежде чем он сможет действовать как триггер индукции EMT. Поразительно, что повышение NFATc1 (Nuclear factor of activated T-cells, cytoplasmic 1) имеет pешающее значение для преодоления TGFβ-индуцированной остановки роста за счет противодействия H3K27ac модуляции и активации генов-мишеней TGFβ, включая Birc5, Ccnd1 и Plk1.

В целом эпигенетические состояния определяют молекулярные подтипы PDAC в очень динамичном процессе. Изменения в эпигенетическом ландшафте являются ключевыми особенностями прогрессирования PDAC в сторону злокачественности, поддерживая приобретение клеточной пластичности.

albert52 29.09.2022 20:58

Продолжим.

Так как в онкопроцессе все начинается с воспалительной реакции, то рассмотрим поподробней основных участников этих как бы старых песен о главном. В начальной стадии онкогенеза важнейшую роль играет NF-κB, причем в предраковых клетках p65-субъединица NF-κB функционирует как супрессор опухолей, но затем экспрессия онкогенного Ras заставляет p65 переключать свою функцию на промотор опухоли, чтобы защитить трансформированные клетки от иммунного надзора. Отметим, что NF-κB конститутивно активируется при раке поджелудочной железы, и имеются существенные доказательства, подтверждающие его участие в образовании плотной стомы с инфильтрацией врожденными иммунными клетками.
NF-κB способен модулировать воспалительные макрофаги через прямое регулирование GDF-15 (growth differentiation factor 15), который впервые был идентифицирован как ингибирующий макрофаги цитокин-1 путем негативной регуляции фактора роста TGF-ß, который активирует киназу 1 (TAK1), что, в свою очередь, вызывает подавление экспрессии целевых генов NF-κB Tnf и iNOS. В отсутствие TNF и NO макрофаги больше не способны уничтожать опухолевые клетки.

Хроническое воспаление может привести к выработке провоспалительных цитокинов, таких как интерлейкин-6 (IL-6), который активирует специфические рецепторы, например пути Janus-Kinase-Signal Transducer и Activator of Translation3 (JAK-STAT3), митоген-активируемую протеинкиназу (MAPK) и способствует развитию PanIN. Миофибробластоподобные панкреатические звездчатые клетки (PSC) находятся в состоянии покоя в нормальной поджелудочной железе, но переходят в активированное состояние при патологических состояниях, таких как воспаление или рак. Секреция PSC содержит высокий уровень IL-6.
IL-6-JAK2-STAT3 способствует росту и развитию поджелудочной железы. Это естественным образом ингибируется SOCS3, который в целом предотвращает пролиферацию клеток. Во время онкогенеза сдерживающее действие SOCS3 снимается посредством гиперметилирования его промотора ДНК-метилтрансферазой 1. IL-6 может также независимо активировать Pim-1-киназу, протоонкогенную мишень STAT3. Связанная с прогрессированием клеточного цикла и контрольными точками G1 / S и G2 / M, Pim-1-киназа необходима для пролиферации клеток. Активация IL-6 через STAT3 придает клеткам ПК резистентность к аноикису, что в конечном итоге усиливает метастазирование.

Воспаление поджелудочной железы приводит к связанным с повреждением молекулярным паттернам (DAMPs) и активации факторов роста, такие как фактор роста эндотелия сосудов (VEGF) во время последующего заживления. DAMP, возникающие в результате воспаления и повреждения клеток, могут стимулировать TLR и, следовательно, индуцировать передачу их сигналов, что поддерживает воспалительное микроокружение. DAMP, также известные как alarmins, представляют собой молекулы, высвобождаемые стрессированными клетками, подвергающимися некрозу, которые действуют как эндогенные сигналы опасности, способствуя и усиливая воспалительный ответ.

Toll-подобные рецепторы (TLR) являются мембранными рецепторами, способствующими распознаванию образов врожденной иммунной системы. Передача сигналов TLR2 и TLR4 опосредует активацию NF-κB. Было показано, что синергизм с TLR4 опосредует эффекты DAMP HMGB1 и HSP70. Триггерный рецептор (TREM-1) является новым членом суперсемейства иммуноглобулинов, присутствующих в моноцитах и ​​нейтрофилах; TREM-1 является положительным регулятором воспалительных реакций.
Эндогенные лиганды, такие как белки теплового шока, фибриноген и фрагменты гиалуроновой кислоты, возникающие в результате повреждающих событий, вызванных воспалительными процессами, индуцируют TLR2, -4 и -9. Сигнализации TLR4 активирует PI3K-Akt путь, тем самым вызывая секрецию раковыми клетками различных воспалительных медиаторов и цитокинов. TLR4 стимулирует ангиогенез рака поджелудочной железы посредством повышающей регуляции VEGF через PI3K -АКТ.

Фактор некроза опухолей-α (TNF-α) является основным регулятором воспаления и ключевым игроком в сети цитокинов. TNF-α является трансмембранным белком типа II с сигнальным потенциалом в качестве мембранно-интегрированного белка или в виде растворимого цитокина, высвобождаемого при его протеолитическом расщеплении. Стимуляция TNF-α сильно увеличивает инвазивность с умеренным антипролиферативным эффектом.
Существует два конкретных обьекта для TNF-α: TNFR1 и TNFR2. Активация TNFR1 вызывает образование каспазсодержащих комплексов и через множество сложных путей, включая активацию проапоптотических белков семейства Bcl-2 и апоптоз, индуцирует активные формы кислорода (АФК).

IL-1-α при раке поджелудочной железы экспрессируется исключительно злокачественными клетками опухоли и его высокая экспрессия связана с плохим клиническим исходом. В присутствии IL-1-α в PSC индуцировался специфический профиль экспрессии, который характеризовался повышенной экспрессией MMP1 и MMP3, а также сниженными уровнями MMP2, TIMP (Metalloproteinase inhibitor) 2 и TIMP3. Ранее было обнаружено, что TIMP3 преимущественно ингибирует активность MMP1 и MMP3, и снижение экспрессии TIMP3 может усиливать их протеолитическую активность, что приводит к ремоделированию опухолевой стромы.

IL-4 может оказывать стимулирующее рост и проинвазивное действие в некоторых раковых опухолях, включая поджелудочную железу. Он обнаружен в большом количестве в окружении опухолевых клеток и секретируется инфильтрирующими лимфоцитами, а также самими опухолевыми клетками. Было показано, что избыточная экспрессия одной из его рецепторных цепей, IL-4Rα была связана с местно-распространенной стадией опухоли, повышенной склонностью к метастазированию и плохой общей выживаемостью.

albert52 29.09.2022 21:03

Продолжим.

Интерлейкин-8 (IL-8) является провоспалительным фактором, принадлежащим к семейству CXC-хемокинов. РПЖ продуцирует IL-8, который может способствовать ангиогенезу и инвазии опухолей. Было обнаружено, что IL-8 может имитировать роль VEGF, трансактивировать VEGFR2 и способствовать ангиогенезу. При остром панкреатите IL-8 еще выше и считается надежным показателем при оценке тяжести воспаления и некроза. Здесь также отметим ключевую роль интерлейкина-1β (IL-1β), который может стимулировать аутофагию в макрофагах и индуцировать стресс эндоплазматического ретикулума, который вызывает высвобождение Са2 + в цитоплазме. Это вызывает последующую активацию трипсиногена в области центроаценарных клеток и усугу***ет повреждение. Отметим еще, что IL-1β играет важную роль в нейроэндокринных опухолях, поскольку он направляет раковые клетки на нейроэндокринную дифференцировку.
IL-8 также является основным хемоаттрактантом для нейтрофилов, которые известны как клетки «первого ответа» врожденной иммунной системы. Степень их инфильтрации коррелирует со стадией опухоли при глиомах и раке поджелудочной железы. В ответ на присутствие растворимых иммунных медиаторов в месте опухоли эти ассоциированные с опухолью нейтрофилы (называемые TAN) приобретают либо противоопухолевые, либо проопухолевые функции, в зависимости от их поляризации в сторону фенотипа TAN1 и TAN2 соответственно.

Циклооксигеназы-2 (COX-2 ) является ключевым ферментом, участвующим в воспалении, и сообщается, что он повышен при раке поджелудочной железы. Высокие уровни COX-2 коррелируют с плохим прогнозом. Множество связывающих элементов было идентифицировано в промоторе COX-2 для TP53, NF-κB и других факторов транскрипции. Сигнальная ось SP1 / COX-2 может быть образована Sp1, который транскрипционно активирует экспрессию COX-2, что имеет значение для РПЖ.

Мутация в ингибиторе сериновой протеазы Kazal type-1 (ген SPINK-1) увеличивает вероятность развития у человека хронического панкреатита (ХП) в 12 раз. Мутации в гене SPINK-1 приводят к преждевременной активации трипсиногена и, как следствие, к панкреатиту. Заболевание является аутосомно-рецессивной и в то время как до 2% населения в целом имеют мутации SPINK1, фактическое число людей с панкреатитом, ассоциированным с SPINK-1, встречается крайне редко. Распространенность мутаций SPINK1 у пациентов с идиопатическим ХП, по сообщениям, составляет от 16% до 23%.

Во время панкреатита физиологическая роль аутофагии состоит главным образом в очистке от поврежденных органелл для поддержания гомеостаза клетки, гарантирующего лучшее выживание клеток поджелудочной железы. Вероятно, что по крайней мере одна часть защитного эффекта аутофагии во время острой фазы этого заболевания связано с секвестрацией зерен зимогена, которые содержат ферменты пищеварительных соков, ответственных за самоочищение пораженных участков при панкреатите. Зимофагия (гранулы аутофагии зимогена) сама по себе уменьшает доступность пищеварительных ферментов

В ацинарных клетках поджелудочной железы индукция аутофагии сопровождается активацией экспрессии гена Vacuole Membrane Protein 1 (VMP1). VMP1 кодирует трансмембранный белок, который был идентифицирован и клонирован в 2002 году именно благодаря его необычайной активации во время острой фазы панкреатита. Сверхэкспрессия VMP1 может вызывать аутофагию во многих клетках. VMP1 участвует в образовании фагофора после его прямого взаимодействия с аутофагическим белком беклин-1, индуцибельным p53 ядерным белком 2 (TP53INP2), и, возможно, его аналогом TP53INP1.

Аутофагия индуцируется и поддерживается мутацией онкогена KRAS и сильно усиливается при панкреатите. Гипотеза гласит, что аутофагию чаще всего вызывают панкреатит, основанный на сверхэкспрессии VMP1, что обеспечивает энергетическую потребность клеток, имеющих активную мутацию онкогена KRAS, что позволяет их трансформацию.
Клетки устраняют избыточные внутриклеточные АФК за счет экспрессии антиоксидантных генов, регулируемых машиной для детоксикации АФК. Экспрессия мутантного онкогенного KrasG12D, обычно присутствующего в PDAC, поддерживает повышенный уровень транскрипционного фактора NRF2 (см. выше) для усиления антиоксидантного ответа.

Хемокины представляют собой многофункциональные секретируемые пептиды, играющие важную роль в регуляции миграции лейкоцитов. Они разделены на 4 подгруппы (СС, СХС, СХ3С и ХС) в соответствии с характерным цистеиновым мотивом. Наиболее известным представителем рецепторов хемокинов является D6, который расположен на лимфатическом эндотелии и контролирует большинство воспалительных CC хемокинов. У здоровых людей D6 нейтрализует хемокины CC и тем самым отключают воспаление, делая хемокины недоступными. В отсутствии этих рецепторов хемокиновый лиганд-3 (CCL3), аберрантно (в избытке и в течение более длительного времени) привлекает CD3+ Т-клетки и тучные клетки, делая воспаление протуморогенным.

CXCL-12 представляет собой хемокин, также известный как производный стромы фактор 1 (SDF-1). Известно, что он является лигандом рецепторов CXCR4. Высокая экспрессия активации рецепторов CXCL-12 и CXCR4 в опухолях усиливает рост и ограничивает иммунный надзор в опухоли посредством локальных аутокринных и паракринных механизмов. Активация CXCR4 при раке поджелудочной железы приводит к повышенной экспрессии маркеров Smoothened, Gli1 и EMT.
Взаимодействие CXCR4 и SHH способствует обширному отложению стромы и создает физический барьер, который может объяснить отсутствие сосудистой сети в опухолях поджелудочной железы даже при повышенной экспрессии VEGF. Кроме того, периферическая и центральная передача сигналов, опосредованная CXCL-12, оказывает контрастирующее действие на ноцицепцию, то есть опосредованную CXCL-12 анальгезию посредством модуляции клеток Шванна; это объясняет снижение болевых ощущений у пациентов с раком поджелудочной железы.

Инфламмасомы — макромолекулярные комплексы, которые содержат множество копий рецепторов, распознающих молекулярные структуры патогенных (инфекционных) агентов и повреждающих факторов (PAMP и DAMP), а также включают молекулы белка-адаптора ASC и прокаспазы-1. Описаны впервые в 2002 году, когда Юрг Чопп и его коллеги сообщили, что подвид NLRs (Nod-подобных рецепторов), известный как NLRP1, может олигомеризоваться и собираться в комплекс, который активирует каскад каспазы 1, приводящий, в конце концов, к образованию провоспалительных цитокинов, особенно IL-1β и IL-18. Этот комплекс, формируемый NLRP1, был назван инфламмасомой.
NLRP3 (белок 3, содержащий NOD-, LRR- и пириновый домены) представляет собой внутриклеточный сенсор, который обнаруживает широкий спектр микробных мотивов, эндогенные сигналы опасности и раздражители окружающей среды, что приводит к образованию и активации инфламмасомы. Сборка инфламмасомы NLRP3 приводит к зависимому от каспазы 1 высвобождению провоспалительных цитокинов IL-1β и IL-18, а также к опосредованной гасдермином D пироптотической гибели клеток. Инфламмасома активируется в макрофагах, инфильтрирующих поджелудочную железу. Механизмы активации инфламмасом при панкреатите, вероятно, связаны с ROS (например, в результате повреждения митохондрий) или клеточными компонентами DAMP, такими как высвобождаемый из некротических клеток белок группы box-1 .

albert52 29.09.2022 21:11

Вставка

Хроническое воспаление и рак

В то время как острое преходящее воспаление является важным фактором контроля и восстановления повреждений тканей, связанное с опухолью воспаление, которое встречается практически во всех опухолях, является хроническим, не разрешенным типом, что способствует прогрессированию опухоли. Во время туморогенеза раковые клетки, клетки врожденного иммунитета [такие как дендритные клетки или опухолево-ассоциированные макрофаги (ТАМ)] и активированные резидентные клетки [такие как связанные с раком фибробласты (CAF) или эндотелиальные клетки] в ответ вырабатывают различные цитокины и хемокины к сигналам опасности, исходящим от опухоли.

Хронические медиаторы воспаления оказывают плейотропное действие при развитии рака. С одной стороны, воспаление способствует канцерогенезу, росту опухоли, инвазии и метастазированию; с другой стороны, воспаление может стимулировать иммунные эффекторные механизмы, которые могут ограничивать рост опухоли. Связь между раком и воспалением зависит от внутренних и внешних путей. Оба пути приводят к активации факторов транскрипции, таких как NF-κB, STAT-3 и HIF-1, и к накоплению онкогенных факторов в опухоли и микроокружении.
STAT-3 и NF-κB взаимодействуют на нескольких уровнях и тем самым усиливают воспаление, связанное с опухолью, которое может подавлять противоопухолевые иммунные ответы. Так, STAT-3 продлевает ядерное удержание RelA во время онкогенного и хронического воспаления, действуя в качестве ко-транскрипционного фактора для RelA, таким образом способствуя постоянной активации NF-κB во время хронического воспаления и канцерогенеза. Отметим, что STAT-3 способствует ядерной локализации RelA путем ацетилирования, опосредованного ацетилтрансферазой p300, влияющего на взаимодействие NF-κB / IκBα и предотвращающего его ядерный экспорт.

Связанное с раком воспаление представляет собой седьмую отличительную черту в развитии рака. При инфекциях помимо токсинов, онкопротеины и факторы роста могут воздействовать на хозяина посредством активации рецепторов распознавания образов (PRR), которые взаимодействуют с патоген-ассоциированными молекулярными структурами (PAMP). Эти рецепторы включают в себя члены семейства Toll-подобных рецепторов (TLR), нуклеотидсвязывающие доменные (NOD-подобные) рецепторы олигомеризационных доменов (NLR), рецепторы лектина С-типа (CLR), запускающие рецепторы на миелоидных клетках (TREM) и индуцируемые ретиноевой кислотой ген-I-подобные рецепторы (RLR). Связывание PAMP с этими рецепторами приводит к инициации иммунного ответа хозяина путем активации воспалительных клеток.
На начальном этапе развития опухоли медиаторы воспаления, такие как цитокины, активные формы кислорода (ROS) и активные формы азота (RNS), полученные из фильтрующих опухоль иммунных клеток, вызывают эпигенетические изменения в предраковых клетках и молчание генов-супрессоров опухолей. Во время прогресии опухоли иммунные клетки секретируют цитокины и хемокины, которые действуют как факторы выживания и пролиферации для злокачественных клеток (см. выше). Так, аберрантная экспрессия тканевой трансглутаминазы (TG2) индуцирует EMT в эпителиальных клетках. Другими типичными маркерами EMT являются кадгерин-11 и фибробласт-специфический белок (FSP -1), которые связаны с повышенной подвижностью клеток. Twist необходим для подавления транскрипции E-cadherin.

Вр внутренних путях канцерогенеза важную роль играет мутация КRAS, активация которого сопровождается индукцией сигнальных каскадов, включая каскад RAF / MEK / ERK-киназ, путь PI3K / AKT и белки RalGDS. Последние принадлежат к семейству нуклеотид-обменных факторов, активирующих небольшие GTPases, такие как RalB. Посредством комплекса октамерного белка exocyst, участвующего в прикреплении везикул к мембранам, RalB стимулирует TANK-связывающую киназу-1 (TBK-1), что приводит к активации NF-κB посредством фосфорилирования IκBα (см. выше).
В раковых клетках конститутивная активация этого пути посредством хронической активации RalB ограничивает инициацию апоптоза после онкогенного стресса. TBK-1 также активирует факторы транскрипции IRF (регуляторный фактор интерферона) -3 и IRF-7 , что приводит к выработке медиаторов роста и воспаления.

Активация NF-κB в свою очередь активирует медиаторы клеточного цикла (циклин D1, c-Myc), антиапоптотические (c-FLIP, сурвивин, Bcl-XL) и молекулы адгезии (ICAM-1, ELAM-1, VCAM-17), протеолитические ферменты (например, MMP, uPA) и провоспалительные факторы (PGHS-2, цитокины), которые стимулируют инвазивный фенотип. Присутствие конститутивно активного NF-κB связано с плохим клиническим исходом.
INOS (синтаза оксида азота) является еще одним важным медиатором воспаления, который вызывает выработку NO макрофагами, связывающими хроническое воспаление и онкогенез. NO-опосредованное ингибирование репарации ДНК позволяет клеткам, несущим эпигенетические изменения, избежать апоптоза; это приводит к клональной экспансии предраковых клеток и, как следствие, к канцерогенезу. Кроме того, NO способствует росту опухоли путем трансактивации HIF-1α, экспрессии VEGF и подавляет p53.

RANKL, член суперсемейства цитокинов TNF, был первоначально обнаружен в Т- и дендритных клетках (DC). RANKL поддерживает дифференцировку и выживание эффекторных клеток, а также способствует онкогенезу, прежде всего в молочной железе, но не только. Так, в плоскоклеточном раке головы и шеи экспрессия RANKL способствует EMT и прогрессированию опухоли, индуцируя VEGF-независимый ангиогенез.

Мембраносвязанный IL-1α в злокачественных клетках индуцирует противоопухолевые иммунные ответы, тогда как внутриклеточные предшественники IL-1α контролируют гомеостатические функции, включая экспрессию генов, дифференцировку и рост клеток. Что же касается секретируемого IL-1β, то его низкие концентрации подавляют воспалительные реакции и иммунные механизмы, тогда как высокие концентрации способствуют повреждению тканей, связанному с воспалением, и опухолевой инвазивности.
При раке поджелудочной железы IL-1 придает хеморезистентность посредством повышения уровня PGHS-2 и способствует ангиогенезу во время прогрессирования опухоли. IL-1α и IL-1β проявляют идентичные агонистические действия, связываясь с рецептором IL-1 типа I (IL-1RI).

albert52 29.09.2022 21:57

Продолжим.

Изучение РПЖ подтверждает правильность моей теории: на фоне хронического воспаления мутации, прежде всего KRAS, но не только, снимают ограничения на поступление к клетку питательных веществ, и усиленный гликолиз в сочетании с хронической гипоксией ведут клетку по пути канцерогенеза. При этом происходит перепрограммирование не только метаболизма, но и всей клеточной стратегии несмотря на сопротивление генов надстройки на путь автономного развития, крайней формой которого является ЕМТ.

ЕМТ представляет собой процесс динамичный , что приводит к появлению промежуточных клеточных состояний с как эпителиальными, так и мезенхимальными признаками, способствуя клеточной гетерогенности и широким спектром функций от инициации рака до прогрессирования. Примечательно, что EMT управляется факторами транскрипции (EMT-TFs), включающими семейство SNAIL, ZEB и TWIST, которые регулируют экспрессию эпителиальных и мезенхимальных генов. Помимо программы EMT, EMT-TFs ( Epithelial-mesenchymal Transition-inducing Transcription Factors) проявляют плейотропные роли, связывая EMT со стволовостью, метаболическим перепрограммированием, уклонением от иммунитета и лекарственной устойчивостью.

Опухолевые клетки, происходящие из EMT, избыточно продуцируют многие провоспалительные медиаторы, тем самым создавая регуляторную петлю, которая может способствовать поддержанию как фенотипа EMT, так и провоспалительного контекста. Связанные с опухолью EMTs редко включают полное переключение клонов, а скорее генерируют промежуточные состояния (гибридные фенотипы) с разной степенью агрессивности, которые распределяются по спектру эпителиально-мезенхимальной дифференцировки. Соответственно, существует множество молекулярных репертуаров EMT, участвующих в генерации этих гибридных фенотипов. Так, сигнатура EMT в аденокарциноме легких связана с повышенной экспрессией нескольких иммунных контрольных точек (PD-1 / PD- L1, CTLA-A, TIM-3 и другие), высокой плотности Foxp3-позитивных Treg-клеток, иммуносупрессивной продукции цитокинов (TGF-β, IL-10 и IL-6) и, наконец, сильной воспалительной реакции.

Опухолевые клетки способны подавлять направленный против них иммунный ответ двумя способами: во-первых, избегая иммунологического надзора путем уменьшения экспрессии молекул HLA или продукцией неканонических форм этих молекул, а также уменьшая экспрессию опухоль-ассоциированных антигенов на своей поверхности, и, во-вторых, непосредственно блокируя активацию Т-лимфоцитов, вызывая анергию опухоль-специфичных клонов. В последнем случае один из молекулярных механизмов инвазии основан на передаче ингибирующего сигнала от рецепторов CTLA-4 или PD-1 на цитотоксические Т-лимфоциты.
Опухоль не только уклоняется от иммунной системы, но и эффективно извлекает пользу из инфильтрирующих клеток, изменяя их функции, создавая микроокружение, благоприятное для развития опухоли (см. выше).

Ключевыми событиями в ЭМП являются:
- растворение эпителиальных межклеточных соединений;
- потеря апикально-базальной полярности и приобретение передне-задней полярности;
- реорганизация архитектуры цитоскелета и изменение формы клеток;
- снижение экспрессии генов, ответственных за эпителиальный фенотип и активация генов, которые формируют мезенхимальный фенотип, увеличение подвижности и, во многих случаях, способность к ремоделированию внеклеточного матрикса, обеспечивающая возможность инвазии клеток.
Важно отметить что, клетки, которые подвергались ЭМП, приобретают устойчивость к старению и апоптозу.

Основные шаги ЕМТ в онкологии: опухолевые клетки могут мигрировать и проникать в окружающую строму путем усиления транскрипции нескольких маркеров и генов инвазивности, таких как N-кадгерин, виментин и мезенхимальные интегрины. Затем они разлагают внеклеточный матрикс (ЕСМ) и распространяются в кровоток или в лимфатические пути. После распространения опухолевые клетки могут поражать другие органы, где они могут следовать разным судьбам, но в основном образуют растущие микрометастазы.

Отличительной чертой ЭМП является снижение экспрессии Е-кадгерина, приводящее к дестабилизации адгезионных контактов. Кроме того, подавление экспрессии генов, кодирующих клаудины, окклудины, десмоплакин и плакофилин, стабилизирует растворение апикальных плотных контактов и десмосом, соответственно. Эти изменения в экспрессии генов, предотвращают образование новых эпителиальных межклеточных контактов и приводят к потере функции эпителиального барьера.
Репрессия экспрессии генов, кодирующих эпителиальные белки клеточных контактов, сопровождается активацией генов, продукты которых способствуют мезенхимальной адгезии. В частности, снижение экспрессии Е-кадгерина уравновешивается повышением экспрессии мезенхимального нейронального кадгерина (N-кадгерина), что ведет к "переключению кадгерина". Изменения в экспрессии генов, кодирующих цитоскелет и белковые комплексы полярности, также способствуют прохождению ЭМП.

Для SOX9 также обнаруживаются различия в уровнях экспрессии, но в отличие от Pdx1 и FoxA2 SOX9, очевидно, способствует ЭМП. В клетках ПЖ, подвергшихся АПМ, подавление ATM-киназы приводило к запуску ЭМП при сопутствующей активации генов SOX9, маркера мезенхимальных клеток N-кадгерина и факторов-активаторов ЭМП Snail (Snai1)и Slug (Snai2).
Связь SOX9 с ЭМП была показана и для опухолей других органов. Например, выключение SOX9 в раковых клетках щитовидной железы блокирует ЭМП. Подавление SOX9 в клетках рака простаты вызывает снижение уровня одного из основных регуляторов ЭМП фактора ZEB1, но не оказывает влияния на представленность других факторов ЭМП, таких как TWIST, SNAIL и SLUG.

Агрессивный характер РПЖ обусловлен главным образом метастазированием, что облегчается десмоплазией (свойством эпителиальных тканей воспроизводить элементы соединительной ткани), специфическим микроокружением опухоли и способностью опухолевых клеток проходить EMT и принимать подвижный и инвазивный фенотип. При этом изменяется адгезия между клетками и клеточным матриксом, теряется клеточная полярность, деградируется ECM и усиливается взаимодействие клетка-строма.
Так, активация RHO-GTPases и особенно RAC1 является ключевым шагом в механизме EMT и вероятным фактором, способствующим тубулоинтерстициальному фиброзу. Механическая жесткость / жесткость матрикса (опухолевого) микроокружения играет решающую роль в продвижении EMT, контролируя субклеточную локализацию и передачу сигналов вниз по течению путей RAC1 и RAC1b.

Передача сигналов TGF-β играет центральную роль в развитии злокачественного состояния богатых стромой карцином, таких как рак молочной железы и аденокарцинома протоков поджелудочной железы (PDAC). TGF-β сверхэкспрессируется в опухолевой ткани и его избыточная экспрессия коррелирует с плохим прогнозом. Отметим, что на ранних стадиях он действует как супрессор опухолей, ингибируя клеточный цикл и способствуя апоптозу, и только на поздних стадиях он функционирует как промотор, усиливающий нестабильность генома, уклонение от иммунитета, неоангиогенез и метастазирование. Это явление было названо «парадоксом TGF-β» и тесно связана с началом программ EMT во время прогрессирования опухоли.

В нормальных условиях отделение эпителиальных и эндотелиальных клеток от ЕСМ приводит к аноикису (апоптозу зависимых от якоря клеток), а чувствительность к аноикису поддерживается белками клеточной полярности и контролируется кооперативным способом с помощью TGF-β, путей Wnt и Hippo. EMT индуцирует устойчивость опухолевых клеток к аноикису.

Фактор Foxa2, являющийся антагонистом фактора Snail (SNAI1) в регуляции экспрессии гена эпителиального маркера E-кадгерина, отвечает за ингибирование ЭМП, поэтому экспрессия его гена в метастазирующей опухоли также подавляется, при этом в дифференцированных раковых клетках экспрессия Foxa2 присутствует. SOX9 в отличие от Pdx1 и FoxA2, очевидно, способствует ЭМП.

albert52 29.09.2022 23:57

Продолжим.

Учтьывая важность метастазирования в клинике онкозаболеваний изучение молекулярных механизмов этого феномена, включая ЕМП, приобретает особое значение. Интерес в этом отношении представляет CD44, который представляет собой широко экспрессируемую полиморфную интегральную молекулу мембранной адгезии, которая связывает гиалуроновую кислоту (HA) и способствует адгезии между клетками и клетками-матриксом, росту и переносу клеток, EMT и прогрессированию опухоли. Подавляющее большинство опухолей экспрессирует CD44.

У людей ген, кодирующий CD44, расположен на коротком плече хромосомы 11. CD44 транскрипты подвергаются сложному альтернативному сплайсингу, что приводит к функционально различным изоформам, экспрессирующимся главным образом на эпителиальных клетках. CD44s - стандартная изоформа, а вариантные изоформы (CD44v) по-видимому ограничены субпопуляциями, наделенными потенциалом стволовых клеток и развитием рака.

Среди изоформ CD44v CD44v6, по-видимому, играет роль в прогрессировании рака благодаря своей способности связываться с фактором роста гепатоцитов (HGF), остеопонтином (OPN) и другими цитокинами, продуцируемыми микроокружением опухоли. CD44v6 в присутствии HGF взаимодействует с рецептором фактора роста гепатоцитов (MET) и усиливает его передачу сигналов; при этом способность к инвазии полностью принадлежит подмножеству CD44v6 + клеток, в котором транслируются Twist и Snail. Во время этого процесса внутриклеточная часть CD44v6 помогает связывать цитоплазматический домен MET с актиновыми микрофиламентами и промежуточными белками ezrin, radixin и moesin, тем самым облегчая активацию RAS посредством son of sevenless (SOS).

Метастатический потенциал зависит от передачи сигналов, генерируемых HGF через CD44v6 и MET. Эти рецепторы взаимодействуют, чтобы активировать путь PI3K/AKT, который способствует миграции и передаче сигналов выживания в раковых стволовых клетках.
Биохимически HA способствует фосфорилированию цитоплазматического домена CD44v6, который затем активирует Ras и FAK (киназа фокальной адгезии) через Src, что приводит к активации сигнального пути MAPK/ERK. Точно так же взаимодействие между HA и CD44v6 также активирует сигнальный путь PI3K/Akt, который повышает устойчивость клеток CRC к апоптозу. Более того, взаимодействие между HA и CD44v6 увеличивает выработку MMP2/9, которая разрушает ECM, а также способствует созреванию TGFβ.

Экспрессия CD44v индуцируется комплексом транскрипции β-catenin/Tcf-4. Ядерный β-катенин накапливается в недифференцированных клетках на инвазивном фронте, тогда как в хорошо дифференцированных опухолевых участках обнаруживается его постоянная потеря, что позволяет предположить его роль в качестве маркера-предиктора метастазирования рака. Wnt3a был способен повышать уровни экспрессии CD44v6, а также клоногенную и миграционную активность стволовых клеток при CRC и клеток-предшественников .

Экспрессия CD44v6 является биомаркером клинического исхода у пациентов с раком толстой кишки. Значительна отрицательная корреляция между экспрессией CD44v6 и вероятностью выживания пациентов с CRC. Как правило, пациенты с CRC с CD44v6-позитивными клетками или без них в первичных опухолях демонстрируют 5-летнюю выживаемость 52,78% и 80,95% соответственно. CD44v6-позитивные клетки CRC склонны к образованию метастатических поражений в легких и печени, причем взаимодействие между OPN и CD44v6 облегчает метастазирования CRC в печень.
Процент CD44v6-позитивных клеток в целом тесно связан со степенью дифференцировки CRC. В хорошо дифференцированных опухолях процент CD44v6-позитивных клеток составил 18,18%. Напротив, это количество достигло 67,65% в умеренно дифференцированных опухолях и 91,67% в низкодифференцированных опухолях.

Цитокины, высвобождаемые в микроокружении, вносят значительный вклад в поддержание недифференцированного статуса и клоногенной активности онкогенных клеток. Это свойство не ограничивается HGF, но оно является общим для OPN и SDF-1, которые усиливают активацию β-катенина в CR-CSCs. Аналогичный эффект может быть опосредован TGF-β, который продуцируется как CAF, так и CD44v6 + клетками.
В то время как CAF, по-видимому, играют ключевую роль в индукции CD44v6, вполне вероятно, что аутокринная продукция OPN и TGF-β может способствовать метастатической активности CD44v6 + клеток. Нацеливание на экспрессию CD44v6 предотвращало образование метастазов, не влияя на рост первичных опухолей.
Также BMP4 противодействует активности Wnt в CR-CSC и способствует их дифференцировке за счет усиления PTEN и ингибирования PI3K , который поддерживает недифференцированный статус этой онкогенной субпопуляции. Механически, экспрессия гена CD44 управляется каноническим Wnt, который нетрадиционно активируется в 37% всех случаев CRC.

p53 противодействует CD44-опосредованной пролиферации и антиапоптозу в дополнение к ингибированию экспрессии CD44. Однако ген p53 обычно мутирован или истощен среди клеток CRC, и в этом контексте клетки CRC повышают свою устойчивость к апоптозу. Что же касается взаимосвязи между CD44v6 и аутофагией, то избыточная экспрессия CD44v6 служит индуктором внутриклеточного образования аутофагосом. Более того, активированный сигнальный путь MAPK/ERK также играет важную роль в индукции аутофагосом, которая затем действует на сигнальный путь TGFβ/Smad для запуска EMT. Интересно, что повышенная аутофагия позволяет раковым клеткам повышать экспрессию CD44.

Ген множественной лекарственной устойчивости (MDR) кодирует P-гликопротеин, который широко распространен среди кишечного эпителия и функционирует, перекачивая внутриклеточные токсины в просвет. Однако взаимодействие HA-CD44v6 увеличивает экспрессию MDR за счет активации PI3K/Akt- или ErbB2-связанного сигнального пути RTK. Более того, активность P-гликопротеина увеличивается при активации PI3K/Akt, таким образом усиливая неэффективность химиотерапии CRC.
Отметим, что CD44v6-специфический пептид более эффективно повышает чувствительность раковых клеток поджелудочной железы человека к апоптозу, чем кризотиниб и ингибитор VEGFR2 пазопаниб, тем самым более эффективно предотвращая рост опухоли и метастазирование.

albert52 02.10.2022 19:50

Вставка

TGF-β и mTOR 2 в механизмах ЕМТ

TGF-β является мощным индуктором EMT, и считается, что усиление передачи сигналов TGF-β в раковых клетках приводит к развитию связанной с раком EMT. При этом TGF-β индуцирует активность киназы mTORC2 в клетках, подвергающихся EMT, а mTORC2, регулируя связанные с ЕМТ изменения цитоскелета и экспрессию генов, необходим для миграции и инвазии клеток. Инактивация mTORC2 предотвращает распространение раковых клеток.

Дополняя переключение в экспрессии генов, клетки, подвергающиеся EMT, изменяют свою морфологию и реорганизуют свой актиновый цитоскелет. Переключение актина с корковой архитектуры на стрессовые волокна, связанные с комплексами фокальной адгезии, усиливает способность клетки к миграции. Фокальные адгезионные комплек -сы, связанные с актиновым цитоскелетом на краях мигрирующих клеток, необходимы для прикрепления к субстрату и отделения клетки во время миграции. mTORC2 регулирует динамическую локализацию этих фокальных спаек во время миграции, что контролируется экспрессией паксиллина. При этом мера однородности ориентации фибрилл от 0 (случайное) до 1 (полное выравнивание), была значительно ниже в клетках с нокдауном Rictor, чем в здоровых клетках.
Отметим, что реорганизация актина в стрессовые волокна во время EMT регулируется Rho-GTPases, такими как RhoA. И TGF-β, и mTORC2 вовлечены в регуляцию активности RhoA. Также микротрубочки были плохо организованы и менее линейны в клетках с нокдауном Rictor по сравнению с контрольными клетками.

Эффективная миграция клеток зависит не только от актинового цитоскелета, но также и от динамики фокальных адгезий, позволяющих мигрирующим клеткам прикрепляться к переднему краю и открепляться от заднего края. В контрольных клетках паксиллин был равномерно распределен по переднему краю в виде точечной картины, характерной для фокальных спаек. Напротив, подавление экспрессии Rictor приводит к неравномерному распределению паксилина, часто в более крупных участках (пятнах).

Считается, что повышенная продукция активного TGF-β опухолевыми клетками и повышенные уровни рецепторов TGF-β, приводящие к аутокринной передаче сигналов TGF-β, индуцируют или необходимы для EMT клеток карциномы. mTORC2 играет свою роль в инвазии отчасти за счет усиления экспрессии MMP9. Индукция экспрессии MMP9 зависела от Snail, что согласуется с активацией экспрессии MMP9 Snail, а также Akt1 и Akt2. Поскольку клетки с подавленной экспрессией Rictor демонстрируют нарушение регуляции экспрессии Snail, предполагается, что mTORC2 контролирует экспрессию MMP9 через Snail, возможно, с участием Akt1 и / или Akt2.

TGF-β передает сигналы через тетрамерные комплексы трансмембранных рецепторов и киназ, а также белки Smad, которые перемещаются в ядро ​​для регуляции транскрипции. После активации TGF-β Smads контролируют экспрессию и активность факторов транскрипции, участвующих в EMT, таких как Snail (Snai1), который репрессирует транскрипцию гена E-кадгерина. Рецепторы TGF-β также активируют передачу сигналов не-Smad, таких как пути MAPK, PI3K и передачу сигналов Rho GTPase. Активация RhoA участвует в растворении эпителиальных соединений, реорганизации актинового цитоскелета и влиянии на изменения формы клеток во время EMT.
Известно, что TGF-β активирует RhoA способом, который зависит от киназы TβRI и ее нижестоящей киназы p160 ROCK в эпителиальных клетках, и их активность необходима для EMT; mTORC2 необходим для активации RhoA, индуцированной TGF-β.

В целом в клетках, которые подвергаются EMT в ответ на TGF-β, TGF-β индуцирует быструю активацию PI3K, Akt, mTOR комплекса 1 (mTORC1) и киназы S6, что приводит к увеличению синтеза белка, размера клетки и пролиферации. Помимо mTORC1, который состоит из mTOR, Raptor, mLST8 и PRAS40, был идентифицирован комплекс mTOR 2 (mTORC2) и включает mTOR, mLST8, Rictor , mSIN1 и Protor. Блокирование PI3K предотвращает индуцированную TGF-β активацию mTORC2 и фосфорилирование Akt (S473), т.е. активация mTORC2 в ответ на TGF-β происходит через PI3K.
mTORC2 фосфорилирует Akt по Ser473, который вместе с фосфорилированием Akt на Thr308 с помощью PDK1 в ответ на активацию PI3K придает полную активность Akt. mTORC2 требуется клеткам для завершения EMT в ответ на TGF-β. Без Rictor клетки задерживаются на промежуточной стадии между эпителиальной и мезенхимальной дифференцировкой, без подвижного и инвазивного поведения клеток после EMT.

mTORC2 необходим эпителиальным клеткам для приобретения мезенхимального фенотипа в ответ на TGF-β. Отсутствие эффекта на эпителиальные клетки согласуется с недавним сообщением о том, что mTORC2 необходим для развития рака простаты, вызванного дефицитом Pten в эпителиальных клетках, но не в нормальных эпителиальных клетках простаты.

Как я уже писал, клетки проходят ЕМТ в нестабильном состоянии, в котором они экспрессируют как эпителиальные, так и мезенхимальные маркеры, прежде чем проявлять повышенное миграционное и инвазивное поведение. Rictor-нокдаун-клетки, обработанные TGF-β, задерживаются в этом промежуточном состоянии, и, таким образом, mTORC2 необходим для перехода в мезенхимальный инвазивный фенотип.
В то время как mTORC2 участвует в инициации TGF-β-индуцированной EMT, например, регулируя ранние ответы транскрипции, он также участвует во второй сигнальной волне, где происходит усиление взаимодействия между Rictor и mTOR и изменения в морфологии и поведении клеток.

Опухоли содержат небольшую популяцию раковых стволовых клеток (см. выше), которые могут частично возникать из-за EMT или иметь общие характеристики клеток, которые подверглись EMT.

albert52 02.10.2022 19:55

Продолжим раком легких.

Эпителий легкого возникает с вентральной стороны передней энтодермы передней кишки, где формируются первичные почечные легкие. После обширного разветвления проксимальных проводящих дыхательных путей, включая трахею, бронхи и бронхи -олы, клетки на кончиках дистальных ветвей дифференцируются в альвеолярные клетки типа 1 (AT1) и 2 (AT2), которые составляют газообменные альвеолы.

В развивающихся и взрослых легких множественные региональные типы эпителиальных клеток могут служить пулами клеток-предшественников. В трахее и основных бронхах базальные клетки дают секреторные и реснитчатые клетки просветного слоя, тогда как в бронхиолярном эпителии клубные клетки (ранее известные как клетки Клары) могут самообновляться и генерировать ресничные клетки. В дистальных дыхательных путях клетки AT1 и AT2 возникают непосредственно из бипотентного предшественника во время эмбриогенеза.

В постнатальных легких клетки AT2 также приобретают функции, подобные предшест -венникам, чтобы генерировать клетки AT1. После тяжелой травмы и воспаления дистальная эпителиальная регенерация также может происходить из предполагаемых стволовых клеток.
Карцинома легкого может вызвать анатомические изменения в легком дистальнее пораженного бронха. Частичная обструкция бронха опухолью может привести к значительной очаговой эмфиземе, а полная обструкция — стать причиной ателектаза. Нарушение дренажа дыхательных путей является частой причиной тяжелого гнойного или язвенного бронхита либо бронхоэктазов. Латентные карциномы иногда иногда могут манифестировать абсцессами легких. Сдавление или прорастание опухоли в верхнюю полую вену может индуцировать венозный застой и отек тканей головы и верхних конечностей и в результате — синдром верхней полой вены. Распространение рака в перикард и плевру может вызвать перикардит или плеврит с накоплением значительного количества экссудата.

Известно и предсказано влияние клетки происхождения c онкогенной мутацией в формировании различных подтипов рака легкого.

Аденокарцинома легкого (LUAD)

На NSCLC (немелкоклеточный рак легкого) приходится около 85% всех диагнозов рака легких, причем большинство пациентов с аденокарциномой легкого (LAC). Предположительно рост заболеваемости связан с популярностью сигарет с низким содержанием смолы и сигарет с фильтром, при курении которых человек делает более глубокий вдох, и, как следствие, табачный дым оседает в периферических дыхательных путях, где чаще всего и развивается аденокарцинома.

В новой классификации ВОЗ выделяется два подтипа аденокарциномы, которые отсутствовали в предыдущих версиях: аденокацинома in situ и минимально инвазивная аденокарцинома.
Первый подтип, аденокарцинома in situ (AIS), представляет собой локализованную (≤3 см) аденокарциному, рост которой ограничен поверхностным ростом вдоль альвеолярных структур (со стелющимся типом роста, «lepidic»), без признаков инвазии. В большинстве случаев AIS – немуцинозные опухоли. Проспективные исследования свидетельствуют, что при полной резекции AIS выживаемость приближается к 100% (97%).
Минимально инвазивная аденокарцинома (МИА) – также небольшая одиночная опухоль размером ≤3 см, однако, в отличие от AIS, со стелющимся типом роста и минимальной инвазией, не превышающей 5 мм. Большинство опухолей не вырабатывают муцин. Безрецидивная выживаемость в течение 5 лет у пациентов, по данным наблюдений, также должна достигать 97% при условии полной хирургической резекции.

Опухоли, которые раньше классифицировались как бронхоальвеолярные, теперь причисляются к одной из нескольких категорий: AIS, минимально инвазивная аденокарцинома или атипическая аденоматозная гиперплазия. Последняя рассматривается как преинвазивное поражение аденокарциномы легких, не превышающее 5 мм.

Гистологическое строение аденокарцином вариабельно: от хорошо дифференцированной опухоли с явными элементами железистой дифференцировки, формирования папиллярных структур, напоминающих таковые у других папиллярных карцином, до солидных опухолей с незначительным количеством муцинпродуцирующих желез и клеток.
Инвазивная муцинозная аденокарцинома бывает коллоидной, фетальной, кишечного типа и аденосквамозной. Аденосквамозная карцинома определяется как опухоль, состоящая более чем на 10% из злокачественных железистых и плоскоклеточных компонентов. По всей вероятности, смешанная гистология отражает гетерогенность этой карциномы легкого.

Частота встречаемости аденосквамозной карциномы находится в диапазоне от 0,4% до 4% всех случаев бронхогенного рака. Этот подтип опухоли более агрессивен, чем аденокарцинома или плоскоклеточная карцинома, и, соответственно, сопряжен с худшим прогнозом.
Большинство аденокарцином экспрессируют тиреоидный фактор транскрипции 1, а также 80% опухолей содержат муцин. В легких TTF-1 активирует транскрипцию генов, кодирующих сурфактант в пневмоцитах 2 типа и секреторный протеин клубных клеток.

Предполагают, что аденокарцинома легкого проходит те же стадии развития, что и аденокарцинома толстой кишки: атипическая аденоматозная гиперплазия прогрессирует до неинвазивной карциномы, которая затем трансформируется в инвазивную. Это подтверждается тем фактом, что атипическая аденоматозная гиперплазия является моноклональной и имеет многие молекулярные аберрации, например мутации ECFR, характерные для аденокарцином.

Отметим, что недостатки репарации ДНК из-за эпигенетических изменений, которые уменьшают или заставляют молчать экспрессию генов репарации ДНК, встречаются гораздо чаще при раке легкого, чем классические мутации. При этом KRAS мутации являются основным фактором LAC и тесно связаны с курением сигарет, в отличие от мутаций рецептора эпидермального фактора роста (EGFR), которые возникают у никогда не курящих.
Вообще, большинство НМРЛ являются генетически сложными опухолями с множеством потенциальных активирующих событий. Их мутантные мишени включают FGFR1, PTEN, MET, MEK, PD-1 / PD-L1 и NaPi2b. В свете множества новых биомаркеров и целевых агентов стратегии мультиплексного тестирования будут иметь неоценимое значение при определении подходящих пациентов для каждой терапии и позволять направлять целевые агенты пациентам, наиболее вероятно получающим от них пользу.

В дистальных эпителиальных клетках другой член семейства SOX, SOX9 отмечает кончики ветвей растущих легких и функционирует ниже по ходу передачи сигналов рецепторной тирозинкиназы для подавления преждевременной альвеолярной дифференцировки. SOX9 сверхэкспрессируется в человеческом LUAD, и его экспрессия коррелирует с плохой выживаемостью пациентов.

Гомеобокс NK2 1 (NKX2-1), также известный как TF-1 (тиреоидный фактор), экспрессируется в клетках AT2 и подгруппе бронхиолярных клеток. NKX2-1 необходим для морфогенеза легких и дифференцировки альвеолярных клеток. Он может взаимодействовать с множественными ДНК-связывающими транскрипционными репрессорами или активаторами, чтобы расширить или ограничить диапазон генов-мишеней.
Белок TF-1 является биомаркером рака тимуса и LUAD. Около 15% LUAD содержат амплификацию NKX2-1, что коррелирует с плохим исходом и требуется для жизнеспособности опухолевых клеток.

albert52 03.10.2022 08:41

Продолжим.

Плоскоклеточный рак легких (LUSC)

По данным эпидемиологического исследования наиболее высокий риск развития рака легкого связан с хронической обструктивной болезнью легких. Наличие ХОБЛ у курильщиков со стажем увеличивает вероятность развития рака легких в 4,5 раза. У 50-90% больных раком легкого выявляется ХОБЛ. Пока не установлено, обусловлена ли эта взаимосвязь общими факторами риска (например, курением), участием генов, определяющих склонность к заболеваниям, или нарушением выведения канцерогенов. На фоне ХОБЛ чаще всего происходят гиперпластические процессы, плоскоклеточная метаплазия. Так, по данным некоторых авторов эти морфологические изменения эпителия были обнаружены у 70% больных ХОБЛ.
Гиперплазия и плоскоклеточная метаплазия, как правило, являются основой для развития дисплазии и рака легких. У больных ХОБЛ, имеющих большой стаж курения, отмечается высокая частота встречаемости тяжелой дисплазии и рака in situ – 24 – 48% случаев. Кроме того, с ХОБЛ связывают и н***агоприятный исход немелкоклеточного рака легкого после лечения.

Есть сведения о том, что 10% случаев рака легкого не связаны с курением. В качестве возможного фактора риска развития рака легкого у таких пациентов, может быть «атопическая конституция». При БА структурные изменения эпителия связаны с ремоделированием бронхов. В результате, нарушаются пролиферация, миграция, дифференцировка и барьерная функция эпителия. Частыми признаками проявления ремоделирования бронхов являются утолщение и гиалиноз базальной мембраны, десквамация эпителия, эпителиальная гиперплазия и плоскоклеточная метаплазия.

В зависимости от интенсивности и длительности воспаления в эпителии бронхов наблюдается ряд последовательных изменений. Увеличивается число бокаловидных клеток в состоянии повышенной секреции, вплоть до полного замещения ими реснитчатых клеток. Усиливается пролиферативная активность эпителия.
Делящиеся базальные клетки в зоне дефектов эпителиальной выстилки гиперплазируются, и могут подвергаться метаплазии в многослойный плоский эпителий. Именно клетки с морфологией базального эпителия являются стволовыми клетками – источниками плоскоклеточной метаплазии и дисплазии. Плоскоклеточная метаплазия ухудшает мукоцилиарный клиренс и способствует повышенному риску развития плоскоклеточного рака.

На фоне хронического воспаления выраженная пролиферация эпителия часто предшествует возникновению опухоли. Генетические изменения, такие как делеции хромосомных регионов, транслокации или генные мутации могут возникать в гистологически нормальном эпителии и при гиперпластических процессах, а их число или выраженность увеличиваются по мере прогрессирования тяжести предопухолевых изменений. Понятие эпителиальной гиперплазии включает в себя бокаловидноклеточную и базальноклеточную гиперплазии; при последней метапластический эпителий занимает почти всю толщину эпителия. По сравнению со зрелой плоскоклеточной метаплазией, цитоплазма клеток скудная и не кератинизирована. Реснитчатые клетки могут удерживаться на поверхности эпителия, но бокаловидные клетки, как правило, отсутствуют.

Плоскоклеточная метаплазия (зрелая ПМ) характеризуется заменой цилиндрического мерцательного респираторного зрелым плоским эпителием; эпителиальные клетки поверхностного слоя ориентированы параллельно базальной мембране. Характерны межклеточные мостики. Клеточная атипия отсутствует или незначительна.
Плоскоклеточная дисплазия/рак in situ предшествуют плоскоклеточному раку легкого. Плоскоклеточная дисплазия слабой степени характеризуется минимальными архитектурными и клеточными нарушениями, ограниченными нижней третью эпителиального слоя. При умеренной плоскоклеточной дисплазии нарушается дифференцировка клеток, отмечается умеренный полиморфизм. Изменения охватывают две трети эпителиального пласта. Ядерноцитоплазматическое соотношение сдвинуто в сторону ядра. Хроматин мелкозернистый. Ядрышки, как правило, отсутствуют. Митозы находятся в нижней трети эпителиального пласта.

Для тяжелой степени дисплазии свойственна выраженная клеточная атипия, распространяющаяся вплоть до верхнего эпителиального слоя. Отмечается ядерный полиморфизм, могут быть видны ядрышки. Митозы наблюдаются в двух нижних эпителиальных слоях. Для рака in situ, характерна полная потеря клеточной ориентации, клеточная «скученность», выраженный клеточный и ядерный полиморфизм. Митозы наблюдаются по всей толщине эпителиального пласта. В целом дисплазию III степени и рак in situ зачастую сложно дифференцировать друг от друга.

Чаще всего базальноклеточную гиперплазию и плоскоклеточную метаплазию описывают в бронхах крупного и среднего калибра. Однако, они могут быть найдены и в других отделах бронхиального дерева. Частота встречаемости дисплазии была выше в случаях плоскоклеточного рака (66,7%), нежели аденокарциномы легкого (36,4%). Локализация и степень диспластических изменений не были связаны с расстоянием от первичной карциномы легкого. Дисплазия высокой степени редко бывает «изолиро -ванной» и, как правило, сочетается с дисплазией низкой степени. Рак «in situ» может возникнуть изначально без предшествующих изменений, на месте нормальной слизистой бронха.
Следует отметить, что базальноклеточная гиперплазия и плоскоклеточная метаплазия, описанные в качестве предопухолевых изменений плоскоклеточной карциномы легкого, также могут предшествовать аденокарциноме легкого, особенно в случаях ее центрального происхождения.

При хроническом бронхите в сегментарных бронхах цитометрические показатели (площадь, периметр ядра и клетки) дисплазии I-III, сочетающейся с плоскоклеточной метаплазией (Д+ПМ+), превышают аналогичные параметры дисплазии IIII степени, не сочетающейся с плоскоклеточной метаплазией (Д+ПМ-). Сочетание дисплазии с плоскоклеточной метаплазией является н***агоприятным признаком, связанным с прогрессией и необратимостью дисплазии: в 47,7% случаев дисплазия прогрессировала до более высокой степени, а в 9,2% – перешла в плоскоклеточный рак.

Установлено, что диффузная плоскоклеточная метаплазия ассоциирована с высокой вероятностью прогрессии в дисплазию. В 76,2% случаев диффузная плоскоклеточная метаплазия перешла в дисплазию I-II степени против 23,8% при очаговой плоскокле -точной метаплазии. В слизистой бронхов мелкого калибра, отдаленных от НМРЛ, дисплазия чаще всего встречается при плоскоклеточной раке и в тех случаях, когда определяется плоскоклеточная метаплазия, но отсутствует базальноклеточная гиперплазия (БКГ-ПМ+Д+) – 81,8%тслучаев; при других вариантах морфологических изменений бронхиального эпителия дисплазия определяется в 1,1% наблюдений.

Установлено, что морфофункциональные характеристики (экспрессия Ki-67, p53, Вcl-2, CD138) базальноклеточной гиперплазии зависят от варианта ее сочетания с плоскоклеточной метаплазией. При ее сочетании уровень экспрессии маркеров Ki-67, p53, Вcl-2 выше, а CD138 ниже, чем при изолированной базальноклеточной гиперплазии (БКГ+ПМ-Д-). При плоскоклеточной метаплазии и дисплазии в бронхах мелкого калибра, в отдалении от немелкоклеточного рака, отсутствует экспрессия маркера дифференцировки плоского эпителия CD138.
Для каждого из вариантов сочетания базальноклеточной гиперплазии и плоскоклеточной метаплазии характерен свой набор специфических гипер- и гипоэкспрессирующихся генов, регулирующих специфические биологические процессы.

LUSC экспрессирует маркеры базальных клеток (включая KRT5, p63 и SOX2) и часто встречается в проксимальных дыхательных путях. Во время нормального развития SOX2 необходим для фиксации таких базальных клеток, поэтому было предложено, что LUSC возникает из базальных предшественников.

Плоскоклеточная карцинома чаще наблюдается у мужчин и коррелирует с курением. Гистологически опухоль характеризуется кератинизацией и/или наличием межклеточных мостиков. При ороговении образуются скопления эпителиальных клеток с гомогенного вида цитоплазмой, называемые «раковыми жемчужинами», или эти клетки располагаются отдельно. Эти особенности хорошо видны в высокодифференцированных опухолях, слабо выражены в умеренно дифференцированных опухолях и могут быть очаговыми в низкодифференцированных опухолях. Митотическая активность выше в низкодифференцированных опухолях.

Существующая в настоящее время модель последовательных молекулярных нарушений в патогенезе рака легкого, свидетельствует о том, что генетические аномалии, обнаруживаются уже в морфологически неизмененном эпителии. Их число возрастает с увеличением степени тяжести предопухолевых процессов. Молекулярные изменения в бронхиальном эпителии являются обширными и мультифокальными по всему бронхиальному дереву и происходят с определенной последовательностью.
Наиболее ранние нарушения – это аллельные потери 3p хромосомы (3p21, 3p14, 3p22-24, 3p12), 9p21 (p16INK4a) и 8p21-23. Потеря и инактивация 13q14 (Rb) и 17q13 (TP53) генов – промежуточный этап, а более поздние изменения происходят в 5q хромосоме. Так, потеря аллеля в области 3р хромосомы встречается в 90% случаев НМРЛ, и 78% – предопухолевых изменений бронхиального эпителия. Делеции 3-й хромосомы связаны с прогрессией предопухолевых изменений.

Дисперсные потери гетерозиготности (loss of heterozigosity (LOH)) в 3р-хромосоме были обнаружены уже при гиперпластических и диспластических процессах в бронхиальном эпителии; потеря гетерозиготности 3р хромосомы значительно чаще встречалась при раке «in situ». В работах I. Wistuba (2006), LOH в 3р отмечаются в нормальном эпителии в 31%, гиперплазированном – 42%, при диспластических изменения – 78% и в 95% случаев при плоскоклеточном раке легкого.
В коротком плече 3р (3р14.2) хромосомы имеется предполагаемый ген-суппрессор FHIT – ген хрупкой триады гистидина, функция которого связана с апоптозом и контролем клеточной пролиферации. Наличие аномалий 3 хромосомы в течение поздней стадии канцерогенеза, указывает на возможность их возникновения (3p потери и 3q увеличения) в любой момент времени во время перехода от плоскоклеточной метаплазии к карциноме.

albert52 04.10.2022 07:12

Продолжим.

Ген-супрессор RaRb – ретинойный кислотный рецептор b (3р24), также может быть связан с бронхиальным канцерогенезом. LOH RaR выявляют при плоскоклеточной дисплазии и раке «in situ». LOH 9р в смежных с опухолью очагах гиперплазии обнаружен в 38%, дисплазии – 80% и рака «in situ» в 100% случаях.
Активация теломеразы является ранним событием бронхиального канцерогенеза. Укорочение теломера – генетическая аномалия, предшествующая экспрессии теломеразы и p53/Rb инактивации, которые преобладают уже в плоскоклеточных предраковых изменениях.

Плоскоклеточная карцинома характеризуется самой высокой частотой мутаций р53 среди всех гистологических типов карциномы легкого. Усиление экспрессии белка р53 и, реже, мутации гена р53 могут предшествовать метастазированию. В 15% случаев плоскоклеточной карциномы обнаруживают потерю экспрессии белка гена-супрессора опухолей RB1. На ранней стадии канцерогенеза было обнаружено метилирование p16INK4a. При этом, его частота увеличивалась от 24% в плоскоклеточной метаплазии до 50% при раке «in situ». Инактивация ингибитора циклин-зависимой киназы гена pl16/INK4a приводит к потере его белкового продукта в 65% опухолей.
Экспрессия белка р53, в случае плоскоклеточной метаплазии, составляла 5%, а при тяжелой дисплазии достигала уже 60% клеток. Экспрессия Вcl-2 происходила аналогичным образом. Не высокий уровень экспрессии этого белка при плоскоклеточной метаплазии резко возрастал при тяжелой дисплазии/раке «in situ».

Подчеркивается, что множество клональных и субклональных участков молекулярных аномалий, не больше размера бронхиальной биопсии и оцениваемой примерно в 40 000 – 360 000 клеток, могут быть обнаружены в нормальном и гиперплазированном бронхиальном эпителии пациентов с НМРЛ. Также активность MYC усиливается не только в опухоли, но и в предраковых изменениях (метаплазия, дисплазия). Это может быть важным событием, способствующим дизрегуляции клеточного цикла в канцерогенезе плоскоклеточного рака легкого .

У 2-70% больных немелкоклеточным раком легкого, в гистологически неизмененном бронхиальном эпителии отмечается микросателлитная нестабильность, которая вероятно имеет значение в бронхиальном канцерогенезе. Наличие микросателлитной нестабильности свидетельствует о дефиците системы репарации ДНК в клетке и высокой вероятности возникновения трансформирующих мутаций по всему геному (см. выше).

Профилирование микроРНК показало значительное снижение экспрессии подавляющего большинства микроРНК на самых ранних стадиях бронхиального канцерогенеза, включая гиперплазию, метаплазию, легкую и умеренную дисплазии. То же нарастающим итогом наблюдалось и при аденокарциноме.
На ранней стадии выявлена экспрессия генов CEACAM5 (играет важную роль в клеточной адгезии и внутриклеточной сигнализации), SLC2A1 (транспортер глюкозы), PTBP3 (играет важную роль в регуляции клеточной пролиферации и дифференцировки) ассоциированных с курением и которые активируются в опухоли легкого.

В патогенезе периферической аденокарциномы легкого определяют два молекулярных пути: у курящих – связанный с активацией RAS сигнализации, у некурящих – EGFR. Считают, что КRAS и EGFR мутации являются взаимоисключающими. КRAS мутации, вызванные канцерогенными веществами табака, происходят чаще всего в кодоне 12, реже в кодонах 13 и 61. По данным различных авторов, активация КRAS мутаций наблюдается в 15 – 39% случаев ААГ, примерно в 10% рака «in situ», в 8–70% случаев аденокарцином легкого и очень редки в бронхиальной дисплазии. EGFR мутации крайне редко происходят при плоскоклеточном раке легкого – менее 10%.

PCNA участвует в репликации и репарации ДНК, присутствует в делящихся (G1, G2, М) и находящихся в покое (G0) клетках. Период его полураспада около 20 часов, поэтому он может накапливаться в клетках, закончивших деление и давать более высокие показатели пролиферации. Khuri et al. отметили увеличение уровня экспрессии PCNA по мере перехода от нормального бронхиального эпителия к эпителию с признаками гиперплазии, плоскоклеточной метаплазии и дисплазии. Hirano et al. выявили экспрессию PCNA в 25% клеток неизмененной слизистой бронха, в случаях слабо выраженной дисплазии количество клеток с позитивной экспрессией составило 35%, при тяжелой степени дисплазии – 40%, а при инвазивном раке легкого – 85-90%.
В отличие от PCNA, Ki-67 не участвует в репарации ДНК и присутствует в ядрах делящихся клеток. Его содержание характеризует только пролиферативный пул ткани, а период полураспада составляет 60-90 минут. Наибольшее число позитивных на Ki-67 клеток – 57,6%, было обнаружено при дисплазии. Вообще, пролиферативная активность, в ходе развития плоскоклеточного рака напрямую связана с увеличением клеточной атипии.

Основные функции syndеcan-1 (CD138) – установление контроля над ростом, дифференцировкой клеток, а также поддержание клеточной адгезии и миграции клеток. Высокая экспрессия CD138 ингибирует рост клеток и миграцию пораженных клеток. Экспрессия CD138 зависит от типа опухоли и степени ее дифференцировки. Уровень экспрессии снижается при плоскоклеточном канцерогенезе и коррелирует с плохим прогнозом в случаях рака головы/шеи и плоскоклеточного рака шейки матки. С другой стороны, отмечается связь между высокой экспрессией CD138 и менее благоприятным прогнозом аденокарциномы поджелудочной железы.

В настоящее время в качестве биомаркера НМРЛ изучается белок С4.4А, являющейся маркером плоскоклеточной дифференцировки. Экспрессия C4.4A в многослойном плоском эпителии определяется в основном в супрабазальных слоях и отсутствует в нормальной ткани легкого. Экспрессия маркера не отмечалась и в случаях бокаловидноклеточной гиперплазии. Слабовыраженной она была при базальноклеточной гиперплазии, однако резко возрастала при плоскоклеточной метаплазии и дисплазии. При раке «in situ» и инвазивном плоскоклеточном раке легкого экспрессия С4.4А была умеренной. Большинство бронхоальвеолярных и инвазивных аденокарцином легкого были негативны для С4.4А.

albert52 12.10.2022 07:59

Вставка.

Плоскоклеточный рак

Плоскоклеточный рак ( SCC ) по отдельности и в совокупности является одной из наиболее распространенных форм рака человека. Изменения стромальных клеток также играют важную роль в развитии этих опухолей, и они могут даже быть первичной детерминантой, помимо содействия уходу от иммунного надзора и устойчивости к химиотерапии.
Отличительной особенностью SCC является их высокая степень клеточной гетерогенности, при этом клеточные популяции находятся на различных стадиях дифференцировки, которые способны обращать приверженность клонов к стадиям пролиферации, а также вступать в фазы покоя с медленным циклом роста. Была предложена дифференцировочная терапия для исчерпания популяций клеток, инициирующих рак, путем принуждения их к терминальной дифференцировке. Однако обещаниям этого подхода противодействует риск того, что он может скорее повысить выживаемость клеток и устойчивость к химиотерапевтическим агентам, а также способствовать проонкогенному уклонению от иммунитета.

Классификация SCC обычно следует анатомическим разделам клинической медицины, где, например, SCC головы и шеи лечат отдельно от SCC аногенитальной области. Однако становится все более очевидным, что SCCs обладают сходными свойствами, о чем свидетельствует общность геномных, генетических и эпигенетических изменений и сходное влияние подлежащей мезенхимы.
В этих опухолях базальный слой состоит из относительно круглых пролиферативных клеток с высоким соотношением ядер / цитоплазмы. Это соотношение меняется на противоположное с каждым последующим слоем, где клетки уплощаются в неделящиеся окончательно дифференцированные «чешуйки», в честь которых и назван плоский эпителий. Жесткое регулирование этого градиента пролиферации-дифференцировки необходимо для поддержания барьерной функции и нарушается стрессом в виде инфекции, канцерогенов, лекарств и радиации (см. выше).

Плоскоклеточная метаплазия возникает в респираторном дереве и мочевыводящих путях как реактивная реакция на различные вредные условия (например, курение сигарет). Индукция плоскоклеточной дифференцировки в этом контексте может иметь защитную роль, увеличивая эластичность тканей и, как обсуждается ниже, выживаемость клеток. Однако, если метаплазия сохраняется, увеличивается вероятность дисплазии и риска рака.

Кожные SCC (CSCC) обычно представляют собой вялотекущие опухоли, редко дающие метастазы (<5%) на поздних стадиях развития болезни, при этом множественные и рецидивирующие CSCC являются основной причиной смерти многих пациентов-реципиентов органов, получающих лечение ингибиторами кальциневрина для иммуносупрессии. Конкретно здесь повышенный риск CSCC по сравнению с другими SCC во внутренних органах указывает на синергизм между канцерогенным воздействием УФ-света и ингибированием кальциневрина.

Помимо LSCC была обнаружена сильная связь между курением и опухолями, анатомически классифицируемыми как SCC «головы и шеи» (HNSCC). Курение также является критическим фактором риска SCC пищевода (ESCC). Курение имеет относительно предсказуемую мутагенную сигнатуру, преимущественно воздействуя на пары оснований гуанина и создавая замены G → T. Также многие полиароматические углеводороды и компоненты сигаретного дыма неактивны и требуют метаболической активации для причинения генотоксического повреждения.
Поверхностные эпителиальные ткани обычно изобилуют дендритными клетками, интернализующими антигены и они играют важную роль в активации 7,12-диметилбенз [a] антрацена (DMBA) углеводорода . Канцерогенное превращение компонентов дыма в мутагенные агенты также может происходить под действием ферментов детоксикации печению. Существует также синергия между алкоголем и курением сигарет в патогенезе различных типов SCC, в частности HNSCC и ESCC.
ESCC имеет особенно плохой прогноз: 5-летняя выживаемость редко превышает 20%. ESCC особенно часто встречается у мужчин (> 4: 1) .

Патогены создают проонкогенную среду двумя основными способами:
1) экспрессия онкогенов, полученных из патогенов, и / или инактивация генов-супрессоров опухоли хозяина;
2) хроническое воспаление и снижение иммунного надзора.
Примером первого механизма инфекционного онкогенеза являются вирусы папилломы человека (HPV), которые продуцируют онкопротеины E6 и E7 при интеграции в геном кератиноцитов хозяина. Затем клеточный цикл нарушается функциональной инактивацией ключевых белков-супрессоров опухолей p53 и p105-Rb под действием E6 и E7 соответственно. Благодаря этому механизму HPV ответственен за ошеломляющие 96% цервикального ПКР (CvSCC) и получил признание в качестве важной причины HNSCC.

Наряду с высокой частотой генных мутаций, хромосомная нестабильность является еще одной особенностью SCC. Так, УФ-мутации в горячих точках в кинетохоре гена KNSTRN (kinetochore localized astrin (SPAG5) binding protein), как сообщается, вызывают нарушение целостности хроматид и анеуплоидию.

В целом, широкий спектр генных изменений, выявленных в SCC, можно разделить на две категории: первая, с вероятной функцией драйвера рака при различных типах рака, а другая, затрагивающая гены с преимущественной или избирательной ролью в SCC в сети мутаций генов, сосредоточенных вокруг решений судьбы плоских клеток и / или программы терминальной плоской дифференцировки. Взаимоисключающие изменения были обнаружены для 90 пар генов, только 1 из которых статистически значима: TP53 - KMT2C (lysine (K)-specific methyltransferase 2C).

Мутации TP53 - это наиболее часто определяемые соматические мутации в SCC из всех участков тела. Очень распространены бессмысленные мутации «горячих точек», которые приводят к доминантным негативным свойствам и / или к усилению функциональных свойств с помощью трех возможных механизмов. Первый относится к образованию тетрамерного комплекса р53 и его способности взаимодействовать в формах дикого типа или в мутированных формах с двумя другими членами семейства, p63 и p73, влияя на их функцию. Второй включает модуляцию экспрессии гена мутантным p53, опосредованную его ассоциацией с другими транскрипционными факторами.
Третий результат связан с изменением специфичности связывания ДНК мутантного р53. В результате был идентифицирован целый ряд дерегулированных генов с про-выживательной, проинвазивной и про-онкогенной функциями.

Подавление активности p105-Rb за счет мутаций потери функции ингибитора CDK CDKN2A также очень распространено в SCC, в то время как мутации самого гена Rb1 обнаруживаются реже, за исключением ESCC. Интересно, что предполагаемые мутации драйвера рака во многих генах, включая TP53 , уже часто встречаются в нормальной коже, подвергшейся воздействию фотовоздействию, за исключением мутаций CDKN2A , что позволяет предположить, что они могут быть критическим триггером развития рака.

Частота мутаций TP53 и CDKN2A / Rb1 значительно снижена в HNSCC и CvSCC, связанных с инфекцией HPV. Здесь было показано, что экспрессия вирусных E6 и E7 ингибирует белки p53 и p105-Rb, что делает невозможным прямую генетическую мутацию.

albert52 12.10.2022 08:52

Продолжим.

Гены, кодирующие Cyclin D1 и c-Myc, также обычно амплифицируются в SCC и амплификация этих генов часто встречаются в HNSCC HPV (-) , но редко или отсутствуют в их (+) аналогах HPV. FBXW7 кодирует компонент SCF ubiquitin E3 лигазного комплекса, участвующего в деградации ряда ключевых клеточных регуляторных молекул, включая c-Myc, cyclin E и Notch1. Мутации с потерей функции в FBXW7 особенно часто встречаются в CvSCC, но также встречаются в SCC из других участков тела. Важной мишенью FBXW7 в HNSCCs является антиапоптотический белок Mcl-1, который участвует в увеличении выживаемости раковых клеток и является возможной терапевтической мишенью.

SCC также связаны с частой амплификацией и, в некоторых случаях, мутациями генов рецепторов тирозинкиназы. Частая амплификация EGFR и близкородственного ERBB2 может вносить вклад в повышенную активность рецепторов в HNSCCs и ESCCs. Поскольку EGFR является избыточным рецептором для нескольких лигандов, он является особенно привлекательной мишенью для терапии либо низкомолекулярными ингибиторами, либо блокирующими антителами. Благоприятный ответ на низкомолекулярные ингибиторы наблюдается в случае активирующих мутаций EGFR , например, часто встречающимися в аденокарциномах легких, но не в плоскоклеточных карциномах.
Другой путь устойчивости к терапии анти-EGFR связан с повышением активности другого рецептора тирозинкиназы, c-MET. C-MET задействован лигандом фактора роста гепатоцитов (HGF), и его фосфорилирование запускает множество сигнальных путей, подобно EGFR. Хотя МЕТ может быть усилен в небольших подгруппах HNSCC, ESCC и LSCC, мутации не распространены. Несмотря на это, двойная терапия анти-EGFR и c-MET является многообещающей для терапевтического вмешательства.

FGFR1 и, в меньшей степени, FGFR2 и FGFR3 также часто усиливается в SCC из различных участков тела, причем амплификации этих генов происходит в основном в опухолях без EGFR, CCND1 или MYC амплификации. Как и в случае с этими другими генами, амплификация гена FGFR1,2 происходит избирательно в HPV(-) опухолях. В отличие от EGFR, по крайней мере в LSCC, амплификация генов FGFR может сопровождаться картированием активирующих мутаций во внеклеточные или внутриклеточные области рецепторов, что делает эти молекулы возможными терапевтическими мишенями.

Отмечена повышенная частота мутаций HRAS (> 20%) с более низкой частотой мутаций KRAS и NRAS в СSCC, что может отражать тот факт, что общая частота мутаций гена в этих опухолях значительно выше, чем в SCC внутренних органов. Еще большая частота мутаций HRAS (> 40%) была обнаружена в кожных SCC и кератоакантомах, которые развиваются у пациентов с меланомой, получавших ингибитор B-RAF вемурафениб. Они могут включать парадоксальную активацию передачи сигналов MAPK и ускоренный рост поражений, несущих HRAS.

Как и во многих других типах опухолей, на сигнальный путь PI3K / AKT часто влияет амплификация и / или мутации генов, что соответствует его ключевой роли в выживании клеток. Хромосомная область 3q26 / 28, включающая PIK3CA , а также гены клонов клеток TP63 и SOX2, обсуждаемые ниже, часто амплифицируется в различных SCC . Активирующие мутации гена PIK3CA также часто встречаются в различных SCC, с потерей PTEN в качестве альтернативного возможного механизма дерегуляции передачи сигналов AKT и, как следствие, увеличения выживаемости клеток.

Стволовые клетки или клетки-предшественники SCC характеризуются повышенной экспрессией TP63 , члена семейства генов TP53. TP63 кодирует две основные изоформы TAp63 и ΔNp63 (без N-концевого домена трансактивации), каждая из которых приобретает дополнительное разнообразие за счет альтернативного сплайсинга (α, β, γ, δ, ε субизоформы). Этот ген имеет решающее значение для развития плоского эпителия.
Переход от однорядного эпителия к многослойному происходит в разное время развития примерно в середине беременности. В развивающейся коже TP63 играет ключевую роль в поддержании популяций стволовых клеток и / или переходе от простого к стратифицированному и железистому эпителию. В этом контексте он участвует в переключении с горизонтальной плоскости деления эпителиальных клеток на вертикальную, которая сопровождает стратификацию.

TP63 также играет ключевую роль в балансе между пролиферацией эпителия / кератиноцитов в антагонизме с p53 и передачей сигналов Notch. p63 играет положительную функцию продвижения опухолей на начальных стадиях, но подавляет на более поздних стадиях Этот белок используется в качестве диагностического маркера плоскоклеточного рака легких и рака пищевода в сравнении с аденокарциномой, и очень часто он сверхэкспрессируется в SCC различных участков тела. TP63 , SOX2 и PIK3CA находятся в хромосомной области 3q , и недавно сообщалось о совместной амплификации этих генов вместе с FGFR1 в LSCC, что указывает на возможно важный уровень перекрестной активации.
Прямая мишень p63, которая, вероятно, актуальна в контексте развития SCC, - это FGFR2 с усиленной передачей сигналов FGFR, способствующей развитию рака. TP63 также, вероятно, играет важную роль в ранних изменениях тканей, предшествующих развитию рака. Фактически, его несоответствующая и повышенная экспрессия была связана с плоскоклеточной метаплазией как в трахеальном, так и в пищеводном эпителии.

В легких SOX2 , по-видимому, избирательно участвует в развитии рака по плоскоклеточному клону, поскольку амплификации этого гена происходят с ошеломляющей частотой (> 50%) в LSCC, а в аденокарциноме вместо этого амплифицируется ген NKX2-1 (см. выше).
В LSCCs SOX2 и PRKCI часто также коамплифицируются с фосфорилированием SOX2 с помощью протеинкиназы Ciota , продукта гена PRKCI , что увеличивает продукцию лиганда Hedgehog и, как следствие, увеличивает потенциал раковых стволовых клеток. SOX2 и p63 физически взаимодействуют и сходятся на большом количестве общих генов-мишеней с проонкогенным потенциалом, таких как ETV4 .
Активность SOX2 простирается на контроль Notch1 и Notch2 экспрессии, с взаимодействием между двумя клеточными регуляторными сетями , играющими , возможно , важной ролью в определении клеток происхождения и подтипа KRAS-индуцированных опухолей легких.

Взаимодействие между производством активных форм кислорода (ROS) и метаболизмом играет важную роль в балансе между обновлением стволовых клеток и приверженностью к дифференцировке. Фактор транскрипции NRF2 является ключевым регулятором ферментов, участвующих в защитном ответе против АФК и в метаболизме соединений. Активирующие мутации NFE2L2 , кодирующего NRF2, являются частым событием в SCC различных типов, с взаимоисключением предполагаемых мутаций потери функции NRF2-инактивирующего гена KEAP1.

Вообще самообновление базальных эпителиальных стволовых клеток крупных дыхательных путей контролируется динамическими вариациями уровней ROS посредством NRF2-зависимой активации передачи сигналов Notch с возможно важными последствиями для развития рака. Более конкретно, в коже функция NRF2 была связана с гетерогенностью популяций стволовых клеток SCC и стабилизацией NRF2 с помощью p21 CDKN1A, что привело к усилению защиты от ROS и устойчивости к химиотерапевтическим агентам.

Отличительной особенностью плоского эпителия является их плотная организация и упаковка межклеточных соединений, с поляризацией вдоль базально-апикальной оси, а также и вдоль основной оси тела. Мутации в генах, кодирующих классические адгезивные соединения и десмосомные белки, такие как DSG1-4 , происходят в SCC различных типов, но с относительно низкими частотами. Напротив, часто мутирует FAT1, принадлежащий к надсемейству cadherin и играющий ключевую роль в полярности планарных клеток.

albert52 13.10.2022 17:09

Вернемся немного назад.

Рак легкого в структуре онкологических заболеваний занимает одно из первых мест в мире. На долю немелкоклеточного рака легкого приходится ~ 80–85% новообразований данной локализации. На момент постановки диагноза лишь у 20-25% больных опухоль оказывается резектабельной.
Несмотря на постоянное совершенствование методов диагностики, проведение радикального хирургического, химиотерапевтического и лучевого лечения, 5-летняя выживаемость составляет ~30%. У 60-75% больных немелкоклеточным раком легкого III стадии происходит прогрессирование опухолевого процесса в виде местного рецидива, метастазов в лимфоузлы грудной полости или развития отдаленных метастазов.
Выявление первичной опухоли на ранней стадии существенно улучшает отдаленные результаты лечения, хотя и не гарантирует отсутствие риска прогрессирования новообразования. Поэтому актуальным остается поиск объективных маркеров, позволяющих прогнозировать риск развития рецидивов и гематогенных метастазов немелкоклеточного рака.

Закономерности развития предопухолевых процессов в бронхиальном эпителии остаются на сегодняшний день важной и интенсивно изучаемой проблемой. Базальноклеточная гиперплазия и плоскоклеточная метаплазия – одни из первых морфологически идентифицируемых изменений бронхиального эпителия. Известно, что в основе появления и прогрессии этих процессов лежит генетическая нестабильность. Она базируется на нарушениях механизмов репарации ДНК, изменениях регуляции клеточного цикла и апоптоза. Отметим, что недостатки репарации ДНК из-за эпигенетических изменений, которые уменьшают или заставляют молчать экспрессию генов репарации ДНК, встречаются гораздо чаще, чем классические мутации.

Потеря контроля над процессами пролиферации, дифференцировки и гибели клеток коррелирует с развитием дисплазии и увеличением степени ее тяжести. Особое значение имеет плоскоклеточная метаплазия, которая, как правило, является основой для последующего развития диспластических изменений.
Считается, что базальноклеточная гиперплазия, плоскоклеточная метаплазия, а также, в большинстве случаев легкие и умеренные диспластические изменения, могут подвергаться спонтанной регрессии. Тяжелая дисплазия имеет высокий потенциал малигнизации. Переход с одного уровня изменений на другой может занимать различное время. По данным литературы продолжительность этих временных отрезков существенно разнится – от полугода до нескольких десятков лет.
В этой связи необходимы дальнейшие исследования, посвященные поиску новых прогностических признаков вероятности прогрессирования морфологических изменений респираторного эпителия до дисплазии III степени у больных хроническим бронхитом.

Развитие и прогрессия предопухолевых изменений зависят от влияния клеток микроокружения, в частности, воздействия цитокинов воспалительного инфильтрата. Известно, что предопухолевые изменения развиваются в условиях хронического воспаления как проявления ускоренной регенерации и замедления дифференцировки эпителия
Прогрессирование предопухолевых процессов может быть связано не только с воздействием клеток микроокружения, но и с генетическими или эпигенетическими нарушениями в самих клетках эпителия, в конечном счете, приводящими к изменению экспрессионного профиля. Среди биологических процессов выделяли «ответ на цитокины», «регуляция продукции цитокинов», «ответ на интерферон гамма», «иммунный ответ», «клеточный хемотаксис», «регуляция клеточной пролиферации».

Различные варианты морфологических изменений часто выявляются в бронхах, непосредственно не контактирующих с очагами немелкоклеточного рака легкого. При этом базальноклеточная гиперплазия, плоскоклеточная метаплазия и дисплазия могут одновременно обнаруживаться при морфологическом исследовании в одном бронхе. Сочетания данных процессов бывают различными и, по-видимому, имеют неслучайный характер. Значимость каждого из вариантов сочетания рассматриваемых морфологических изменений в прогрессии немелкоклеточного рака в отдаленном периоде после завершения лечения неизвестна.

По гистологическим проявлениям базальноклеточная гиперплазия, которая сочетается с плоскоклеточной метаплазией (БКГ+ПМ+Д-), неотличима от «изолированной» базальноклеточной гиперплазии (БКГ+ПМ-Д-). В участках сочетанной БКГ была выше пролиферативная активность – 34,9% Ki-67+ клеток против 18,3±7,1 % при плоскоклеточной карциноме и 34% против 17±8 % при аденокарциноме. Суперэкспрессия Вcl-2 при этом ингибирует апоптоз в случаях, когда возможна его инициация (что бывает далеко не всегда). Благодаря этому, по-видимому, возрастает вероятность выживания клеток с н***агоприятными мутациями.

По данным эпидемиологического исследования наиболее высокий риск развития рака легкого связан с хронической обструктивной болезнью легких. Наличие ХОБЛ у курильщиков со стажем увеличивает вероятность развития рака легких в 4,5 раза. У 50-90% больных раком легкого выявляется ХОБЛ. Пока не установлено, обусловлена ли эта взаимосвязь общими факторами риска (например, курением), участием генов, определяющих склонность к заболеваниям, или нарушением выведения канцеро -генов. На фоне ХОБЛ чаще всего происходят гиперпластические процессы, плоскоклеточная метаплазия. Так, по данным некоторых авторов эти морфологические изменения эпителия были обнаружены у 70% больных ХОБЛ.
Гиперплазия и плоскоклеточная метаплазия, как правило, являются основой для развития дисплазии и рака легких. У больных ХОБЛ, имеющих большой стаж курения, отмечается высокая частота встречаемости тяжелой дисплазии и рака in situ – 24 – 48% случаев. Кроме того, с ХОБЛ связывают и н***агоприятный исход немелкоклеточного рака легкого после лечения.

Есть сведения о том, что как минимум 10% случаев рака легкого не связаны с курением. В качестве возможного фактора риска развития рака легкого у таких пациентов, может быть «атопическая конституция». Так, при БА (бронхиальной астме) структурные изменения эпителия связаны с ремоделированием бронхов. В результате, нарушаются пролиферация, миграция, дифференцировка и барьерная функция эпителия.
Частыми признаками проявления ремоделирования бронхов являются утолщение и гиалиноз базальной мембраны, десквамация эпителия, эпителиальная гиперплазия и плоскоклеточная метаплазия.

albert52 13.10.2022 17:27

Продолжим.

Эпителий легкого возникает с вентральной стороны передней энтодермы передней кишки, где формируются первичные почки легких. После обширного разветвления проксимальных проводящих дыхательных путей, включая трахею, бронхи и бронхиолы, клетки на кончиках дистальных ветвей дифференцируются в альвеолярные клетки типа 1 (AT1) и 2 (AT2), которые составляют газообменные альвеолы.
В развивающихся легких пулы клеток-предшественников могут давать начало множеству региональных типов эпителиальных клеток . В трахее и основных бронхах базальные клетки дают секреторные и реснитчатые клетки просветного слоя, тогда как в бронхиолярном эпителии клубные клетки (ранее известные как клетки Клары) могут самообновляться и генерировать ресничные клетки. В дистальных дыхательных путях клетки AT1 и AT2 во время эмбриогенеза возникают непосредственно из бипотентного предшественника, имеющего другое происхождение. В постнатальных легких клетки AT2 также приобретают функции, подобные предшественникам, чтобы генерировать клетки AT1.

Известно и предсказано влияние клетки происхождения c онкогенной мутацией в формировании различных подтипов рака легкого. Основными типами рака легкого являются мелкоклеточная карцинома легкого SCLC и немелкоклеточная карцинома легкого NSCLC, которая включает три основных гистологических типа: аденокарциному, плоскоклеточную карциному (SCC) и крупноклеточную карциному. Около 15% опухолей представляют собой SCLC и возникают в крупных дыхательных путях, быстро растут и имеют нейроэндокринный компонент.
Аденокарциномы составляют около 40% НМРЛ и обычно начинаются в железах периферической ткани легких; SCC составляют 25% и обычно возникают из базальных клеток вблизи центрального бронха. Считается, что крупноклеточный рак происходит из нейроэндокринных клеток и может наблюдаться в сочетании с другими типами НМРЛ. Эти нейроэндокринные опухоли легких представляют собой эпителиальные опухоли, характеризующиеся преимущественной нейроэндокринной дифференцировкой, на что указывают нейроэндокринные гранулы, гранулы муцина, микроворсинки и тонофиламенты.

Аденокарцинома легкого (LUAD)

На NSCLC (немелкоклеточный рак легкого) приходится около 85% всех диагнозов рака легких, причем большинство пациентов с аденокарциномой легкого (LAC). Предположительно рост заболеваемости связан с популярностью сигарет с низким содержанием смолы и сигарет с фильтром, при курении которых человек делает более глубокий вдох, и, как следствие, табачный дым оседает в периферических дыхательных путях, где чаще всего и развивается аденокарцинома.

Опухоли, которые раньше классифицировались как бронхоальвеолярные, теперь причисляются к одной из нескольких категорий: аденокарцинома in situ (AIS), минимально инвазивная аденокарцинома (MIA) и атипическая аденоматозная гиперплазия (ААН). Последняя рассматривается как преинвазивное поражение легких, не превышающее 5 мм и представляет собой пролиферацию атипичных цилиндрических клеток вдоль поверхности альвеол.
Первый подтип, (AIS), представляет собой локализованную (≤3 см) аденокарциному, рост которой ограничен поверхностным ростом вдоль альвеолярных структур (со стелющимся типом роста, «lepidic»), без признаков инвазии. В большинстве случаев AIS – немуцинозные опухоли. Проспективные исследования свидетельствуют, что при полной резекции AIS выживаемость приближается к 100% (97%). Минимально инвазивная аденокарцинома (МIА) – также небольшая одиночная опухоль размером ≤3 см, однако, в отличие от AIS, с инвазией, не превышающей в глубину 5 мм. Большинство таких опухолей также не вырабатывают муцин.

Гистологическое строение аденокарцином вариабельно: от хорошо дифференцированной опухоли с явными элементами железистой дифференцировки, формирования папиллярных структур, напоминающих таковые у других папиллярных карцином, до солидных опухолей с незначительным количеством муцинпродуцирующих желез и клеток.
Инвазивная муцинозная аденокарцинома бывает коллоидной, фетальной, кишечного типа и аденосквамозной. Аденосквамозная карцинома определяется как опухоль, состоящая более чем на 10% из злокачественных железистых и плоскоклеточных компонентов. По всей вероятности, смешанная гистология отражает гетерогенность этой карциномы легкого.
Частота встречаемости аденосквамозной карциномы находится в диапазоне от 0,4% до 4% всех случаев бронхогенного рака. Этот подтип опухоли более агрессивен, чем аденокарцинома или плоскоклеточная карцинома, и, соответственно, сопряжен с худшим прогнозом.

Предполагают, что аденокарцинома легкого проходит те же стадии развития, что и аденокарцинома толстой кишки: атипическая аденоматозная гиперплазия прогрессирует до неинвазивной карциномы, которая затем трансформируется в инвазивную. Это подтверждается тем фактом, что атипическая аденоматозная гиперплазия является моноклональной и имеет многие молекулярные аберрации, например мутации ECFR, характерные для аденокарцином.

KRAS мутации являются основным фактором развития LAC и тесно связаны с курением сигарет, в отличие от мутаций рецептора эпидермального фактора роста (EGFR), которые возникают и у никогда не курящих.
Вообще, большинство НМРЛ являются генетически сложными опухолями с множеством потенциальных активирующих событий. Их мутантные мишени включают FGFR1, PTEN, MET, MEK, PD-1 / PD-L1 и NaPi2b. В свете множества новых биомаркеров и целевых агентов стратегии мультиплексного тестирования будут иметь неоценимое значение при определении подходящих пациентов для каждой терапии и позволять направлять целевые агенты пациентам, наиболее вероятно получающим от них пользу.

В дистальных эпителиальных клетках SOX9 отмечает кончики ветвей растущих легких и функционирует ниже по ходу передачи сигналов рецепторной тирозинкиназы для подавления преждевременной альвеолярной дифференцировки. SOX9 сверхэкспрессируется в человеческом LUAD, и его экспрессия коррелирует с плохой выживаемостью пациентов.

Большинство аденокарцином экспрессируют тиреоидный фактор транскрипции 1, а также 80% опухолей содержат муцин. Гомеобокс NK2 / 1 (NKX2/1), также известный как TТF-1 (тиреоидный фактор), экспрессируется в клетках AT 2 и подгруппе бронхиолярных клеток, активируя транскрипцию генов, кодирующих сурфактант в пневмоцитах 2 типа и секреторный протеин клубных клеток. Он может взаимо -действовать с множественными транскрипционными факторами, чтобы расширить или ограничить диапазон генов-мишеней. Так, уровни NKX2/1 поддерживают альвеолярную дифференцировку и ингибируют пролиферацию путем ограничения активности геномных локусов-мишеней FOXA1/2 и AP1 - 85 соответственно.

Белок TF-1 является биомаркером рака тимуса и LUAD. Около 15% LUAD содержат амплификацию NKX2-1, что коррелирует с плохим исходом и требуется для жизнеспособности опухолевых клеток. NKX2-1 может поддерживать про-онкогенную передачу сигналов вниз по течению от мутантного EGFR и требуется для EGFR-опосредованной трансформации.

albert52 13.10.2022 17:42

Продолжим.

Плоскоклеточный рак легких (LUSC)

В зависимости от интенсивности и длительности воспаления в эпителии бронхов наблюдается ряд последовательных изменений. Увеличивается число бокаловидных клеток в состоянии повышенной секреции, вплоть до полного замещения ими реснитчатых клеток. Усиливается пролиферативная активность эпителия.
Делящиеся базальные клетки в зоне дефектов эпителиальной выстилки гиперплазируются, и могут подвергаться метаплазии в многослойный плоский эпителий. Именно клетки с морфологией базального эпителия являются стволовыми клетками – источниками плоскоклеточной метаплазии и дисплазии. Плоскоклеточная метаплазия ухудшает мукоцилиарный клиренс и способствует повышенному риску развития плоскоклеточного рака.

На фоне хронического воспаления выраженная пролиферация эпителия часто предшествует возникновению опухоли. Генетические изменения, такие как делеции хромосомных регионов, транслокации или генные мутации могут возникать в гистологически нормальном эпителии и при гиперпластических процессах, а их число или выраженность увеличиваются по мере прогрессирования тяжести предопухолевых изменений.
Понятие эпителиальной гиперплазии включает в себя бокаловидноклеточную и базальноклеточную гиперплазии; при последней метапластический эпителий занимает почти всю толщину эпителия. По сравнению со зрелой плоскоклеточной метаплазией, цитоплазма клеток скудная и не кератинизирована. Реснитчатые клетки могут удерживаться на поверхности эпителия, но бокаловидные клетки, как правило, отсутствуют.

Плоскоклеточная метаплазия (зрелая ПМ) характеризуется заменой цилиндрического мерцательного респираторного зрелым плоским эпителием; эпителиальные клетки поверхностного слоя ориентированы параллельно базальной мембране. Характерны межклеточные мостики. Клеточная атипия отсутствует или незначительна.
Плоскоклеточная дисплазия/рак in situ предшествуют плоскоклеточному раку легкого. Плоскоклеточная дисплазия слабой степени характеризуется минимальными архитектурными и клеточными нарушениями, ограниченными нижней третью эпителиального слоя. При умеренной плоскоклеточной дисплазии нарушается дифференцировка клеток, отмечается умеренный полиморфизм. Изменения охватывают две трети эпителиального пласта. Ядерно-цитоплазматическое соотношение сдвинуто в сторону ядра. Хроматин мелкозернистый. Ядрышки, как правило, отсутствуют. Митозы находятся в нижней трети эпителиального пласта.

Для тяжелой степени дисплазии свойственна выраженная клеточная атипия, распространяющаяся вплоть до верхнего эпителиального слоя. Отмечается ядерный полиморфизм, могут быть видны ядрышки. Митозы наблюдаются в двух нижних эпителиальных слоях. Для рака in situ, характерна полная потеря клеточной ориентации, клеточная «скученность», выраженный клеточный и ядерный полиморфизм. Митозы наблюдаются по всей толщине эпителиального пласта. В целом дисплазию III степени и рак in situ зачастую сложно дифференцировать друг от друга.

Чаще всего базальноклеточную гиперплазию и плоскоклеточную метаплазию описывают в бронхах крупного и среднего калибра. Однако, они могут быть найдены и в других отделах бронхиального дерева. Частота встречаемости дисплазии была выше в случаях плоскоклеточного рака (66,7%), нежели аденокарциномы легкого (36,4%), при этом локализация и степень диспластических изменений не были связаны с расстоянием от первичной карциномы легкого. Дисплазия высокой степени редко бывает «изолированной» и, как правило, сочетается с дисплазией низкой степени. Рак «in situ» может возникнуть изначально без предшествующих изменений, на месте нормальной слизистой бронха.

Следует отметить, что базальноклеточная гиперплазия и плоскоклеточная метаплазия, пусть и не так выраженные, как при предопухолевых изменениях в случае плоскоклеточной карциномы легкого, также могут предшествовать аденокарциноме легкого, особенно в случаях ее центрального происхождения.

Установлено, что морфофункциональные характеристики (экспрессия Ki-67, p53, Вcl-2, CD138) базальноклеточной гиперплазии зависят от варианта ее сочетания с плоскоклеточной метаплазией. При ее сочетании уровень экспрессии маркеров Ki-67, p53, Вcl-2 выше, а CD138 ниже, чем при изолированной базальноклеточной гиперплазии (БКГ+ПМ-Д-). При плоскоклеточной метаплазии и дисплазии в бронхах мелкого калибра, в отдалении от немелкоклеточного рака, отсутствует экспрессия маркера дифференцировки плоского эпителия CD138.

Плоскоклеточная карцинома чаще наблюдается у мужчин и коррелирует с курением. Гистологически опухоль характеризуется кератинизацией и/или наличием межклеточных мостиков. При ороговении образуются скопления эпителиальных клеток с гомогенного вида цитоплазмой, называемые «раковыми жемчужинами», или эти клетки располагаются отдельно. Эти особенности хорошо видны в высокодифференцированных опухолях, слабо выражены в умеренно дифференцированных опухолях и могут быть очаговыми в низкодифференцированных опухолях. Митотическая активность выше в низкодифференцированных опухолях.
LUSC экспрессирует маркеры базальных клеток (включая KRT5, p63 и SOX2) и часто встречается в проксимальных дыхательных путях. Во время нормального развития SOX2 необходим для фиксации таких базальных клеток, поэтому было предложено, что LUSC возникает из базальных предшественников. При LUSC в том же ампликоне, что и SOX2, находится PRKCI , который кодирует протеинкиназу С1, которая фосфорилирует SOX2, что приводит к активации передачи сигналов Sonic hedgehog (Shh) и самообновлению LUSC. В отличие от своей роли в продвижении LUSC, высокие уровни Sox2 ограничивают образование LUAD в бронхиолах путем подавления активации Notch.

Плоскоклеточная карцинома характеризуется самой высокой частотой мутаций р53 среди всех гистологических типов карциномы легкого. Усиление экспрессии белка р53 и, реже, мутации гена р53 могут предшествовать метастазированию. В 15% случаев плоскоклеточной карциномы обнаруживают потерю экспрессии белка гена-супрессора опухолей RB1. На ранней стадии канцерогенеза было обнаружено метилирование p16/INK4a, при этом, его частота увеличивалась от 24% в плоскоклеточной метаплазии до 50% при раке «in situ». Инактивация гена ингибитора циклин-зависимой киназы pl16/INK4a приводит к потере его белкового продукта в 65% опухолей.

albert52 16.10.2022 12:08

Продолжим.

По крайней мере два молекулярных пути вовлечены в развитие LUAD: путь KRAS и пути EGFR у курильщиков и некурящих пациентов соответственно. Мутации в EGFR , особенно делеции в рамке считывания экзона 19 и вариантов L858R и L861Q в экзоне 21, прочно связаны со статусом отказа от курения, женским полом и восточноазиатской этнической принадлежностью. Клетками происхождения LUAD являются клетки AT2, экспрессирующие сурфактантный белок C (SPC), а также из бронхиолярного эпителия и желез малых бронхов.

AAH участвуют в линейной прогрессии клеток «терминальной дыхательной единицы» (TRU) в AIS (рак in situ) и впоследствии в инвазивные LUAD из-за экспрессии общих генов между TRU и AAH. Так от ~ 30% до 40% AAH проявляют мутации KRAS (кодон 12). Кроме того, мутации EGFR с одинаковой частотой характерны для AAH, поражений AIS и LUAD, особенно в последовательности поражений, предшествующих развитию LUAD подтипа TRU.
Другие молекулярные аберрации, которые были идентифицированы в AAHs, включают сверхэкспрессию онкопротеинов Cyclin D1, сурвивина и ERBB2, потерю гетерозиготности (LOH) в хромосомах 3p (18%), 9p ( CDKN2A ) и p14arf (оба действуют как супрессоры опухолей , регулируя клеточный цикл ), 9q ( комплекс туберозного склероза 1 / TSC1 ), 17q и 17p ( TP53 ) и снижение экспрессии супрессора опухолей серин-треонинкиназы 11 (STK11, также известного как LKB1). Эпигенетические изменения, включая метилирование ДНК CDKN2A и PTPRN2 (Protein tyrosine phosphatase receptor type N2) также были зарегистрированы в AAHs.

В целом амплификация онкогена EGFR является преобладающим дифференциальным молекулярным признаком между ранними поражениями и LUAD. Также NKX2-1 обычно накапливается или амплифицируется (локус 14q13.3) в LUAD, указывая на специфическую онкогенную функцию клеточного клона для этого транскрипционного фактора в LUAD.

Ангиогенез развивается на ранней стадии канцерогенеза легких и что эти аномалии служат основанием для разработки целевых стратегий антиангиогенной химиопрофилактики. Наличие этого поражения (зарастание сосудов в субэпителиальных тканях с повышенной плотностью микрососудов) у курильщиков из группы высокого риска предполагает, что аберрантный паттерн микроваскуляризации может возникать на ранней стадии бронхиального канцерогенеза.

Другие пути, включая передачу сигналов с помощью жирных кислот и ретиноевой кислоты, также являются общими для плоскоклеточных прединвазивных поражений и LUSC. SOX2 усилен (3q26.3) в LUSCs, способствует выживанию опухолей с амплификацией гена. Отметим, что экспрессия белка SOX2 полностью отсутствует в патогенезе аденокарциномы легких и высоко выражена в преинвазивных плоскоклеточных поражениях и в LUSC. Аналогично NKX2-1 в LUADs, можно предположить, что SOX2 функционирует как онкоген, ограниченный по клонам, в раннем патогенезе LUSCs.

Профили экспрессии генов, модулируемые на ранней стадии между нормальными клетками и предраковыми поражениями, а также профили, которые менялись между предопухолевыми тканями и LUSC указывают на ингибирование TP53 и активацию Mус. Напомню, что экспрессия белка р53 в случае плоскоклеточной метаплазии, составляла 5%, а при тяжелой дисплазии достигала уже 60% клеток. Экспрессия Вcl-2 происходила аналогичным образом.
Невысокий уровень экспрессии этого белка при плоскоклеточной метаплазии резко возрастал при тяжелой дисплазии/раке «in situ». Такая парадоксальная экспрессия обьясняется процессами в диспластическом эпителии: если р53 пытается инициировать аполптоз, то Вcl-2 эффективно его блокирует ( уже при раке in situ р53 начинает генетически и эпигенетически блокироваться ). Так, широко распространенные мутации в TP53 были зарегистрированы в бронхиальном эпителии курильщиков, свободных от рака (сначала активирующие, а затем тормозящие).

Выявлен высокий уровень соответствия статуса метилирования CDKN2A между опухолями легких и прилегающим нормальным эпителием бронхов. Другие гены, которые были описаны как метилированные в области повреждения дыхательных путей у здоровых от рака, включают RAR-β2 ( retinoic acid receptor beta2 - тип ядерного рецептора, который активируется как полностью транс-ретиноевой кислотой, так и 9-цис-ретиноевой кислотой, который функционирует как ген-супрессор опухоли в различных типах опухолей человека), RASSFF1A (Ras-association domain family 1, isoform A) и GSTP1 (принадлежит к семейству глутатион-S-трансфераз (GSTs), ферментов, которые катализируют детоксикацию эндогенных и экзогенных веществ, конъюгируя их с глутатионом (GSH).

Среди курильщиков с предраковыми поражениями сигнатура активированного PIK3CA уменьшалась в области повреждения после химиопрофилактики миоинозитом, ингибитором PIK3CA, и изменения в сигнатуре экспрессии гена были связаны с клиническим ответом, измеренным по регрессу диспластического поражения.

Базальные клетки дыхательных путей у здоровых курильщиков подвергаются репрограммированию в направлении фенотипа, подобного эмбриональным стволовым клеткам, и постулировано, что этот процесс представляет собой раннее событие в развитии карциномы легких у курильщиков.

Полевой канцерогенез включает аберрантную модуляцию микроРНК (miRNA). Выявлена новая микроРНК, miR-4423, которая проявляла клон-специфические свойства, поскольку было обнаружено, что ее экспрессия ограничивается исключительно эпителием дыхательных путей. miR-4423 была снижена в опухолях легких и подавляла признаки злокачественного фенотипа легких, т.е. она лежат на пересечении между полевым канцерогенезом и ранними событиями в патогенезе рака легких.

Возможные пути и маркеры, которые дифференцированно модулировались со временем в полевых условиях включали повышенную бронхиальную экспрессию фосфорилированных форм онкогенов AKT1 и ERK1 / 2. Они могут быть связаны с рецидивом рака легких у пациентов на ранней стадии, подвергшихся хирургическому лечению. Напомню,что фосфорилирование этих онкогенов стимулируется mTOR2, который активируется при травматическом и воспалительном повреждении эпителия. В норме при регенерации ран эпителий наползает с краев ран по сформировавшейся базальной мембране (БМ). Выход за пределы БМ (инвазия) наблюдается только при злокачественном перерождении эпителия.

Профили генов соседних, но не далеких клеток дыхательных путей тесно связаны с паттернами экспрессии близлежащего NSCLC. Один из этих генов, LAPTM4B , онкоген, связанный с лизосомами, является новым активатором пути стрессового ответа NRF2 в клетках рака легких.
Сейчас создан 17-генный классификатор в качестве бронхиального биомаркера для выявления рака легких. Классификатор и бронхоскопия продемонстрировали комбинированную чувствительность 97% для диагностики рака легких независимо от размера, местоположения, типа клеток или стадии рака.

Создана разветвленная модель эволюции патогенеза опухолей, при которой субклоны расширяются независимо, приобретая различные мутации с течением времени. Кроме того, эти множественные субклональные популяции могут сосуществовать вместе. Внутриопухолевая гетерогенность (ITH): эпителий дыхательных путей, подвергшихся воздействию курения, в областях повреждения / канцеризации или предраковых поражений может проявлять клеточные субклоны с различными мутационными паттернами и, таким образом, с различной способностью прогрессировать до НМРЛ.

albert52 22.10.2022 23:36

Вставка.

Ген р53 и его роль в онкогенезе

Сначала немного теории.

Механизмы, приводящие к активации р53, могут зависеть от стимула: например, повреждение ДНК способствует фосфорилированию р53, блокируя опосредованную MDM2 деградацию, тогда как онкогенная передача сигналов индуцирует супрессор опухолей ARF для ингибирования MDM2.
р53 имеет решающее значение для обратимой контрольной точки фазы G1, индуцированной повреждением ДНК, отчасти благодаря своей способности транскрипционно активировать циклин-зависимую киназу р21 - ген-ингибитор, предположительно облегчающий репарацию ДНК перед дальнейшим делением клеток.

Подавляющее большинство опухолевых мутаций ТР53 происходит в области, кодирующей ДНК-связывающий домен р53. При этом в то время как мутация TP53 может коррелировать с паттернами вариантов отдельных нуклеотидов и специфических ко-мутированных генов, связь между мутацией TP53 и вариацией числа копий (CNV) является сильной и универсальной в пан-раковом анализе. Кроме того, злокачественные опухоли, содержащие мутации TP53 , обычно являются анеуплоидными, с грубыми изменениями числа целых хромосом.
В этом аспекте отметим способность p53 регулировать процессы в переходах G2 / M. Например, потеря p53 нарушает регуляцию контрольной точки сборки веретена, осла***я MAD2, что приводит к увеличению скорости рассредоточения хромосом и тетраплоидизации. В контексте тетраплоидных клеток потеря р53 приводит к увеличению частоты многополярных митозов и последующей неправильной сегрегации хромосом.

р53 может также ограничивать хромосомную нестабильность посредством своей способности отбирать клетки при риске аберрантных митозов, особенно после амплификации центросом и / или дисфункции теломер. Дополнительные центросомы приводят к активизации пути Hippo, который, в свою очередь, активирует p53 путем ингибирования MDM2. Соответственно, мутации TP53 также связаны с событиями удвоения целого генома в опухолях человека.

Вообще p53-дефицитные клетки лучше переносят протеомный стресс, вызванный аберрантной дозой генов. p53 также, по-видимому, подавляет определенный тип хромосомного разрушения и перестройки, известный как хромотрипсис (см. выше). р53 помогает поддерживать целостность генома, подавляя ретротранспозоны; их репрессия, опосредованная р53, зависит от эпигенетического молчания локусов ретротранспозонов, а не от апоптоза, и деспрессированные ретротранспозоны способны реинтегрироваться в геном, способствуя мутагенезу.
Инактивация р53 может также быть уникальной по своей способности как стимулировать геномную нестабильность (за счет увеличения количества новых вариантов), так и обеспечивать выживание более широкого пула генетических конфигураций (уменьшая вероятность исчезновения вариантов).

р53 может модулировать аутофагию, изменять метаболизм, подавлять плюрипотентность и клеточную пластичность и способствовать железо-зависимой форме гибели клеток, известной как ферроптоз . Даже базальные уровни р53 могут усиливать множественные другие сети, подавляющие опухоль. Однако ответ p53 является чрезвычайно гибким и зависит от типа клетки, ее состояния дифференцировки, стрессовых условий и взаимодействующих сигналов окружающей среды.

Хотя остановка клеточного цикла и апоптоз связаны с активацией p21 или проапоптотических белков семейства Bcl-2 соответственно, отметим что глобальный транскрипционный ответ на активацию p53 включает много других потенциальных модификаторов исхода. Природа мишеней р53 убедительно подтверждает, что неканонические процессы, включая контроль АФК, ремоделирование тканей, аутофагию и метаболизм, являются процессами, контролируемыми р53 . Отметим, что только около 60 генов являлись общими целями, и клеточный контекст и различные стимулы вызывают транскрипцию качественно разных наборов генов, а не просто разных уровней одного и того же набора генов.

Так, коллекция метаболических генов-мишеней, контролируемых p53, влияет на многие отдельные процессы: сообщается, что p53 увеличивает катаболизм глутамина, поддерживает антиоксидантную активность, подавляет синтез липидов, увеличивает окисление жирных кислот или стимулирует глюконеогенез. В целом р53 может регулировать различные аспекты метаболизма, которые приводят к различным или даже противоположным биохимическим и фенотипическим результатам. Так, аутофагия может задерживать апоптоз за счет снижения уровня PUMA. Тем не менее, в тех случаях, когда р53 не способен подавлять гликолиз, аутофагия эффективно не задействована и благоприятствует апоптозу.

Один из предложенных механизмов для качественной модуляции биологических эффектов р53 включает зависящие от стимула посттрансляционные модификации (РТМ), которые могут изменять сродство р53 к различным генам-мишеням; например, phospho-p53 (S46) или acetyl-p53 (K120) стимулирует апоптоз, тогда как PRMT5-метилированный p53 активирует p21 более легко, чем гены апоптоза. Описано множество других PTM во многих различных сайтах белка p53, которые не только модифицируют стабильность белка, но также влияют на смещение гена-мишени.

Кинетика активации р53 может быть переведена в смещение гена-мишени из-за различий в скорости связывания и диссоциации р53 в разных локусах-мишенях. Так, промотор р21 чувствителен к коротким импульсам активности р53, следовательно, короткий импульс вызывает пролиферативный арест, а устойчивый сигнал вызывает апоптоз.
Возможно, определенные стрессовые реакции, вызванные p53, инициируют краткосрочную программу восстановления и спасения, которая, при необходимости, достигает переломного момента, который прогрессирует к самоуничтожению клеток. Кстати гены-мишени для p53 могут уже экспрессироваться на базальных уровнях, поэтому, например, p53-нулевые клетки ни в коем случае не являются p21-нулевыми.

Модификации хроматина в зависимости от типа клеток и состояния могут сделать определенные гены более или менее доступными для трансактивации р53. Например, CTCF при определенных условиях изолирует локус PUMA от репрессивных модификаций гистонов , определяя, экспрессируется ли PUMA и происходит ли апоптоз.
Наконец, один и тот же транскрипционный вывод может иметь разные эффекты в зависимости от состояния клетки. Передача сигналов ATM защищает клетки от p53-опосредованного апоптоза, не изменяя управляемый p53 транскрипционный выход, но блокирует аутофагию, таким образом поддерживая митохондриальный гомеостаз и снижение уровня ROS.

В совокупности эти наблюдения подразумевают, что ответ p53 является не просто переключателем «включено-выключено»; наоборот, клеточная судьба является результатом богатой палитры p53-управляемых стрессовых реакций. Так, в В-клеточных лимфомах, экспрессирующих Myc, ответ на р53 представляет собой массивный апоптоз; при раке печени и саркомах ответом является старение. В других случаях реактивация р53 может вызвать клеточную дифференцировку и потерю самообновления.
Короче говоря, клеточный контекст (тип клетки, эпигенетическое состояние, микроокружение ткани, активирующий сигнал) является центральным как для биохимических аспектов активности р53, так и для биологического результата ответа р53.

albert52 23.10.2022 01:28

Продолжим.

TP53 является членом более широкого семейства генов, которое включает гены TP63 и TP73 (см. выше) , которые выполняют разнообразные и дополняющие роли. TP53 высших эукариот отошел от TP63 / TP73 за некоторое время до появления акул. После отделения от своих гомологов TP53 и его сеть приобрели способности к подавлению опухолей, которые не разделяются TP63 / TP73 , что демонстрирует еще более четкие связи с эмбриональным развитием. Семейство p53 необходимо для мезендодермальной дифференцировки. Представляется вероятным, что компенсация между членами семьи р53 маскирует другие роли р53 в процессе развития.

Хотя сама последовательность белка р53 относительно консервативна у высших эукариот, домены, участвующие в регуляции р53 на N- и С-концах, а также нижестоящий ответ р53 находятся под постоянным эволюционным давлением.
Другой путь развития сети p53 - увеличение дозы гена. То, что слоны приобрели до 20 ретрогенов TP53, может объяснить, по крайней мере частично, то, что животное с таким большим размером тела и относительной продолжительностью жизни не подвержено высокому риску рака.

p53 ограничивает клеточную пластичность (регулирующую переход между клеточными состояниями) и, в крайнем случае, способность соматических клеток подвергаться эпигенетическому перепрограммированию в индуцированные плюрипотентные стволовые клетки. Факторы, стимулирующие iPS KLF4 и Oct4, репрессируют p53 и, наоборот, активность p53 противодействует эффективности перепрограммирования клеток iPS.

Применение вышеуказанных принципов можно увидеть в регенерации тканей и реакции заживления ран, которая представляет собой сложный процесс, включающий волны воспаления, ангиогенеза, регенерации тканей, ремоделирования внеклеточного матрикса (ECM) и фиброза для предотвращения инфекции и устранения повреждения ткани. Во время начальной пролиферативной фазы регенерации митогены активиру -ются, и р53 должен подавляться, чтобы позволить ремоделирование ткани. Запуская клеточное старение, р53 способствует высвобождению секреторных факторов, которые позволяют разрешить фиброз и координируют ремоделирование ECM. Кроме того, действие р53 при заживлении ран также формирует микроокружение опухоли.

Интересно, что физиологические функции и функции развития р53 тесно связаны с ассоциированным с раком фенотипом потери р53. Уклонение от терминальной дифференцировки является важным шагом в злокачественной трансформации, и потеря р53 может быть одним из путей ослабления этого врожденного барьера для онкогенеза. В крайнем случае потеря p53 может даже способствовать переключению клонов в качестве механизма устойчивости к антиандрогенной терапии при раке предстательной железы.

Похоже, что эволюция выбрала для тонкого баланса активности р53, так как слишком мало р53 приводит к раннему раку и слишком много р53 усугу***ет старение. Несмотря на это, опасность избытка р53 очевидна при патологиях, помимо рака, включая старение, ишемическое повреждение и дегенерацию. С возрастом стоимость уничтожения потенциально опасных клеток - это истощение стволовых клеток, необходимое для гомеостаза тканей. Чрезмерный p53-зависимый апоптоз может также приводить к нарушениям развития головного мозга и связанным с старением нейродегенератив -ным заболеваниям, а именно к болезням Альцгеймера и Паркинсона. Наконец, избыточный p53-опосредованный ферроптоз может вызвать летальную ишемию почки.

Наиболее распространенными и хорошо охарактеризованными мутациями TP53 являются миссенс-мутации в ДНК-связывающем домене, подразумевая, что эта особенность p53 является критической для подавления опухоли. Большинство однонуклеотидных вариантов (SNV), наблюдаемых при раке, являются мутациями ошибок транскрипции, причем 25% из них попадают в 5 мутаций «горячей точки».
Для TP53 почти 25% мутаций являются нонсенс-мутациями или мутациями со сдвигом рамки, которые кодируют усеченные белки, тогда как остальная часть состоит из SNV сайта сплайсинга и внутрикадровых индексов с неясной биологической значимостью. Хотя обычно предполагается, что мутации укорочения TP53 являются нулевыми аллелями, появляются данные, что даже эти аллели могут обладать неоморфной активностью, что отражает установленный прирост функциональных миссенс-мутантов. Экспрессия или имитация альтернативных вариантов сплайсинга могут также способствовать фенотипу других распространенных мутаций.

LOH гена р53 происходит посредством сегментарных делеций, которые сильно различаются по размеру и происходят с частотой, сходной с SNV p53. Наблюдаются почти все возможные комбинации аллелей, так что в действительности только ~ 25% опухолей содержат каноническую комбинацию миссенс-мутации / делеции р53.
Отдельные мутационные сигнатуры в TP53 и других генах могут быть частично связаны со специфическим источником мутагенеза. Например, мутация R249S, распространенная в гепатоцеллюлярной карциноме, возникает из-за G-to-T трансверсий, связанных с воздействием афлатоксина, а мутации R213 в меланоме связаны с сигнатурой C-to-T-перехода вследствие УФ мутагенеза.

Некоторые мутантные аллели TP53 обладают свойствами «усиления функции», которые продуцируют фенотипы, отличные от нуля. Наиболее заметным фенотипом, продуцируемым такими мутантными белками, является их способность усиливать инвазию и метастазирование, хотя в некоторых условиях определенные мутанты усиливают лекарственную устойчивость, эпигенетическое перепрограммирование или ангиогенез. Так, в случае белково-белкового взаимодействия с усилением функции мутантный p53 может взаимодействовать с комплексом SWI / SNF, чтобы активировать регулятор ангиогенеза VEGFR2.

В то время как предлагаемые действия мутантов разнообразны, появляющееся «правило большого пальца» состоит в том, что полученные из опухоли мутанты p53 противодействуют функциям p53 дикого типа или усугу***ют последствия потери p53.
Теоретически, аллели мутанта р53 могут отражать ослабление функции, разделение функции или неоморфную функцию. При этом потеря функции является общей характеристикой всех мутантов р53, связанных с раком, учитывая неспособность большинства мутантов индуцировать апоптоз. Но в целом мутации, встречающиеся при раке, приобретают некоторую комбинацию этих независимых характеристик. И, наконец, делеции 17 хромосомы, рассматриваемые как синтенические к 17p13, где лежит ТР53, приводят к более агрессивным раковым заболеваниям, чем простой дефицит p53.

В некоторых случаях устойчивые ответы на обычную химиотерапию могут зависеть от p53; так, драматические излечения, достигнутые лечением ретиноевой кислотой и мышьяком острого промиелоцитарного лейкоза, зависят от p53-опосредованного старения. Одна из наиболее продвинутых попыток использовать наше понимание биологии р53 для лечения рака включает в себя усилия по ингибированию MDM2 в опухолях, содержащих р53 дикого типа. Так, была разработана совокупность низкомолекулярных и пептидных ингибиторов MDM2 и MDMX, направленных на усиление эффектов ингибиторов первого поколения, которые обычно действуют путем нацеливания на сайт связывания p53 в MDM2. Отметим еще, что ингибиторы MDM2 также используются в усилиях, направленных на снижение токсических побочных эффектов химиотерапии.

Мутантные белки р53 обычно экспрессируются на высоких уровнях и могут быть антигенными, а потеря p53 может защитить раковые клетки от CD8 + T-клеток посредством дерепрессии PD-L1, что, кстати, проявляется при раке легкого. Хотя p53-дефицитные клетки могут избежать апоптоза перед лицом агентов, повреждающих ДНК, дальнейшее отключение DDR лелает эти клетки сверхчувствительными к генотоксическому повреждению. Соответственно, были разработаны стратегии, объединяющие повреждающие ДНК агенты с ингибиторами компонентов DDR ATM, CHK2, ATR и CHK1. Также ингибитор WEE1, который отключает контрольную точку клеточного цикла G2, усиливает противоопухолевую активность генотоксической химиотерапии у ранее резистентных p53 мутантных пациентов с раком яичников.

albert52 24.10.2022 13:37

Продолжим.

По оценкам, треть взрослого населения мира и около 1,1 миллиарда человек курит табак, что делает курильщиками каждого шестого человека. Заболевания, связанные с курением, по оценкам, вызывают около 5 миллионов смертей в год во всем мире, но считаются ведущей предотвратимой причиной смерти. На курение приходится не менее 30% всех смертей от рака и 87% смертей от рака легких.
Первоначально распространенность курения сигарет была выше среди мужчин, но с 1980-х годов гендерный разрыв сократился и стабилизировался. Пассивное курение или табачный дым в окружающей среде также классифицируется как известный канцероген для человека и считается причиной около 50 000 смертей в США ежегодно. Пассивное курение представляет собой смесь двух форм дыма от горящего табака: побочного дыма, который исходит из конца зажженного источника (сигарета, трубка или сигара), который содержит более мелкие частицы, которые легко проникают в клетки и богатым канцерогенами дыма, выдыхаемого курильщиком. Сигаретная смола и оксид азота (NO) действуют синергетически, вызывая разрывы однонитевой ДНК.

Что же касается электронных сигарет (ЭС), то в них не происходит горения табака и пользователь вдыхает и выдыхает не дым, а аэрозоль никотина («пар»). Общее содержание никотина во вдыхаемом аэрозоле в анализе 20 серий из 15 затяжек может находиться в диапазоне от 0,5 мг до 15,4 мг. ЭС могут содержать NNN и NNK, вещества с доказанной канцерогенностью. После обнаружения н-ХР (никотиновых холинрецепторов) на эпителиальных клетках, выстилающих области перехода слизистых оболочек в кожу, ЖКТ и воздухоносные пути, стало очевидно, что на пути в центры «удовольствия» в ЦНС никотин сталкивается со множеством неневральных мишеней, которые он потенциально может повредить. Так, никотин избирательно накапливается в тканях злокачественных опухолей желчного пузыря, что позволяет предполагать связь никотина с опухолями этого органа.
Более того, после злокачественного перерождения клеток меняется доминирующий подтип экспрессируемых ими н-ХР. Так однонуклеотидные полиморфизмы (ОНП) в генах, кодирующих субъединицы н-ХР, могут влиять на вероятность развития у индивида рака легкого, пищевода, желудка и шейки матки .

Предполагается, что рак легких у не курильщиков возникает из-за множества факторов риска, включая генетическую предрасположенность, хотя это чрезвычайно редко (1% с> 3 больными родственниками). Генетические мутации остаются основной причиной, поскольку мы встречаемся с раком легких в относительно более раннем возрасте, когда он передается в семье. Гормональное лечение женщин в постменопаузе не увеличивало заболеваемость раком легких, однако оно увеличивало смертность от рака легких, в частности смертность от НМРЛ.

Канцерогены табака метаболизируются ферментами цитохрома P-450, что делает их легко выводимыми. Оксигенированные промежуточные метаболиты претерпевают последующие преобразования (детоксикацию и секрецию) глутатионами, суфатазами или уридин-5'-дифосфат-глюкуронозилтрансферазами (U5'DPGT). Некоторые из метаболитов, образующихся во время этих процессов, реагируют с ДНК с образованием продуктов ковалентного связывания, называемых аддуктами ДНК, в процессе, называемом метаболической активацией. Канцерогены, такие как полциклические ароматические углеводороды (ПАУ) и 4- (метил -нитрозамино) -1- (3-пиридил) -1-бутанон (NNK), требуют метаболической активации для проявления своего канцерогенного действия. Восприимчивость к развитию рака зависит от баланса между метаболической активацией и детоксикацией потенциальных канцерогенов у курильщиков .

Курение сильно связано с SCLC и плоскоклеточным раком (SCC), но постепенное изменение способа производства сигарет привело к сдвигу в гистологии с SCC, который был более частым в 1970-х годах, на подтипы аденокарциномы, которые в настоящее время встречаются чаще. Влияние сигарет с низким содержанием смол, появившихся в 1950-х годах, на заболеваемость аденокарциномой, было связано с введением в этих сигаретах вентиляционных отверстий, облегчающих курильщику вдыхание дыма и обеспечивающих более глубокое вдыхание, чем у старых сигарет без фильтра. Кроме того, смешанный восстановленный табак высвобождает более высокую концентрацию N-нитрозаминов из ст***ей табака. В результате вдыхание переносит специфические для табака канцерогены более дистально к бронхоальвеолярному соединению, где часто возникает аденокарцинома (см. выше).

У курильщиков есть свой набор мутаций-драйверов, которые отличаются от рака легких у никогда не куривших. Общие мутации у курильщиков включают p53 (> 50%), K-Ras (~ 30%), p16 (> 70%), STK11 (11%) и другие, такие как F-HIT и T790M. Напротив, частота мутаций EGFR (4%) и EML4 ALK (2%) у них относительно низкая. Так, шансы мутации EGFR в 6,5 раз выше у некурящих, в 4,4 раза выше у людей с аденокарциномой, в 1,7 раза выше для женщин и в 4-6 раз выше у жителей Восточной Азии.
Гомозиготная делеция или потеря гетерозиготности (LOH) хромосомы 19p в локусе супрессора LKB1 произошла в 90% протестированных образцов при первичном раке легких. Мутация чаще встречается при раке легких у курильщиков, чем у никогда не куривших, и обычно возникает совместно с мутациями K-Ras, но нечасто с мутациями EGFR, составляя 50% приобретенной устойчивости к TKI таргетной терапии).

При мутации р53 (см. выше) события амплификации генов приводят к появлению дополнительных хромосомных копий протоонкогена или событиям транслокации, которые перемещают протоонкоген на новый хромосомный сайт, что приводит к более высокой экспрессии рецептора белка клеточной поверхности, например сверхэкспрессии EGFR. Это также может привести к слиянию между протоонкогеном и вторым геном, генерирующим слитый белок; например, EML4-АЛК - это слитый онкоген в результате инверсии в хромосоме 2р, что приводит к постоянной экспрессии химерной тирозинкиназы. Около 5% всех пациентов с НМРЛ имеют этот гибридный ген, причем более молодые люди, некурящие / легкие курильщики с аденокарциномой имеют эту мутацию с большей вероятностью (около 13%).

Мутации р53 демонстрируют дозозависимое увеличение трансверсий G → T в горячих точках, часто после воздействия канцерогенов табака. Отметим, что пациенты с мутациями p53, которые продолжают курить, были значительно старше и курили значительно больше лет, чем пациенты без изменений p53 . Вообще, поскольку p53 редко бывает нулевым в опухолях человека, но часто развивает потерю гетерозиготности (LOH) в одном аллеле и миссенс-мутацию во втором аллеле, наличие мутантного аллеля с активностью усиления функции становится потенциально важной терапевтической проблемой.

Контрольная точка повреждения ДНК служит мощным активатором функции p53, и аллельное ослабление p53 WT путем хромосомной делеции, наряду с точечной мутацией в оставшейся копии, часто наблюдается в различных типах опухолей человека как механизм обхода этой критической контрольной точки. Хотя мутации были обнаружены почти во всех аминокислотных позициях в белке, было идентифицировано несколько областей горячих точек (V157, R158, R175, G245, R248, R249 и R273), которые подчеркивают критическую функцию основного домена связывания ДНК.

Некоторые мутации KRAS, такие как мутации в экзонах 2 и 3, которые предотвращают гидролиз GTP и предотвращают выключение передачи сигналов KRAS, приводят к конститутивной активации белков KRAS. Отметим, что полная злокачественная трансформация зависит от высоких уровней экспрессии KRAS G12C, которая требует потери p53, чтобы обойти индуцированное онкогеном старение.
Эта мутация обнаруживается примерно в 13% случаев НМРЛ, чще выявляется у курильщиков и стала терапевтической мишенью; появились два специфических TKI KRAS G12C: соторасиб (AMG510) и адаграсиб. Отметим, что второй по частоте KRAS G12D чаще встречается у некурящих .
Мутации Kras и p53 также управляют NF-κB-зависимой передачей сигналов в опухолях легких , т.е. в условиях хронического воспаления мутантный р53 в опухолевых клетках потенциально может аннулировать нормальную опосредованную р53 проверку клеточного ответа на воспалительные сигналы.

Курильщики склонны к частым побочным эффектам во время терапевтических курсов химиотерапии и лучевой терапии (например, мукозит) и при общей анестезии (ГА), а также к хирургическим осложнениям. Их послеоперационная выживаемость также хуже.

albert52 20.11.2022 15:27

Продолжим.

Аденокарциномы легкого гистологически гетерогенны, что побудило Всемирную организацию здравоохранения подчеркнуть, что большинство аденокарцином имеют смешанный характер роста с характерными паттернами солидного, ацинарного, папиллярного и лепидного типов. Аденокарциномы легкого с папиллярным ростом демонстрируют 2 типа папиллярной архитектуры: истинные папиллярные структуры с сосочками, содержащими слоистый железистый эпителий, окружающий фиброваскулярное ядро, и микропапиллярный рост (МР). Гистологически картина MP определяется как опухолевые клетки, растущие в папиллярных структурах, с пучками, лишенными центрального фиброваскулярного ядра и плавающими в альвеолярных пространствах, что приписывает более инвазивное и метастатическое поведение. Поэтому паттерны микропапиллярного роста были связаны с более агрессивным клиническим течением по сравнению с традиционной папиллярной аденокарциномой и бронхиолоальвеолярной карциномой.

Микропапиллярная аденокарцинома легкого является важным гистологическим вариантом, похожим на варианты, наблюдаемые в других органах, таких как грудь, мочевой пузырь и яичник; считается эквивалентной низкодифференцированной аденокарциноме. Статьи, сообщающие о росте микропапилляров, указывают на его присутствие в от 5% до 100% исследуемых групп населения.

Микропапиллярные опухолевые клетки, как правило, маленькие и имеют кубическую форму с минимальной ядерной атипией, отделяются и/или соединяются со стенками альвеол. Клеточный матрикс может отсутствовать, а полярность обычно инвертирована с периферической ядерной поляризацией. Скопления обычно располагаются по периферии опухоли. Считается, что неупорядоченные микропапиллярные структуры способствуют распространению в лимфатические и другие ткани.
МUC1 был положительным на внешней поверхности микропапиллярных пучков. Метастатический потенциал был опосредован дефицитом Ras-GTPase-активирующего белка (IQGAP1), который повсеместно экспрессируется у людей. В микропапиллярном компоненте дефицит IQGAP1 вызывает нарушение целостности всей сети кадгерин-катенин-актин и разрушение клеточных адгезивных соединений, что приводит к высвобождению клеток карциномы, организующихся в микропапиллярный паттерн.
Ламинин был идентифицирован в базальной мембране нормальных альвеолярных клеток и опухолевых клеток основной опухоли, но не был обнаружен ни в одной клетке с микропапиллярными пучками. Клеточные пучки без фиброваскулярного ядра как правило, являются отличительной чертой этого образования. Это сильно отличалось от других типов опухолей, в которых важны сосуды и неоваскуляризация. Однако в легких опухолевые клетки питаются из окружающих жидкостей на альвеолярных поверхностях.

Уровни MMP9 были самыми высокими в преобладающих микропапиллярных и солидных подтипах аденокарцином легких. Напротив, уровни MMP9 были низкими у ацинарного и папиллярного подтипов и даже ниже у лепидного подтипа. Драйверные мутации аденокарциномы легкого (LADC) в нынешнюю эпоху точной медицины имеют решающее значение для выбора таргетной терапии. Наиболее распространенными молекулярными изменениями были мутации EGFR, за которыми следовали мутации KRAS и транслокации ALK. При LADC мутация HER2 чаще встречается у женщин; пациенты с опухолями, содержащими мутации HER2, реагируют на несколько типов таргетной терапии (например, трастузумаб, афатиниб и адо-трастузумаб, либо в качестве монотерапии, либо в комбинации с цитотоксической химиотерапией.

Белок ROS1 демонстрирует существенную гомологию с ALK (оба принадлежат к надсемейству рецепторов инсулина), особенно в пределах сайта связывания АТФ (гомология 84%) и доменов киназы (гомология 64%). Мутации киназы ROS1 были значительно более частыми в НМРЛ с STAS. У ROS1-положительных пациентов с раком легкого ген ROS1 сливается (присоединяется) к части другого гена. Это активирует ген ROS1 таким образом, что вызывает неконтролируемый рост клеток и рак. Это изменение гена называется слиянием или перестройкой ROS1. Ген ROS1 может сливаться со многими разными партнерами. Наиболее распространенным из них при раке легкого является ген CD74.
Кризотиниб как средство против рецептора фактора роста гепатоцитов (МЕТ) ингибирует АТФ-зависимые клеточные функции, связываясь с соответствующими доменами тирозиновых протеинкиназ, что приводит к сильному подавлению ROS1, MET и ALK.

Современная архитектурная система классификации была наиболее эффективной системой из трех предложенных моделей (архитектурная, Кадота, и Sica), потому что он позволяет лучше всего различать исходы аденокарциномы I стадии низкой, средней и высокой степени злокачественности. Морфология определяется следующим образом: лепидная как хорошо дифференцированная, ацинарная и папиллярная как умеренно дифференцированная. Две плохо дифференцированные морфологии — солидная и микропапиллярная — были в центре внимания значительных исследований на протяжении многих лет. Как солидные, так и микропапиллярные паттерны чаще наблюдаются у пациентов с рецидивом, и преобладание этих паттернов связано с н***агоприятным прогнозом, особенно для микропапиллярных.

Аденокарциномы, содержащие микропапиллярные и/или солидные компоненты в качестве вторичного, не преобладающего паттерна, имели более высокие показатели метастазирования в лимфатические узлы и более короткую медиану безрецидивной (БРВ) и общей выживаемости (ОВ). В последней классификации ВОЗ распространение опухоли через воздушные пространства (STAS) было сообщено как новый н***агоприятный прогностический фактор. STAS представляет собой идентификацию опухолевых клеток, которые распространяются в воздушных пространствах паренхимы легкого, прилегающих к краю опухоли.
Моримото и др. определили «свободные опухолевые кластеры» или STAS как три небольших кластера, содержащих <20 неинтегрированных микропапиллярных опухолевых клеток, которые находились в воздушных пространствах и на расстоянии > 3 мм от основной опухоли. Это напоминает опухолевые почки (Tumor budding) при раке толстой кишки. Наличие STAS и края опухоли менее 1,0 см являются значительными факторами риска местного рецидива на ранней стадии заболевания.
Расчетная частота STAS составила 0,368 у пациентов с НМРЛ. Кроме того, показатели STAS для плоскоклеточного рака и аденокарциномы составляли 0,338 и 0,374 соответственно. Среди гистологических подтипов аденокарциномы опухоли с преобладанием микропапилляров имели самый высокий уровень STAS ( 0,652–0,778). Показатели STAS солидной и папиллярной аденокарциномы были равны 0. 567 (0,478–0,652) и 0,446 (0,392–0,501) соответственно. Расчетные показатели STAS варьировались от 12,8% до 71,9% в зависимости от подтипа ADC. Микропапиллярный подтип показал самую высокую частоту STAS среди подтипов ADC (0,719).

Согласно гистологической классификации Международной ассоциации по изучению рака легких процент каждой гистологической картины — лепидной, ацинарной, папиллярной, солидной и микропапиллярной — регистрировался с шагом 5%, а опухоли классифици -руются по преобладающему типу. Каждый гистологический паттерн считался присутствующим в опухоли, если он составлял ≥5% всей опухоли. Также было зарегистрировано наличие висцеральной плевральной, лимфатической и сосудистой инвазии.
STAS считался присутствующим, когда в опухоли STAS выявлялся за краем основной опухоли, даже если она существовала только в первом альвеолярном слое от края опухоли. Поражения STAS состоят из опухолевых клеток, которые морфологически располагаются в воздушных пространствах в виде микропапиллярных скоплений, плотных гнезд или одиночных клеток, отслоившихся от альвеолярных стенок. Это отличается от лепидного роста, когда опухолевые клетки растут линейно вдоль поверхности альвеолярных стенок. Степень заполнения воздушного пространства опухолевыми клетками варьировала от обильных клеточных инфильтратов до очень малозаметных одиночных клеток или микропапиллярных скоплений, которые иногда трудно отличить от альвеолярных макрофагов.

albert52 20.11.2022 18:39

Мелкоклеточный рак легкого (SCLC)

Поскольку SCLC возникает в центральных дыхательных путях и экспрессирует маркеры NE, уже давно постулируется, что этот тип рака легких происходит от легочных эндокринных клеток (NE). Эти предшественники редки и обычно группируются в виде NE элементов в бронхиолах. Мелкоклеточная карцинома состоит из клеток характерного вида: клетки имеют относительно небольшие размеры, узкий ободок цитоплазмы, плохо определяемые границы, мелкогранулированный ядерный хроматин, ядрышки могут отсутствовать или быть незаметными, митотическая активность высокая. Клетки круглые, овальные или веретенообразные, с относительно выраженными ядрами, часто образуют кластеры и не имеют признаков ни железистой, ни плоскоклеточной дифференцировки. Часто развивается обширный некроз.

Часто в ткани опухоли обнаруживают мутации генов-супрессоров р53 и RB1 (50-80 и 80-100% соответственно). Иммуногистохимическое исследование демонстрирует высокий уровень экспрессии антиапоптотического белка BCL2 в 90% опухолей и низкий уровень экспрессии проапоптотического белка ВАХ. Этот тип рака легкого чаще всего ассоциируется с эктопической продукцией гормонов.
Прогрессирование SCLC может быть ускорено дополнительной потерей Pten. Отметим еще, что путь Notch направляет дифференцировку клеток-предшественников по не-нейроэндокринному пути. Такие клетки начинают очень медленно расти, что согласуется с подавляющей опухоль функцией Notch. Но в то же время эти клетки не только становятся медленно растущими, резистентными к терапевтическим средствам, но и активно продуцируют и секретируют фактор роста белок мидкин (Midkine), которым они «питают» нейроэндокринные клетки, способствуя их ускоренному делению и прогрессии опухоли.

Эндокринные клетки дыхательного эпителия также сходны с одноименными клетками в различных органах пищеварительной системы. Они являются частью диффузной эндокринной системы, предположительно выполняют хемо- и барорецепторную функции и относятся к нескольким типам. В их базальной части находятся секреторные гранулы, в которых содержится ряд пептидных гормонов и биоаминов, влияющих на тонус мышечных клеток в стенке воздухоносных путей и активность секреторных клеток.
Эндокринные клетки выявляются с помощью специальных окрасок или иммуногистохимическими методами. Их относительное содержание в эпителии воздухоносных путей нарастает в дистальном направлении. В воздухоносных путях, в особенности в их дистальных участках, эндокринные клетки располагаются в составе нейроэпителиальных телец - внутриэпителиальных компактных овальных образований, в которых они окружены нервными волокнами.

Легочные нейроэндокринные клетки (PNEC) - это специализированные эпителиальные клетки дыхательных путей, которые встречаются в легких в виде отдельных клеток или кластеров, называемых нейроэпителиальными тельцами (NEB) .
Легочные нейроэндокринные клетки также известны как клетки Кульчицкого или К-клетки. Они расположены в респираторном эпителии верхних и нижних дыхательных путей. PNEC и NEB существуют на стадии плода и новорожденного в дыхательных путях легких. Эти клетки имеют форму бутылки или колбы и простираются от базальной мембраны до просвета . Их можно отличить по профилю биоактивных аминов и пептидов, а именно серотонина , кальцитонина , пептида, связанного с геном кальцитонина (CGRP), хромогранина А , гастрин-высвобождающего пептида (GRP) и холецистокинина .

PNEC могут играть роль хеморецепторов в обнаружении гипоксии. Лучше всего это подтверждается наличием чувствительного к кислороду калиевого канала, связанного с сенсорным белком кислорода в просветной мембране кролика. Они также гипотетически участвуют в регуляции локализованного роста и регенерации эпителиальных клеток через паракринный механизм , посредством чего их сигнальные пептиды высвобождаются в окружающую среду. Кроме того, они содержат нейроактивные вещества, которые выделяются из базальной цитоплазмы. Эти вещества индуцируют вегетативные нервные окончания или сосудистую сеть в глубокой собственной пластинке .

Эти клетки могут быть источником нескольких типов рака легких, прежде всего мелкоклеточной карциномы легкого и карциноидной опухоли бронхов. По сравнению с немелкоклеточным раком легкого (НМРЛ), МРЛ характеризуется быстрым временем удвоения и ранними, широко распространенными часто гематогенными метастазами. Следовательно, у большинства пациентов (60–70%) на момент постановки диагноза будет заболевание обширной стадии (ЭС) (определяемое как рак, распространившийся за пределы ипсилатерального легкого и регионарных лимфатических узлов, и который не может быть включен в одно поле излучения.

Действующая система классификации рака легких Всемирной организацией здравоохранения (ВОЗ, 2004 г.) признает 3 злокачественных рака легких нейроэндокринного (NE) происхождения. К ним относятся SCLC, комбинированный SCLC (который содержит области NSCLC) и крупноклеточный рак NE (LCNEC) (подмножество NSCLC). NSCLC-подобные области характеризуются наличием мутаций типа NSCLC, включая KRAS, STK11, KEAP1 или MAP2K1.
SCLC располагается вдоль спектра NET в легком и является опухолью высокой степени злокачественности. Также в этом спектре находятся LCNEC, типичные карциноиды низкой степени злокачественности (TC) и атипичные карциноиды средней степени злокачественности (AC). Хотя этиология до сих пор полностью не выяснена, карциноиды, по-видимому, возникают из другой клетки-предшественника, чем SCLC и LCNEC.

SCLC характеризуется почти универсальной потерей генов ТР53 (75% -90% пациентов) и ретинобластомы 1 ( RB1 ) (приближается к 100%) - см. выше. Также RBL2 (член семейства РВ) служит вторичным опухолевым супрессором во время развития SCLC. Подобно тому, как RBL2 обеспечивает избыточность в RB-дефицитных клетках, гомологи P53 TP73 и TP63 вызывают остановку клеточного цикла и апоптоз благодаря своей способности активиро -вать экспрессию генов-мишеней P53. Эти члены семейства P53 часто существуют в нескольких изоформах, в том числе с укороченными N-концевыми доменами Эти усеченные формы имеют доминантно-негативную активность, которая ингибирует дикий тип семейства P53.
Инактивация всех четырех аллелей RB1 и TP53 была описана как причина SCC, включая SCLC. Этот механизм вероятен для независимого первичного SCLC, и возможен альтернативный путь рецидива вторичного SCLC из NSCLC с центральной ведущей осью, включая NOTCH-ASCL1-RB-p53.

Наблюдается инактивация RB за счет обширного фосфорилирования в трех различных положениях серина в клонах ASCL1 in vitro. После инактивации RB E2F1 высвобождается, и клетки направляются к апоптозу, опосредованному p53. Следовательно, фосфорилирование Ser795 является функционально важным, поскольку это наиболее мощный сайт, ингибирующий связывание E2F1 с карманом RB. Опухолевые клетки могут уклоняться от этого механизма апоптоза, приобретая мутации в гене TP53 .

Во время клеточного цикла CDK опосредуют фосфорилирование RB. Обнаружена повышенная регуляция CDK5 при сверхэкспрессии ASCL1. Прямое взаимодействие ASCL1 и CDK5 было показано в клетках рака легких, где ASCL1 стимулировал миграцию с помощью активированных CDK5. Известно, что CDK5 способен фосфорилировать RB по тем же остаткам, что и CDK4 и CDK2 в постмитотических нейронах, и способствует повторному входу в клеточный цикл и пролиферации. Более того, CDK5-опосредованное фосфорилирование RB по Ser807 / 811 важно для туморогенеза и прогрессирования опухоли при NE раке щитовидной железы. Также ASCL1 управляет передачей сигналов WNT посредством ингибирования DKK1 в глиобластоме.

Также выявлены новые мутации (например, в эпигенетических регуляторах) и мутации-драйверы с четко установленной ролью в нескольких типах рака (например, генов семейства MYC , BCL2, PTEN , CREB-связывающий белок [ CREBBP ] и FGFR1 ). Усиленный биогенез рибосом и синтез белка были наиболее значительными молекулярными изменениями во время L-Myc-управляемой трансформации предполагаемых клеток-предшественников.
Некоторые мутации онкогенов, такие как KRAS, при SCLC редки или отсутствуют. Сверхэкспрессия протоонкогенов происходит обычно путем амплификации отдельных хромосомных областей, включая L-myc или C-myc.

albert52 21.11.2022 12:11

Продолжим.

В исследованиях генно-инженерных моделей SCLC на мышах (GEMM) полная потеря Rb и p53 посредством Cre-опосредованной рекомбинации флоксированных аллелей в эпителии легких приводит к развитию SCLC у мышей, тогда как неполная делеция аллелей Rb или p53 вызывает только аденокарциному легких. Однако длительная латентность опухоли (9–12 месяцев после Cre-опосредованной делеции Rb и p53 ), наблюдаемая в GEMM, также подразумевает зависимость от дополнительных онкогенных событий, приводящих Rb / p53- мутантные клетки к злокачественному образованию, таких как сверхэкспрессия L-MYC (см. выше). Согласно моей теории полная потеря Rb и p53 делает клетки беззащитными перед генами инфраструктуры и их гиперэкспрессия вынуждает клетку создать дополнительный центр хоть для какого-то управления ими.

RB напрямую связывается с семейством факторов транскрипции E2F и рекрутирует HDAC и другие белки комплекса репрессоров транскрипции, так что он ингибирует экспрессию ряда белков, связанных с клеточным циклом, включая циклины. Инактивация RB также связана с увеличением пластичности клеток из-за выпадения регуляции пролиферации клеток и передачи сигналов апоптоза. Требование потери RB наблюдается в нескольких нейроэндокринных (NE) опухолях, включая ретинобластому и опухоль гипофиза, что позволяет предположить, что функция RB по подавлению опухоли частично связана с регулированием дифференцировки NE. Rb-нокаут, специфичный для эпителия легких, приводит к гиперплазии NE клеток.

Геномная амплификация генов MYC обнаруживается в значительной части (6–24%) опухолей пациентов, и более распространена (32–44%) в клеточных линиях SCLC. Амплификация каждого члена семейства MYC происходит взаимоисключающим образом, что указывает на функциональную избыточность среди членов семьи в их вкладе в онкогенез SCLC. Ингибирование биогенеза рибосом и синтеза белка с использованием специфического ингибитора CX-5461 подавляет рост опухоли в Rb / p53 -мутантном GEMM.
Опухоли, управляемые MYC, показали повышенную экспрессию нейрогенного фактора транскрипции NeuroD1, но сниженную экспрессию другого нейрогенного фактора транскрипции, Ascl1. Этот паттерн экспрессии совпадал со сниженной экспрессией других маркеров NE, включая SYP и CGRP; эта генетическая ассоциация со статусом MYC также наблюдается как в опухолях SCLC, так и в клеточных линиях.
Лечение алисертибом (низкомолекулярным ингибитором киназы Aurora A) резко подавляло рост MYC-обусловленного SCLC мыши и человека, который в противном случае быстро рецидивировал после стандартной химиотерапии, например, однократной дозы цисплатина или этопозида, или комбинации обоих методов лечения.

К клональным регуляторам транскрипции NE-линии в патогенезе SCLC относятся ASCL1, NEUROD1, SOX2, TTF-1, BRN2, INSM1 и GFI1 / 1B и многие другие. Недавние исследования показывают, что, помимо функционирования в качестве онкогенов выживания клонов, эти факторы определяют молекулярные подмножества клеток SCLC и вносят вклад во внутриопухолевую гетерогенность.
ASCL1 (achaete-scute-like 1) является членом фактора транскрипции основной спираль-петля-спираль (bHLH), который играет роль в нейрональной приверженности и дифференцировке клеток, включая PNEC, во время развития. В отличие от его широко распространенной экспрессии среди PNEC в легком плода, экспрессия ASCL1 ограничена субпопуляцией PNEC - потенциально спящих клеток-предшественников - в зрелом легком и повышена в субпопуляциях NE опухолей высокой степени злокачественности, включая SCLC.

Особенность Ascl1 объясняется его способностью распознавать и связываться с регуляторными элементами своих генов-мишеней, даже когда они связаны с нуклеосомами. Напротив, такая же новаторская активность не была продемонстрирована для Neurog2 , который, как полагают, связывается исключительно с доступными регуляторными элементами в геноме. Стратификация SCLC, основанная на различных паттернах экспрессии ASCL1 и NEUROD1, выявляет подтипы ASCL1 High (70%), NEUROD1 High (15%) и ASCL1 Low / NEUROD1 Low (15%) и указывает на то, что SCLC, развивающийся в Rb / p53 -мутантном GEMM, может больше напоминать подтип ASCL1 High. Эти подтипы также экспрессируют отдельные наборы связанных с SCLC онкогенов, среди которых L-MYC, RET, SOX2 и NFIB являются мишенями для ASCL1, тогда как c-MYC является мишенью для NEUROD1.

TTF-1 (фактор транскрипции щитовидной железы 1; также известный как NKX2-1) является одним из главных регуляторов эпителиальной дифференцировки и морфогенеза ветвления во время развития легких. Наблюдение за широко распространенной экспрессией TTF-1 в SCLC (почти 90% опухолей пациентов) привело к гипотезе о том, что он функционирует как онкоген выживания клонов в SCLC, как и в случае аденокарциномы легких. Большинство TTF-1-положительных SCLC были обнаружены на периферии легких, и этот SCLC периферического типа имел худший прогноз, чем центрально расположенные опухоли.

BRN2 (brain-2; также известный как POU3F2) представляет собой фактор транскрипции домена POU, специфичный для нервных клеток. BRN2 функционирует выше ASCL1 и NEUROD1, способствуя экспрессии генов NE и способствуя пролиферации клеток. RB может быть вышестоящим регулятором BRN2, поскольку мутантная по RB ретинобластома экспрессирует высокие уровни BRN2, которые снижаются с восстановлением экспрессии RB.

INSM1 (ассоциированный с инсулиномой 1) представляет собой фактор транскрипции с ДНК-связывающим доменом цинкового пальца и доменом SNAG (SNAIL / GFI1), играет важную роль в развитии клеток NE в поджелудочной железе и кишечнике. Insm1 напрямую связывается с регуляторными последовательностями в гене Hes1, подавляя его экспрессию; мутация Insm1 приводит к усилению экспрессии Hes1 и препятствует поддержанию экспрессии Ascl1. И наоборот, сигнализация NOTCH / HES1 подавляет INSM1. Он является важным регулятором дифференцировки NE при этом раке. Нокдаун INSM1 снижает скорость пролиферации клеточных линий SCLC и экспрессию нейроэндокринспецифических генов, включая ASCL1 , BRN2 , CHGA , SYP и NCAM.

GFI1 (независимый от фактора роста-1) и его гомолог GFI1B, белки с ДНК-связывающими доменами «цинковые пальцы» и доменами SNAG, действуя ниже по потоку от пронейрального bHLH таких факторов, как ASCL1 и Math1, играет роль в NE дифференцировке и развитии SCLC. Нокаут GFI1 резко снижает дифференцировку NE и нарушает пролиферацию PNEC. Механически GFI1 связывается с регуляторными областями генов-мишеней и рекрутирует модификаторы хроматина, включая LSD1, которые, в свою очередь, деметилазу H3K4 для подавления экспрессии гена. Это взаимодействие, вероятно, объясняет влияние ингибиторов LSD1 на рост SCLC.

NOTCH играет важную роль в принятии решений о судьбе клеток во многих тканях. Во время развития легких подмножество эпителиальных клеток-предшественников, экспрессирующих дельта-подобные лиганды (DLL), ингибирует NE дифференцировку соседних клеток-предшественников, экспрессирующих NOTCH, посредством передачи сигналов, опосредованных взаимодействием DLL-NOTCH, которые подавляют экспрессию ASCL1 в клетках, экспрессирующих NOTCH.
Активация передачи сигналов NOTCH посредством экспрессии N1ICD / N2ICD, эффекторов транскрипции, ингибирует развитие клеточного цикла в клетках SCLC и снижает развитие опухоли в легких Rb / p53 -мутантного GEMM. Управляемое NOTCH / HES1 переключение на фенотип, отличный от NE, происходит в 10-50% NE клеток и совпадает с индукцией REST, репрессора транскрипции и прямой мишени пути NOTCH, который репрессирует гены NE.

В целом сигнальные пути, которые вносят вклад в гетерогенность SCLC через изменение транскрипции, вероятно, сложны, включая большее количество путей, участвующих в нормальном развитии легких и гомеостазе, и перекрестных связях между ними. Например, PEA3, член семейства факторов транскрипции ETS, участвует в поддержании внутриопухолевой гетерогенности. Повышенного PEA3 было достаточно, чтобы вызвать свойство инвазивной миграции в клетках NE.
Путь фактора роста фибробластов (FGF) / RAS / MAPK регулирует экспрессию PEA3 и инвазивность в клетках NE, что позволяет предположить, что путь FGF отвечает за паракринную передачу сигналов между NE и не-NE клетками в SCLC. PEA3 вообще экспрессируется в метастатических опухолях и его экспрессия коррелирует с метастазированием различных раковых заболеваний человека, включая рак груди и NSCLC, что указывает на роль PEA в паракринной передаче сигналов в микроокружении опухоли легких.

Сигналы НН передаются для активации GLI семейств цинк-пальцев факторов транскрипции, которые пробуждают многочисленные онкогены, в том числе с - MYC, CCND1, и Glis сам. Возникает соблазн предположить, являются ли не-NE клетки HH-чувствительными стромальными клетками, а транскрипционная активность GLI способствует развитию и поддержанию гетерогенности опухоли.

albert52 21.11.2022 19:19

Продолжим.

Эпигенетические изменения, ведущие к прогрессированию SCLC

NFIB, член семейства факторов транскрипции ядерного фактора I (NFI), связывается с областями промотора, энхансера и сайленсера в геноме и регулирует множество генов почти во всех тканях во время развития. Изменения NFIB были вовлечены в злокачественные новообразования; в частности, он амплифицирован в опухолях SCLC человека (15%) и клеточных линиях (34%) с Rb / p53 -мутантном GEMM.
Эти исследования показали, что амплификация и избыточная экспрессия Nfib более распространены в метастазах, чем в первичных опухолях, причем увеличение Nfib было достаточным и необходимым для множественных стадий метастазирования в лимфатические узлы и печень. Nfib, однажды связанный с элементами ДНК-мишени, инициирует и стабилизирует доступную конфигурацию хроматина, которая способствует экспрессии генов, необходимых для метастазирования. Так, согласованные действия генов-мишеней Nifb вызывают метастазирование SCLC главным образом за счет изменения клеточной адгезии и движения.

EZH2 представляет собой гистон-метилтрансферазу, которая вместе с EED и SUZ12 образует репрессивный комплекс polycomb 2 (PRC2). Она опосредует триметилирование гистона H3 по лизину 27 (H3K27me3) в дискретных промоторных островках CpG, что приводит к репрессии транскрипции (подробнее в новой теории рака). В дополнении к своей роли в содействии формирования гетерохроматина и молчания генов в процессе развития и дифференциации, повышенная экспрессия EZH2 была связана с многочисленными типами рака, включая рак легкого. В раковых клетках высокая активность EZH2 приводит к долговременной репрессии генов-супрессоров опухолей, в частности сверхэкспрессия EZH2 способствует развитию K-Ras-зависимого НМРЛ.

Поскольку EZH2 является известной мишенью фактора транскрипции E2F, полная потеря RB при SCLC, вероятно, приводит к нарушению регуляции экспрессии EZH2. Функционально EZH2 играет роль в гомеостазе клеток SCLC, так как его нокдаун увеличивает апоптотическую активность за счет активации проапоптотических факторов, таких как PUMA и BAD, и за счет повышения уровня белка P21.
Одним из потенциальных биомаркеров активности Ezh2 является SLFN11 (член семьи Schlafen 11, предполагаемой ДНК / РНК - хеликазы), экспрессия которого может повышать чувствительность клеток к ДНК-повреждающим агентам. SLFN11 является прогностическим биомаркером чувствительности к PARP-таргетной терапии при SCLC и ингибирование EZH2 в сочетании с ингибированием PARP восстановило SLFN11, тем самым восстанавливая химиочувствительность.

Комплекс MLL1 / 4 (KMT2A / B) метилирует H3K4, а MLL2 / 3 (KMT2D / C) - H3K27. Мутации семейства MLL, впервые обнаруженные при злокачественных новообразованиях крови с делецией домена SET, приводящей к гипометилированию H3K4 и транскрипционной инактивации, являются одними из наиболее частых изменений при раке. При SCLC в генах, кодирующих MLL, были обнаружены множественные типы мутаций, включая миссенс-мутации и усечения; эти мутации были связаны с низким уровнем белка и глобальным снижением монометилирования гистона H3 лизина 4 (H3K4me1), маркера хроматина энхансеров транскрипции.

LSD1 (лизин-специфическая деметилаза 1), также известная как KDM1A деметилаза моно- и диметилирует лизин 4 гистона H3 (H3K4me1 / 2), тем самым эпигенетически регулируя активацию или репрессию экспрессии генов в различных контекстах. LSD1 сверхэкспрессируется при гематологических злокачественных новообразованиях и солидных опухолях, включая SCLC.
Два низкомолекулярных ингибитора LSD1, обозначенные как GSK2879552 и T-3775440, оказывают противоопухолевое действие на клетки SCLC in vitro и in vivo. Механически GSK2879552 вызывает широко распространенное гипометилирование, которое изменяет экспрессию ряда генов, включая ZEB1 и IGFBP2, а T-3775440 нарушает взаимодействие между LSD1 и факторами транскрипции домена SNAG (SNAIL / GFI1) INSM1 и GFI1B, тем самым подавляя экспрессию NE -ассоциированных генов, таких как ASCL1.

CREBBP [белок, связывающий элемент ответа цАМФ (CREB)] и EP300 (связанный с E1A p300) обладают внутренней активностью гистонацетилтрансферазы (HAT) и играют критическую роль в эмбриональном развитии, контроле роста и гомеостазе путем связывания ремоделирования хроматина с фактором транскрипции. При SCLC значительная часть опухолей пациентов несет мутации в генах, кодирующих эти факторы.
Характер кластеризации миссенс-мутаций в экзонах, кодирующих домен HAT, указывает на важность каталитической функции для подавления опухоли и, вместе с взаимной исключительностью мутаций CREBBP и EP300, также предполагает, что мутации, влияющие на домен HAT, могут иметь доминантно-отрицательные функции.

Механически CREBBP / EP300 ацетилирует H3K27 в энхансерных областях генов-мишеней по всему геному, чтобы способствовать транскрипции, которая, вместе с комплексом деметилазы MLL3 / 4-UTX, противостоит PRC2-опосредованному метилированию гистонов, которое обычно подавляет экспрессию генов. В контексте опухолевых клеток с измененной активностью CREBBP / EP300 модификация H3K27 нарушается, и пораженные гены, вероятно, супрессоры опухоли, сильно метилированы и подавлены. Отметим однако, что инактивация как CREBBP, так и EP300 усиливает метилирование H3K27, но также вызывает снижение экспрессии MYC; последний оказывается губительным для клеток НМРЛ. Следовательно, взаимоисключающий паттерн мутации CREBBP и EP300 может указывать не только на функциональную избыточность этих паралогов, но и на их синтетические летальные отношения.

Компоненты комплексов BAF-SWI / SNF и PBAF-SWI / SNF вовлечены в SCLC; при этом мутации были обнаружены в ARID1A / B (AT-богатый домен взаимодействия 1 A и B), PBRM1 (polybromo 1; также известный как BAF180) и BRG1 (SMARCA4). CHD7 (ДНК-связывающий белок 7 хромодомена геликазы), о котором известно, что он взаимодействует с PBRM1-содержащим комплексом PBAF, также мутирует в SCLC. В совокупности эти мутации обнаруживаются в значительных частях SCLC, предполагая роль эпигенетической регуляции, опосредованной SWI / SNF, в развитии SCLC.

BRG1 регулирует экспрессию MAX, партнера по димеризации MYC, и взаимодействует с MYC / MAX в экспрессии общего набора генов в SCLC. Но истощение BRG1 вызывает летальность конкретно в MAX-дефицитных клетках, значительно влияя на MYC в экспрессии генов. Кроме того, BRD4 (белок 4, содержащий бромодомен), белок, который связывается с ацетилированными гистонами и рекрутирует модификаторы хроматина и факторы транскрипции, представляет собой молекулярную мишень, представляющую интерес, поскольку ингибитор бромодомена JQ1 ингибирует рост раковых клеток со значительно более высокой эффективностью в MYC-амплифицированных линиях SCLC.

albert52 21.11.2022 22:10

Продолжим.

Табак содержит множество канцерогенов, в частности NNK (см. выше), а также никотин, вызывающий привыкание. Никотиновая зависимость начинается со связывания никотина с его родственным рецептором, никотиновым рецептором ацетилхолина (nAChR). Полногеномные исследования ассоциации выявили причастность кластера генов nAChR, CHRNA5 / A3 / B4, к никотиновой зависимости и предрасположенности к раку легких. Так, сверхэкспрессия сгруппированных генов nAChR наблюдалась при мелкоклеточной карциноме легких (SCLC). Анализ промоторных областей этих генов выявил предполагаемые сайты связывания во всех трех промоторах для ASCL1, что повышает вероятность того, что этот фактор может регулировать экспрессию кластерных генов nAChR.
Нокдаун ASCL1 в SCLC, но не NSCLC, приводил к значительному снижению экспрессии генов α3 и β4 нейронных nAChR, не оказывая влияния на любой другой высоко экспрессируемый ген nAChR. Отметим, что локус восприимчивости к раку легких находится в длинном плече хромосомы 15 (15q24 / 15q25.1), геномной области, содержащей гены, кодирующие субъединицы α5, α3 и β4 (CHRNA5 / A3 / B4).

α3-содержащие подтипы nAChR участвуют в никотин-опосредованной активации пути Akt, тогда как подтип α7, как полагают, опосредует индуцированный никотином ангиогенез и индуцированное NNK ингибирование апоптоза. α7 nAChR также обладают высокой проницаемостью для кальция, и связывание NNK приводит к притоку кальция, который запускает сигнальные пути, которые приводят к пролиферации клеток, увеличению миграции клеток, ингибированию апоптоза и ангиогенезу. Эти пути, по-видимому, включают митоген-активированные киназы ERK1 и ERK2, протеинкиназу C (PKC), серин / треониновую киназу RAF1 и факторы транскрипции FOS, JUN и MYC. Кроме того, было показано, что воздействие никотина снижает эффективность противораковых средств путем ингибирования апоптоза.

Cреди солидных опухолей, SCLC, как известно, имеет одно из самых высоких значений мутационного бремени опухоли (TMB), что, как полагают, является отражением множества поражений, вызванных связанными с курением канцерогенами (по статистике только 2% пациентов не курило), но, что более важно, потенциально прогнозирует чувствительность к ингибиторам контрольных точек (иммунотерапии).

Эндогенная активация пути Notch приводит к переключению судьбы NE на не-NE в 10-50% опухолевых клеток в мышиной модели SCLC и в опухолях человека (см. выше). Этот переключатель частично опосредуется Rest / Nrsf, репрессором транскрипции, который ингибирует экспрессию генов NE. Notch-активные SCLC-клетки, не относящиеся к NE, медленно растут, что согласуется с супрессивной ролью Notch в опухолях, но эти клетки также относительно химиорезистентны и обеспечивают трофическую поддержку опухолевым клеткам NE, что согласуется с их про-онкогенной ролью.
Morimoto et al . обнаружили значительно увеличенное количество NE телец (NEB), которые представляют собой нишу для легочных NE стволовых клеток - вероятное происхождение первичного SCLC - у мышей с двойным нокаутом NOTCH.

Bторичный SCLC происходит из NSCLC, с потерей активности Notch, сопровождающейся повышенной активностью ASCL1, и с дальнейшими дополнительными генетическими изменениями в Tp53 и RB1. Вообще предварительное приобретение потенциальной нейроэндокринной дифференцировки посредством модуляции баланса Notch-ASCL1, по-видимому, важно в развитии SCLC, то есть сигнальный путь Notch важен для определения подтипов SCLC.
Отметим, что область промотора ASCL1 человека имеет мотивы энхансера транскрипции и ограниченные тканями репрессоры транскрипции, а мотив репрессора, последовательность N-бокса, чувствителен к активности передачи сигналов Notch через связывание Hes1. Более того, передача сигналов Notch может вызывать деградацию ASCL1 посредством активации протеасом.
Важно отметить, что блокада Notch в сочетании с химиотерапией подавляет рост опухоли и задерживает рецидив. Таким образом, опухоли SCLC генерируют свое собственное микроокружение посредством активации передачи сигналов Notch в подмножестве опухолевых клеток.

Как в легких, так и во многих других органах возникают комбинированные мелкоклеточные / немелкоклеточные опухоли и вторичные переходы от немелкоклеточной карциномы при лечении рака к нейроэндокринным и мелкоклеточным опухолям. Таким образом, мы предполагаем, что NE SCCs могут возникать не только как первичные поражения или как синхронная комбинированная карцинома, но также возникать как вторичные поражения в форме рецидивов, происходящих из немелкоклеточных карцином, вызванных терапией рака. При этом сопутствующее обогащение пронейральных ТF (ASCL1, NEUROD1, NEUROG2 и OLIG2) и ТF гомеодомена Nkx (NKX2.1, NKX2.2, NKX2.5 и NKX6.1) и подавление транскрипционной активности ТF семейств ETS и р53 являются, вероятно, критическими для трансформации в SCNC в разных типах тканей.
Так, все клинические образцы SCLC тесно сгруппированы с образцами SCPC, что указывает на гистологическое и транскрипционное сходство SCNC простаты и легких.

Комбинации трех факторов транскрипции, ASCL1, POU3F2 / BRN2 и MYT1L, достаточно для репрограммирования фибробластов и других соматических клеток в индуцированные нейрональные (iN) клетки. Она играет роль на ранних стадиях развития определенных нейронных клонов в большинстве областей ЦНС и нескольких клонов в ПНС.

Каноническая передача сигналов WNT при экспрессии ASCL1 уже оценивалась как терапевтическая мишень при SCLC и LCNEC, и ответственна за усиление пролиферации и инвазии при раке легких. В глиобластоме ASCL1 управляет передачей сигналов WNT путем ингибирования DKK1.
Противоапоптический BCL2 , по-видимому, сильно экспрессируется и необходим для нескольких нейроэндокринных опухолей легких человека с высоким уровнем ASCL1. Этот белок подавляет активность каспаз, предотвращая высвобождение цитохрома с из митохондрий и / или связываясь с фактором, активирующим апоптоз (APAF-1).

Также клетки ASCL1 High SCLC очень чувствительны к ингибиторам BET (например, JQ-1). ВЕТ (Bromodomain and extraterminal domain) состоит из повсеместно экспрессируемых BRD2, BRD3 и BRD4 и ограниченного семенниками BRDT и в основном распознает ацетилированный лизин гистона 4. Отметим, что JQ-1 снижает экспрессию ASCL1, но не NEUROD1.
Белки BET действуют как каркасы для рекрутирования других белков, локализованы на промоторах и особенно на энхансерах активных генов, участвующих в комплексе Mediator, в качестве основных факторов элонгации (продления) транскрипции.

Подмножество дважды отрицательных по ASCL1 / NEUROD1 , так называемых не-NE SCLC, экспрессирует и проявляет зависимость от POU2F3 - маркера хемосенсорных клеток пучка, которые в дыхательных путях легких также известны как щеточные клетки. Наконец, YAP1, регулятор транскрипции в сигнальном пути роста HIPPO, преимущественно экспрессируется в субпопуляции не-NE SCLC. Недавно появилось консенсусное предложение сгруппировать SCLC в четыре подтипа, определяемых экспрессией РНК ASCL1 , NEUROD1 , POU2F3 и YAP1, с указанием на них SCLC-A, SCLC-N, SCLC-P и SCLC -Y соответственно.
Впрочем YAP1 имел явно низкую экспрессию и не определял отдельный подтип SCLC. Напротив, POU2F3 был однозначно связан с подтипом двойной отрицательной реакции ASCL1 / NEUROD1, составляющим 7% SCLC, тогда как остальные дважды отрицательные опухоли (7% SCLC) остались без идентифицированного доминантного регулятора транскрипции (т. е. не указано иное).

POU2F3-положительный SCLCs характеризуются низким маркером NE / DLL3 минимум фенотипом. POU2F3-положительные опухоли представляют собой истинный SCLC, определяемый морфологией и чрезвычайно высокой скоростью пролиферации, несмотря на низкие маркеры NE и почти универсальное отсутствие экспрессии TTF-1. Обогащение экспрессии POU2F3 в комбинированном SCLC предполагает либо большую морфологическую пластичность, либо более тесную онтогенетическую связь с NSCLC, чем подтипы ASCL1 / NEUROD1.

albert52 22.11.2022 14:36

Продолжим.

NE клетки являются первыми эпителиальными клетками, возникающими в легких, и их больше в легких плода и новорожденного, что указывает на их роль в развитии легких. Они происходят из популяции мультипотентных эпителиальных предшественников, маркированных экспрессией основного транскрипционного фактора спираль-петля-спираль (bHLH) ID2. Они могут давать начало всем основным типам респираторных эпителиальных клеток, включая PNECs. Имеющиеся данные свидетельствуют о том, что спецификация судьбы PNEC контролируется перекрестным взаимодействием между генами активатора и репрессора bHLH. Недавние исследования показывают участие множества NOTCH рецепторов в поддержании экспрессии Hes1 и в регуляции размера компартментов NE.

В легких мыши ASCL1 активирует дифференцировку NE, в то время как HES1 репрессирует этот путь, ингибируя образование комплекса ASCL1 / TCF3 и снижая транскрипцию Ascl1. Сообщалось о гиперплазии PNEC после патологических и индуцированных форм повреждения, таких как оксидантный стресс, курение и ожоговые травмы.

NEBs могут обеспечивать уникальное поддерживающее микроокружение для клеток-предшественников. Легкие - это покоящийся орган с очень медленным клеточным обменом, но с устойчивой регенеративной реакцией после травмы. В отличие от классических стволовых клеток, предполагаемые популяции предшественников легких хорошо дифференцированы. Тем не менее, недавние исследования указывают на замечательную пластичность.
В настоящее время клетки с регенеративной способностью включают базальные клетки, клубные клетки, вариантные клубные клетки, клетки AEC2, BASC и клетки ITGA6 + / ITGB4 + .

Области на плечах хромосом 4p, 4q, 10q, 13q, 16q и 17p демонстрируют высокую частоту потери гетерозиготности (LOH), уникальную для SCLC. RB1 глобально репрессирует сети плюрипотентности в соматических клетках посредством прямого связывания с известными генами плюрипотентности, такими как Oct4 и Sox2; последний амплифицируется в 27% случаев SCLC. Следовательно, потеря Rb1 ведет к дерепрессии этих факторов и усилению плюрипотентности, делая клетки более поддающимися репрограммированию, то есть усиливает их пластичность.

EZH2 экспрессируется на высоких уровнях в пролиферирующих нервных стволовых клетках и участвует в поддержании нейрональных предшественников и спецификации клонов. В SCLC они пытаются поддержать идущую вкривь и вкось вследствие мутаций предшественников NE дифференциацию. Кроме того, EZH2, как было установлено, регулирует фенотипический переключатель между базальными и секреторными клетками в легких.

58,8% SCLC, 5,2% аденокарциномы (ADC) и 23,5% тканей плоскоклеточного рака были окрашены положительно на Wnt11. Wnt11 контролирует дифференцировку NE, пролиферацию клеток и экспрессию E-кадгерина. Ascl1 и Wnt11 могут использовать механизм взаимодействия для управления биологией SCLC.

Известно, что многие типы лигандов и рецепторов Wnt взаимодействуют друг с другом, чтобы регулировать специфичные для клеток события передачи сигналов Wnt. Так, неканонический путь важен для регуляции дифференцировки NE и экспрессии E-cadherin и Snail при SCLC. Он активирует стресс-киназу Jun N-концевую киназу и Rho-связанный белок, содержащий спираль киназы 1, которая инициирует ремоделирование цитоскелета и, в конечном итоге, изменение клеточной адгезии и подвижности.
Повышенная регуляция канонического Wnt7b была обнаружена в клетках ADC, тогда как повышенная экспрессия Wnt5a была обнаружена в первичных SCC. SFRP1 , который ингибирует передачу сигналов Wnt путем связывания белков Wnt, снижается под действием Ascl1.

Как я уже говорил, Ascl1 является пионерским фактором «на мишени», который способен распознавать регуляторные элементы своих нейрональных генов-мишеней, даже если они связаны с нуклеосомами. Эта новаторская активность Ascl1 была связана со структурой его ДНК-связывающего домена, который короче, чем у других белков bHLH (например, Olig2, Neurod1, MyoD и Tal1) и, следовательно, вероятно, контактирует с меньшим количеством нуклеотидов в своем месте связывания, что позволяет Ascl1 связываться с этим сайтом, даже если остальные нуклеотиды заняты. В этой деятельности Ascl1 требует коэкспрессии с Sox2, предполагая, что Sox2 необходим для индукции состояния хроматина, разрешающего связывание Ascl1, или, альтернативно, что Sox2 направляет Ascl1 к важным сайтам-мишеням.

Фосфорилирование множественных сериновых остатков в Neurog2 и Ascl1 действует как реостатный регулятор связывания ДНК, предлагая модель, в которой нейрональные предшественники постепенно подавляют активность пронейрального белка за счет последовательности событий фосфорилирования после выхода из клеточного цикла.

Сильно фосфорилированные белки способны связывать и активировать только гены-мишени с открытым хроматином, такие как ген лиганда Notch Dll1, в то время как нефосфорилированные белки (в постмитотических кретках) способны связывать и активировать мишени с менее доступным хроматином, такие как гены дифференцировки Neurod1 для Neurog2 и Myt1 для Ascl1 за счет рекрутирования факторов ремоделирования хроматина.

Sox2 / Ascl1 и Sox2 / Neurog2 недостаточны для обеспечения однозначной идентичности нейротрансмиттеров в iNs (индуцированных). Однако экспрессия генов, связанных с конкретным нейрональным фенотипом, является только индикатором возможного фенотипа NE ( и не только их). Так, Neurog2 и Ascl1 могут быть достаточными для индукции про-нейрональной программы во время репрограммирования клонов соматических клеток, но недостаточны для определения специфического фенотипа iN.
Кстати, хотя ТС и Ас карциноиды (см.выше) проявляют отчетливую дисплазию клеток, но их NE дифференциация происходит значительно быстрее, чем при SCLC, так как сравнительно менее поврежденные нейрональные предшественники быстрее фосфорилируют Ascl1 и тормозят его пронейрональную активность (чтобы не увлекался).

albert52 06.02.2023 03:58

Продолжим гепатоцеллюлярной карциномой (ГК)

Гепатоцеллюлярная карцинома (ГК) самая частая опухоль печени и одна из наиболее распространенных форм рака в мире. Она является пятой по распространенности и третьей по уровню смертности опухолью в мире. Основными факторами риска для развития ГК являются хронические инфекции вирусами гепатита В (HBV) или С (HСV) и длительное воздействие химических гепатоканцерогенов. За последние годы частота встречаемости ГК в странах с традиционно низким уровнем заболеваемости ГК стала возрастать, прежде всего в результате распространения HCV. В зонах высокого риска ГК обычно возникают у населения среднего возраста (20-34 лет), в то время как в странах с низким уровнем заболеваемости ГК страдают в основном пациенты старшего возраста (55- 59 лет).

Анализ генетических нарушений и изменений в экспрессии генов позволил выявить ряд факторов, вовлеченных в процесс гепатоканцерогенеза. Он включает гены, кодирующие факторы роста (трансформирующие ростовые факторы (TGF) α и β, фактор роста гепатоцитов (HGF) и их рецепторы), опухолевые супрессоры (Rb, p53), компоненты Wnt-сигнального пути, молекулы межклеточных контактов и адгезионные белки.

ГК чаще всего возникают на фоне хронических заболеваний печени, прежде всего при циррозе. В таких случаях возникновению ГК обычно предшествует образование гепатоцеллюлярных аденом, которые могут давать начало злокачественным ГК. Нередко в наиболее поврежденных участках печени наблюдается несколько очагов опухолевого роста.
От 50 до 80% ГК могут метастазировать в другие органы, прежде всего в легкие, семенники, костный мозг, желудочнокишечный тракт, мочевой пузырь и поджелудочную железу.

В печени можно четко наблюдать три основных стадии канцерогенеза: инициацию, промоцию и прогрессию. Инициация происходит при воздействии канцерогена или спонтанных изменениях в клетке, в дальнейшем приводящих к образованию опухоли. Инициация необратима, на этой стадии происходит ремоделирование хроматина и изменение активности ДНК, появляются мутации отдельных генов. Наличие в клетке других мутаций, например, нарушение системы репарации, усиливает эффективность инициации. Инициированные клетки можно обнаружить в нормальной ткани по ускорению роста, они, как правило, не экспрессируют специфических маркеров. Группы таких клеток получили название пренеопластических фокусов или узелков.

Промежуток времени, необходимый для клинического проявления опухоли, получил название промоции. В этот период в клетке происходят существенные изменения метаболизма и активности генов, способствующие трансформации. Эта стадия обратима. Клетки, находящиеся на этой стадии канцерогенеза, можно отличить по изменению спектра экспрессии генов, появлению белков, нехарактерных для данной ткани или стадии дифференцировки, а также по изменению спектра ферментативной активности. Для гепатоцитов на стадии промоции характерны снижение активности ферментов синтеза гликогена, накопление рибосом и появление эмбриональных форм ферментов метаболизма, например, рост активности эмбриональной изоформы γ-глютамилтранспептидазы.

Стадия промоции сопровождается морфологическими изменениями: значительное усиление роста приводит к обособлению гиперпластических узелков. Клетки в таких фокусах характеризуются деконденсацией хроматина вследствие глобального гипометилирования гистонов и ДНК, разрушением межклеточных контактов и отделением клеток друг от друга. Стадия промоции завершается либо полным исчезновением гиперплазии, либо образованием опухоли, дальнейшее развитие которой происходит за счет прогрессии.

Прогрессией называется процесс постепенного приобретения опухолью все более автономного и агрессивного характера роста. Эта стадия необратима, так как для нее характерна растущая нестабильность генома, приводящая к анеуплодиям и другим хромосомным аберрациям.
Так, большинство гепатоцитов нормальной взрослой печени находятся в покоящемся состоянии. Постоянная индукция вхождения в клеточный цикл при воспалении ведет к подавлению механизмов репарации ДНК, что может стать причиной мутаций и хромосомных перестроек. Дополнительным механизмом развития злокачественного фенотипа в таких клетках является подавление про-апоптотических механизмов.
В то же время, обширный фиброз печени приводит к нарушению ее нормальной дольчатой структуры, и, как следствие, к изменению межклеточных взаимодействий, взаимодействий клеток с внеклеточным матриксом (ВКМ) и к снижению контроля клеточного роста. В этих условиях клетки, которым благодаря генетическим нарушениям удалось избежать апоптоза и/или иммунного ответа, претерпевают трансформацию и могут дать начало ГК.

ГК обычно возникает вследствие хронического гепатита. Так, у пациентов с хронической инфекцией HBV риск возникновения ГК повышен 70 раз. При этом в геноме HBV не содержится онкогенов, действие этого вируса определяется транс-активацией или транс-репрессией клеточных генов белками вируса. Что касается вируса гепатита С, то ГК развиваются примерно у 20 % носителей HCV и 5 % носителей HBV; таким образом, бессимптомная инфекция HCV представляется существенно более опасным фактором риска для возникновения ГК.

В той или иной степени трансформирующие свойства описаны для корового белка HCV и неструктурных белков NS5А, NS4В и NS3. Участие этих белков в гепатоканцерогенезе осуществляется, скорее всего, за счет связывания с клеточными белками и/или трансактивационных свойств. При этом коровый белок - центральный компонент вириона, необходимый для формирования нуклеокапсида. Он может вызывать антиапоптотический эффект через активацию NF-κB.
Также гепатоциты, экспрессирующие коровый белок, обладают повышенной устойчивостью к Fas-индуцированому апоптозу. Есть данные, что этот белок способен супрессировать активность промотора р53, а также активировать MAPK/ERK путь передачи сигнала. Отметим, что мутации гена р53 обнаружены примерно в трети случаев ГК.

Необходимо отметить, что хроническая инфекция не обязательно ведет к развитию опухолей печени, более того, среднее время возникновения опухолей у носителей вируса составляет 10-30 лет. Дальнейшее развитие ГК в таком случае определяется действием ко-факторов, способных вызвать дальнейшее развитие опухолевого фенотипа.

albert52 06.02.2023 04:40

Продолжим.

В последние годы сформулирован ряд общих свойств, определяющих злокачественную трансформацию клеток. Так, нормальные клетки нуждаются в ростовых сигналах, которые передаются посредством каскада тирозиновых киназ. Такими сигналами могут служить растворимые ростовые факторы, компоненты ВКМ и молекулы межклеточных контактов. В нормальной печени значительные количества ростовых факторов откладываются в ВКМ и играют ключевую роль в активации пролиферации при регенерации, сопровождающейся деградацией матрикса. При канцерогенезе аналогичный эффект может быть достигнут при активации матриксных металлопротеаз (ММП). В других случаях опухолевая клетка сама приобретает способность синтезировать необходимый фактор, аутокринно стимулируя свою пролиферацию.

Еще одним способом обеспечения митотической стимуляции является гиперэкспрессия рецепторов ростовых факторов или их структурная перестройка, делающие клетку более чувствительной к пролиферативным сигналам. Все эти механизмы реализуются для HGF, продуцируемого эндотелием печени. Клинические исследования показали, что у многих пациентов с ГК значительно повышен уровень экспрессии HGF или его рецептора c-met.

К другим гепатоцитарным митогенам, вовлеченным в опухолевую трансформацию, относят TGFα, эпидермальный фактор роста (EGF) и IGF2. Мишенью активирующих мутаций в ГК часто становится ген передающей пролиферативный сигнал киназы Ras.

Нормальная клетка постоянно получает сигналы, которые удерживают ее либо в стадии покоя G0, либо в постмитотической стадии. Такие сигналы определяются цитокинами, компонентами ВКМ и межклеточными взаимодействиями и посредством трансмембранных рецепторов активируют внутриклеточные антипролиферативные механизмы. Трансформированная клетка должна обладать способностью преодолевать сигналы, препятствующие ее росту.

Одним из ключевых регуляторов клеточного цикла является белок Rb, регулирующий активность транскрипционного фактора E2F. В гипофосфорилированном состоянии pRb связывает E2F, который необходим для экспрессии генов, контролирующих переход из G1 в S-фазу. Нарушения Rb сигнального пути (мутации самого гена, нарушения TGFβ-зависимого пути передачи сигнала, инактивация Rb вирусными онкогенами, мутации p15 INK4B, Smad4 или циклин-зависимой киназы (CDK4) делают клетку нечувствительной к антипролиферативным сигналам, которые определяют остановку клеточного цикла в G1 фазе.

Потеря клетками чувствительности к тормозящим пролиферацию сигналам ВКМ может происходить за счет изменения в спектре экспрессии интегринов. Еще один характерный для ГК путь утраты чувствительности к запрещающим рост сигналам активация Wnt сигнального пути за счет нарушения адгезионных контактов, стабилизации β-катенина и его транслокации в ядро, где в комплексе с факторами Tcf/LEF этот белок может активировать транскрипцию генов c-myc, циклина D1, ММП и фибронектина. Этот механизм чаще всего реализуется за счет мутаций гена β-катенина.

Даже приобретя способность к неограниченному росту и независимость от ростовых сигналов, трансформированные клетки не могут создать опухоль значительной массы, пока их репликативный потенциал ограничен пределом Хайфлика, связанным с физическим укорачиванием теломер при делении. Однако репликативный потенциал трансформированных клеток может стать практически неограниченным благодаря активности теломеразы, сложного комплекса с обратно-транскриптазной активностью, достраивающего концы хромосом с РНК-матрицы. Такой же механизм обеспечивает способность эмбриональных тканей к пролиферации.

Ткань печени в этом смысле находится в особом положении, так как она способна к практически неограниченной регенерации. Так, в печени грызунов теломераза конститутивно активна, при регенерации ее активность существенно повышается. Возможно, в таких случаях активация теломеразы не является критическим этапом для опухолевой трансформации, однако может отражать изменения в находящихся выше механизмах транскрипционной регуляции. Повышение теломеразной активности описано для разных типов опухолей, в том числе для 85% ГК.
Активность теломеразы в значительной степени определяется уровнем транскрипции гена TERT, который кодирует каталитическую субъединицу, обладающую РНК-зависимой ДНК-полимеразной активностью. Регуляция экспрессии гена TERT может непосредственно активироваться протоонкогеном c-myc, который часто гиперэкспрессируется в различных типах опухолей, в том числе в ГК. Гиперэкспрессия c-myc при гепатоканцерогенезе может достигаться за счет амплификации самого гена, либо при активации Wnt сигнального пути.

Растущей опухоли так же, как и нормальной ткани, необходимо поступление питательных веществ и кислорода. Ангиогенез регулируют инициирующие (фактор роста эндотелия сосудов (VEGF), факторы роста фибробластов (FGF) -1 и -2) и блокирующие (тромбоспондин-1) факторы. При этом в печени осуществляется положительная обратная связь между эндотелием сосудов и гепатоцитами: эндотелий продуцирует HGF, являющийся сильным митогеном для гепатоцитов, а нормальные гепатоциты на низком уровне продуцируют VEGF, активирующий рост сосудов.

При росте опухоли спектр продуцируемых регуляторов сосудистого роста смещается в пользу факторов, индуцирующих ангиогенез. Задача облегчается, если мутирован или подавлен р53, который активирует экспрессию тромбоспондина-1, или если активирован Ras, являющийся активатором VEGF. Кроме того, ангиогенезу может способствовать β-катенин-зависимая активация металлопротеиназ, разрушающих ВКМ, из которого освобождается значительный запас ростовых факторов (см. выше).

Метастазы являются причиной смерти 90% онкологических больных. При этом молекулы межклеточной адгезии, белки щелевых контактов (коннексины) и рецепторы ВКМ (интегрины) являются самыми частыми мишенями для изменений при трансформации и прогрессии. Так, утрата полярности клеток ведет к изменению цитоскелета, одним из маркеров ЕМР является переход от цитокератиновых промежуточных филаментов к виментиновым.

ЕМР индуцируется сигналами, поступающими извне клетки (растворимые ростовые факторы и компоненты матрикса), которые интегрируются на мембране за счет взаимодействия со специфическими рецепторами и определяют активацию малых ГТФ-связывающих белков Ras, Rho и Rac. Основными механизмами внутриклеточной передачи сигнала для ЕМР являются MAP-киназный и PI3-киназный каскады, а также Src-зависимый сигнальный путь, определяющий фосфорилирование белков, связанных с цитоскелетом.

Мигрирующая клетка встречает новые для себя компоненты ВКМ, и изменения в спектре экспрессии интегринов позволяют ей более успешно взаимодействовать с ними. Так, в низкодифференцированных ГК активируется синтез рецепторов к ламинину, что дает клеткам преимущества при миграции, инвазии и метастазировании. Активация внеклеточных протеаз позволяет физически разрушить ограничивающий движение матрикс.

Взаимосвязь клеток в эпителиальном пласте во многом обеспечивают щелевые контакты, для гепатоцитов основным компонентом таких контактов является коннексин 32 (Сх32). В ГК экспрессия Сх32 часто бывает утрачена несмотря на отсутствие значительных делеций или мутаций этого гена. Вероятно, подавление экспрессии этого гена является результатом нарушения регуляторных путей, определяющих его транскрипцию.

Подавление экспрессии Е-кадгерина описано в ГК на поздних стадиях развития опухоли, при инвазии и н***агоприятном прогнозе. В некоторых случаях нарушение нормального уровня экспрессии гена Е-кадгерина может быть связано с активацией протоонкогена c-myc или с репрессорным действием родственных транскрипционных факторов Snai1 и Slug. Отметим, что в регуляцию экспрессии генов семейства Snai1 при ЕМР вовлечены различные сигнальные каскады (TGFβ, FGF и Wnt).

albert52 06.02.2023 19:39

Продолжим.

Частые аллельные делеции при гепатоканцерогенезе выявлены в локусе 13q, на котором картированы гены Rb и BRCA2. Опухоли с делециями в 13q13-14 обычно характеризуются низким уровнем дифференцировки. Значительное снижение экспрессии Rb отмечено в 30-50% случаев ГК, в строгой корреляции с генетическими поломками гена р53. Инактивация Rb может быть вызвана как мутациями самого гена, так и потерей чувствительности к TGFβ, инактивацией p16 INK4A, p15 INK4B или CDK4. Гены TGFb RII, Smad2, Smad4 мутированы в ГК очень редко, TGFβ путь передачи сигнала нарушен примерно в 10% случаев. Впрочем существенная часть генов с максимальным уровнем активации оказались TGFβ-индуцируемыми, что указывает на вовлеченность сигнального пути, регулируемого факторами этого семейства, в прогрессию опухолей печени. Важно отметить, что развитие инвазивного фенотипа сопровождается секрецией в среду значительных количеств TGFβ, что обеспечивает аутокринную регуляцию сигнала.

В 17-27% случаев в ГК наблюдается потеря одной из аллелей 10q, на которой картирован опухолевый супрессор PTEN (10q23), который блокирует сигналы, обеспечивающие рост и выживание клеток. Также во многих человеческих опухолях описано гиперметилирование регуляторного района гена CDKN2A, расположенного на 9р21. Продукты этого гена p16 INK4A, ингибитор CDK 4 и 6, который блокирует клеточный цикл в G1 фазе через дефосфорилирование Rb и репрессию E2F, и р14 ARF, участвующий в регуляции р53 через ингибирование mdm2. Потеря гетерозиготности в 9р наблюдается примерно в 20% случаев ГК, соматические мутации достаточно редки, но в то же время примерно половина опухолей не содержит p16 INK4A вследствие метилирования de novo промотора CDKN2A.

Амплификация локуса 8q24.12-q24.13, содержащего ген с-myc, коррелирует с повышением уровня этого белка в опухолях печени. Такая амплификация обычно наблюдается в дифференцированных ГК, что позволяет предположить, что амплификация гена с-myc определяет ранние этапы гепатоканцерогенеза. Кстати, отмечена положительная обратная связь между c-myc и SIRT1; сиртуины (SIRT1), NAD + - зависимые гистоновые деацетилазы класса III, связаны с деацетилированием гистонов и подавлением транскрипции генов, а также с процессом старения. Здесь видимо наблюдаем компенсаторный процесс типа упомянутого мной параллельного возрастания уровней р53 и Bcl-2 при апоптозе.

Сигнальный путь FGF играет ключевую роль в индукции гепатоцитарного пути дифференцировки. Компетентность к принятию индуцирующего сигнала обеспечивает гепато-специфический фактор HNF3β. Благодаря структурному сходству с гистонами он обеспечивает разворачивание конденсированного хроматина и облегчает связывание с регуляторными районами гепатоцитарных генов энтодермального фактора GATA4.
Т.о. факторы HNF3β и GATA4 в онтогенезе кооперативно регулируют свойства энтодермы таким образом, чтобы она была способна к развитию по гепатоцитарному пути. Кроме этих двух факторов, на формирование печеночного зачатка влияет гомеобелок Hex, один из самых ранних маркеров передней части эмбриональной энтодермы. Для превращения в зрелые гепатоциты, гепатобласты должны пройти процесс дифференцировки, который включает в себя приобретение эпителиального фенотипа и активацию экспрессии генов, обеспечивающих метаболизм, детоксикацию и синтез сывороточных белков. Ключевая роль в этом процессе отводится гепатоцитарному ядерному фактору HNF4α.

Восстановление экспрессии HNF4α в экспериментах привело к значительным изменениям клеточной морфологии гепатом, образованию эпителиальных островков с плотными контактами. Восстановление эпителиального фенотипа при реэкспрессии HNF4α сопровождается нормализацией контактов клеток с ВКМ.

Важно отметить, что HNF4α участвует в регуляции генов, ответственных за детоксикацию и метаболизм лекарственных веществ, и, прежде всего цитохромов P450. Поэтому его утрата при прогрессии ГК может иметь дополнительные последствия можно ожидать, что HNF4α-негативные опухоли хуже реагируют на лекарственную терапию. Следовательно, восстановление экспрессии HNF4α представляется действенным способом повышения чувствительности ГК к терапевтическим воздействиям.
В дифференцированных гепатомных клеточных линиях выявляются значительные количества HNF4α и HNF1 (но не vhnf1). Дедифференцировка таких гепатом обычно сопровождается подавлением экспрессии генов HNF4α и HNF1 и увеличением количества vhnf1. Подавление активности HNF1 и HNF4α описано также у пациентов с опухолями почек (80% случаев).

Отметим, что HNF вовлечены в регуляцию экспрессии вирус-специфических белков вирусов гепатита В и С, которые избирательно поражают клетки печени. Для экспрессии своих белков HBV использует активность факторов HNF1, HNF3, С/ЕВР, FTF и HNF4α. По-видимому, наибольшее значение для экспрессии вирусных генов имеет HNF4α, влияющий на уровень транскрипционной активности промоторов нуклеокапсида, большого поверхностного антигена и энхансера гена I/X. Вероятно, именно необходимость HNF для репликации HBV определяет его гепато-специфичность.

Собственно морфогенез печени заключается в формировании печеночных балок, синусоидов, желчных протоков и всего комплекса кровоснабжения; морфологическое усложнение печени происходит параллельно с увеличением ее размера. В этом процессе задействовано много общераспространенных регуляторов. Показано, что инактивация генов c-jun, HGF, его рецептора c-met, гомеобоксного фактора Hlx, экспрессируемого мезенхимой развивающейся печени Xbp-1 (X-box binding protein 1), приводит к гипоплазии печени.

В ходе прогрессии ГК происходит активация транскрипции гена α3 субъединицы интегрина, которая характерна для незрелых и трансформированных гепатоцитов. Субстратная специфичность α3 субъединицы направлена преимущественно на взаимодействие с деградированными компонентами ВКМ, которые могут образовываться благодаря упомянутой ниже инактивации ингибиторов протеиназ. Одновременно с утратой эпителиальных признаков при прогрессии в ГК наблюдается координированное подавление экспрессии целого ряда гепато-специфических генов (альбумин, АФП, транстиретин, α1-ат, многие аполипопротеины, альдолаза В, пируваткиназа L и другие), соответствующее типичному для карцином антигенному упрощению опухолей.

В то же время дедифференцированные варианты несут отпечаток гепатоцитарного происхождения, сохраняя экспрессию ряда генов, специфичных для печени (трансферрин и некоторые аполипопротеины). В целом при прогрессии опухоли проиходит координированное падение уровней экспрессии целого блока транскрипционных факторов, влияющих на установление и поддержание гепатоцитарного фенотипа, а именно HNF4α, HNF1, vhnf1, HNF3γ, HNF6, C/EBPα, FTF, и гиперэкспрессия COUP-TFI.

Отметим еще ген онко-эмбрионального маркера АФП (Alpha-fetoprotein). Отсутствие экспрессии АФП в некоторых де-дифференцированных ГК вероятно стало следствием репрессии транс-факторов, регулирующих транскрипцию этого гена, и свидетельствует об их большей злокачественности по сравнению с другими опухолями.

Свыше половины наиболее репрессированных в ходе прогрессии генов кодирует сывороточные белки, специфичные для печени. Существенную часть из них составляют ингибиторы протеиназ. Возможно, именно активация протеиназ в отсутствие их ингибиторов приводит к нарушению морфологии и повышению инвазивности быстрорастущей опухоли.

Основная причина снижения противоракового иммунитета - это дисфункция или истощение Т-клеток. Было предложено несколько факторов, ответственных за это явление, в том числе аномальное увеличение количества ингибиторов контрольной точки, таких как белок 1 программируемой гибели клеток (PD1), цитотоксический антиген 4 Т-лимфоцитов (CTLA4), белок гена 3 активации лимфоцитов (LAG3) и клеток-киллеров, лектиноподобного рецептора G1 (KLRG1).
Недавно выделено 11 функциональных субпопуляций Т-клеток. Конкретные подмножества, такие как CD8 + Т-клетки и Treg, предпочтительно обогащаются и потенциально клонально размножаются в ГК (HCC).

albert52 07.02.2023 20:18

Продолжим.

Почти 25 лет назад Дворжак признал, что состав опухолевой стромы очень похож на состав грануляционной ткани заживляющих кожных ран. Поэтому он предполагает, что опухоли являются ранами, которые не заживают. Также 90% случаев ГЦК имеют естественный анамнез неразрешенного воспаления и тяжелого фиброза (или цирроза) независимо от первопричины заболевания печени. При этом NF-κB и STAT3, вероятно, играют важную роль в воспалительных реакциях печени и поддержании гомеостаза, а также вносят критический вклад в развитие и прогрессирование ГЦК. Наиболее вероятные связанные с раком конститутивные активности NF-κB являются результатом воздействия провоспалительных стимулов в микроокружении опухоли.

NF-κB и STAT3 каждый контролируют экспрессию большого количества нижестоящих генов, которые контролируют пролиферацию клеток, выживание, стрессовые реакции и иммунные функции. Некоторые из генов-мишеней для NF-κB и STAT3 перекрываются, и, кроме того, два транскрипционных фактора участвуют как в положительных, так и в отрицательных перекрестных связях. Гибель гепатоцитов при воспалении приводит к высвобождению IL-1α, который активирует передачу сигналов NF-κB в клетках Купфера, которые продуцируют панель цитокинов и факторов роста, включая IL-6.

IL-6, высвобождаемый клетками Купфера, активирует STAT3 в гепатоцитах, а активи -рованные STAT3 гены имеют решающее значение для компенсаторной пролиферации гепатоцитов и онкогенеза печени. Активация NF-κB приводит к повышенной экспрессии белков, таких как тяжелая цепь ферритина и супероксиддисмутаза 2, которые имеют антиоксидантную функцию, которая предотвращает чрезмерное накопление АФК.

NF-κB, набор димерных транскрипционных факторов, впервые идентифицированных на основе их взаимодействия с энхансером легкой цепи иммуноглобулина в В-клетках, присутствуют во всех клетках. Семь различных белков NF-κB могут образовывать различные димеры, не все из которых являются активными. Эти белки включают в себя: NF-κB1 (p105 и p50), NF-κB2 (p100 и p52), RelA (p65), RelB и c-Rel, и например, димер NF-κB, который перемещается в ядро ​​при стимуляции сигаретным дымом, преимущественно состоит из c-Rel/p50.

В нестимулированных клетках большинство димеров NF-κB удерживаются в цитоплазме путем связывания с ингибирующими белками IκB, за исключением димеров, образо -ванных р105 и р100, которые неактивны и содержат собственные IκB-подобные фрагменты. В ответ на провоспалительные стимулы, такие как фактор некроза опухоли (TNF) или интерлейкин-1β (IL-1β), активируется комплекс IκB-киназы (IKK), состоящий из каталитических субъединиц IKKα и IKKβ и регуляторной субъединицы IKKγ, что приводит к IκB фосфорилированию и возможной убиквитин-опосредованной деградации, приводящая к ядерному проникновению освобожденных димеров NF-κB и стимуляции транскрипции генов, кодирующих цитокины и антиапоптотические факторы. В целом пути NF-κB и JNK являются критическими регуляторами продукции цитокинов, связанных с продвижением опухоли.

Два нетрадиционных члена семейства IKK, IKKε и TBK1, активируют NF-κB при эпителиальном раке. При врожденном иммунном ответе на вирусы рецепторы Toll и цитозольные рецепторы нуклеиновых кислот активируют эти нетрадиционные IKK, тем самым задействуя пути NF-κB и интерферона типа I. Механизм, с помощью которого эти киназы регулируют путь интерферона, заключается в фосфорилировании IRF3 и IRF7, вызывая их ядерную транслокацию, но их способ действия на пути NF-κB менее изучен. Одним из механизмов может быть индукция TNFα с помощью IRF3, тем самым активируя классический путь NF-κB в петле прямой связи.
Отметим еще, что примерно в одной шестой случаев рака молочной железы наблюдается усиление или амплификация высокого уровня области на хромосоме 1, кодирующей IKKε. В биоптатах рака молочной железы экспрессия IKKε коррелировала с увеличением ядерного c-rel, указывая на активацию пути NF-κB.

Недавно определенным субстратом IKKε является деубиквитиназа CYLD. Фосфорилирование серина 418 CYLD снижает его деубиквитиназное действие по отношению к IKKγ и TRAF2. Таким образом, сверхэкспрессия IKKε может уменьшить негативное влияние CYLD на путь NF-κB. Тем не менее, IKK требует фосфорилирования субъединицы IKKβ в своей петле активации в дополнение к убиквитинированию IKKγ, чтобы стать функционирующей киназой, и в настоящее время неясно, как сверхэкспрессия IKKε способствует этим посттранскрипционным модификациям.

Матриксные металлопротеиназы (ММП) продуцируются воспалительными и опухолевыми клетками и играют ключевую роль в деградации внеклеточного матрикса и базальных мембран. Желатиназы (ММР-2 и ММР-9), в частности, являются прогностическими факторами во многих солидных опухолях, и их экспрессия также регулируется активацией NF-kB.

Из двух каталитических субъединиц IKKβ является той, которая наиболее критична для деградации IκB, образуя ядро ​​того, что известно как классический путь активации NF-κB. Напротив, IKKα необходим для индуцируемого процессинга неактивного белка p100 до его активного производного p52, таким образом формируя ядро ​​так называемого альтернативного пути NF-κB.
Совсем недавно мутации в вышестоящих компонентах сигнальной системы IKK-NF-κB были идентифицированы при множественной миеломе и, как полагают, приводят к клеточной автономной активации NF-κB, тем самым повышая выживаемость и пролиферацию клеток. Также во взрослых гепатоцитах IKKα и IKKβ могут иметь несколько избыточных функций в подавлении апоптоза и некроза.

На основании имеющихся данных можно с уверенностью заключить, что путь IKK / NF-κB важен для выживания гепатоцитов и поддержания гомеостаза печени в ответ на различные экологические проблемы, которые могут индуцировать выработку TNF и других гепатотоксических цитокинов. Снижение активности NF - κB и повышение активности JNK способствуют индуцированной TNF- α гибели клеток. Компенсаторная пролиферация гепатоцитов таким образом зависит от продукции таких факторов, как TNF - α , IL-6 и фактор роста гепатоцитов непаренхиматозными клетками, и активация NF- kB важна для продукции этих цитокинов.

Инактивация IKKβ в клетках ГЦК или гепатоцитах способствует накоплению АФК, которые окисляют каталитический цистеин различных протеинтирозинфосфатаз (РТП), включая SHP1 и SHP2, которые дефосфорилируют STAT3 и JAK2 . Окисление SHP1 и SHP2 приводит к потере их каталитической активности и накоплению фосфорилированных и активированных JAK2 и STAT3, которые стимулируют пролиферацию и онкогенный рост NF-κB-дефицитных HCC. Так, фосфорилированный (то есть активированный) STAT3 обнаружен примерно у 60% HCC, причем STAT3-позитивные опухоли были более агрессивными.

Не только NF-κB может влиять на активность STAT3, было также обнаружено, что STAT3 способствует активации NF-κB. Активированный STAT3 в раковых клетках способен связывать RelA / p65 в ядре, и это приводит к обратимому ацетилированию RelA / p65 с помощью STAT3-рекрутированной ацетилтрансферазы p300 . Ацетилирование RelA / p65 продлевает его ядерное удержание. Поэтому было высказано предположение, что активированный STAT3 может объяснять конститутивную активацию NF-κB при некоторых раковых заболеваниях человека.

Отметим, что активация STAT3 также включает сильные петли отрицательной обратной связи с участием фосфатаз SHP и подавителя передачи сигналов цитокинов 3 (SOCS3). Эти механизмы обратной связи снижают активность STAT3 и гарантируют, что цитокин-индуцированная активация STAT3 является временным явлением в нормальных клетках. Однако в раковых клетках STAT3 часто оказывается конститутивно активированным (см. выше).

albert52 09.02.2023 14:28

Продолжим.

Пациентам с гепатоцеллюлярной карциномой (ГЦК), наиболее частым первичным раком печени и второй ведущей причиной смертности от рака во всем мире, проводят хирургическую резекцию. Однако остаточная печень может демонстрировать плохую регенеративную дееспособности из-за сопутствующей патологии.

Хотя на гепатоциты приходится около 80% массы печени, присутствуют и другие биологически важные типы клеток: билиарные эпителиальные клетки (BEC или холангиоциты), синусоидальные эндотелиальные клетки (SEC), клетки Купфера (KC, резидентные макрофаги печени), Pit-клетки (тканевые лимфоциты с функцией естественных клеток-киллеров) и звездчатые клетки печени (HSCs).

Развитие печени у эмбриона происходит в несколько этапов :
В общих чертах, во-первых, клетки становятся «компетентными» и могут ограничивать свою судьбу.Затем компетентные клетки последовательно становятся «коммитированными» к специфической линии, проявляя морфологические изменения и экспрессируя гены, связанные с коммитацией клеток. В конце концов, клетки затем 'дифференцируются' вдоль этого клона и становятся в конечном счете способными выполнять функцию терминально дифференцированной клетки. У мышей на ранних стадиях развития эпителиальные клетки энтодермы передней кишки экспрессируют факторы транскрипции (ТФ) Foxa1/2 и Gata4-6, что позволяет установить «компетентность» этих клеток развиваться в печень.
В передней кишке плода базальный слой, окружающий печеночную энтодерму, разрушается и гепатобласты отслаиваются от эпителия, мигрируют, проникают в соседний ВТМ и продолжают пролиферировать и дифференцироваться, давая зарождающийся зачаток печени. Для этого процесса необходимы несколько ТФ и сигналы от эндотелиальных клеток, такие как Hhex, Gata4-6, Prox1, Onecut-1 (OC-1, также известный как Hnf6) и Onecut-2 (OC-2).

На одной из основных стадий бипотенциальные гепатобласты «дифференцируются» в гепатоциты и холангиоциты. Первоначально гепатобласты экспрессируют гены, связанные как со взрослыми гепатоцитами (Hnf4a, Alb, CK-8/18), так и с BEC (CK-19), а также с генами печени плода, такими как Afp. Те гепатобласты, которые находятся рядом с воротными венами, принимают специфическую структуру вместе с экспрессией BDS7, увеличением CK-19 и BEC TF (OC-1/2 и HNF1b), сопровождающимся подавлением печеночных генов, и, наконец, становятся холангиоцитами. Среди задействованных сигналов мезенхимы обнаружены TGF-b и Jagged-Notch, которые стимулируют экспрессию EGF и вместе с HGF участвуют в дифференцировке в сторону билиарного эпителиального фенотипа.
Напротив, большинство гепатобластов, локализованных в паренхиме печени, дифференцируются в гепатоциты, приобретая характеристики эпителиальных клеток, расположенных в печеночных хордах и экспрессирующих Alb и CK-8/18. Сигналы, такие как онкостатин М (OSM), глюкокортикоиды, HGF и Wnt, способствуют дифференцировке гепатоцитов, большинство из них посредством регуляции ТФ C/EBPa, Hnf1a и Hnf4a. Созревание в гепатоциты и холангиоциты продолжается до нескольких недель после рождения.

Регенерация печени (LR) представляет собой появление новых гепатоцитов во взрослом возрасте. Взрослые гепатоциты могут размножаться строго регулируемым образом, регенерируя печень в ответ на хирургическую резекцию, токсическое повреждение, инфекции, экзогенный стимул, массивный некроз гепатоцитов или апоптоз. Тем не менее, этот процесс на самом деле представляет собой «компенсаторную гиперплазию и гипертрофию». Хотя общепризнано, что гепатоциты подвергаются от одного до двух циклов клеточного деления после экстирпации, несколько исследований указывают на гипертрофию гепатоцитов во время LR.
Причина этого особого процесса в том, что функции печени чрезвычайно важны для выживания организма. Масса печени поддерживается в очень узком диапазоне по отношению к общей массе тела, известному как печеночный индекс (масса печени/масса тела x100 - 4-5%). Если наблюдается потеря или увеличение массы печени, например, после повреждения печени или беременности, соответственно компенсаторная пролиферация или апоптоз клеток восстанавливают это соотношение после устранения стимула.

В настоящее время общепризнано, что существуют две физиологические формы LR в ответ на различные типы повреждения печени. Первый, в случае резекции и некоторых химических поражений печени, заключается в замещении печеночной массы репликацией существующих гепатоцитов, что считается самым быстрым и эффективным способом LR. Это опосредуют три сети: цитокины, факторы роста (GFs) и метаболические сигналы. Из-за высокой избыточности среди их внутриклеточных компонентов потеря отдельного гена редко приводит к полному ингибированию LR.

В состоянии покоя гепатоциты не полностью реагируют на GF и нуждаются в «примировании» для вступления в клеточный цикл (фаза G1). Сеть цитокинов действует как «фаза прайминга», которая происходит в течение первых 4 часов и начинается с распознавания ассоциированных с патогенами молекулярных паттернов (PAMP) и молекулярных паттернов, связанных с повреждением (DAMP), высвобождаемых из некротических клеток после повреждения ткани (см. выше). Они запускают естественный иммунный ответ, секрецию TNF-a и синтез интерлейкинов IL-6, IL-1b и IL-8.

Вкратце, происходит первоначальная активация ядерного фактора каппа B (NF-κB) через TNF, лимфотоксин (из Т-клеток) и/или компоненты комплемента с последующей секрецией IL-6. В свою очередь, IL-6 связывается со своим рецептором на гепатоцитах, что приводит к активации среди других путей STAT3. Затем в течение 2 часов индуцируются несколько генов немедленного раннего развития, связанных с пролиферацией гепатоцитов, такие как c-Fos, c-Jun и другие.
После того, как цитокины запустили переход G0/G1, митогенные GF EGF и HGF активируют соответствующие рецепторы, рецептор EGF (EGFR) и c-Met, стимулируя продвижение гепатоцитов по клеточному циклу, подключая соответствующие сигнальные пути. Среди них митоген-активируемая протеинкиназа (MAPK), STAT3, фосфатидилинозитол-3-киназа (PI3K)/Akt и ERK1/2 являются наиболее важными для LR, регулируют множество TF. Вместе с индукцией генов циклинов и CDK они облегчают переход к синтезу ДНК и митозу.

Особенно c-Met и EGFR являются ключевыми факторами LR, которые заслуживают подробного обсуждения. Рецептор c-Met активируется митогеном HGF, продуцируемым непаренхиматозными клетками, такими как HSC и SEC. Он продуцируется HSCs в виде одиночного пептида (pro-HGF) и откладывается во внеклеточном матриксе (ECM). После резекции печени происходит активация этого про-HGF, в результате чего активный HGF высвобождается в окружающую гепатоциты среду, а также в кровообращение.

Рецептор EGF активируется через различные источники: аутокринным образом с помощью амфирегулина (AR) и трансформирующего фактора роста-альфа (TGF-a); с помощью гепарин-связывающего EGF-подобного фактора роста (HB-EGF), полученного из KC и SEC; и EGF, секретируемым слюнными железами и железами Бруннера в двенадцатиперстной кишке. Лиганды EGFR имеют разные, но часто перекрывающиеся функции во время LR.

Оба рецептора имеют уникальные и потенциально перекрывающиеся функции. Так, активация пути EGFR не была напрямую связана с сигналами выживания для гепатоцитов. Оба пути по отдельности контролируют множество неперекрывающихся критических точек, и ингибирование только одного из них приводило к отчетливым изменениям в разных сигнальных путях, позволяя компенсировать блокировку только одного из сигналов.

Важно отметить, что после ПГ в остаточной печени происходят метаболические изменения. Печень должна продолжать регулировать системные уровни энергии, удовлетворяя при этом собственные потребности в синтезе нуклеотидов и белков, необходимых для деления клеток. Таким образом, трансляция является контрольной точкой, которая объединяет уровни питательных веществ с митогенными сигналами, и большинство вовлеченных белков находятся у млекопитающих ниже mTOR . Так, почти полная потеря репликации ДНК гепатоцитов наблюдалась у мышей с нокаутом S6 после резекции.

Также наблюдаются изменения липидного и глюкозного обмена. Регенеративный транзиторный стеатоз очевиден во время LR на ранних стадиях и сопутствует активизации генов, связанных с адипогенной программой. Повышенная продукция de novo печеночных жирных кислот и катаболизм системной жировой ткани могут быть основными источниками липидов, которые накапливаются в регенерирующей печени. Он необходим для удовлетворения повышенного спроса на энергию для быстрой пролиферации клеток и для усиленного биосинтеза мембранных фосфолипидов. Именно EGFR необходим для накопления жира и надлежащей регуляции ключевых ферментов, связанных с синтезом липидов de novo во время LR.

albert52 12.02.2023 16:23

Продолжим.

За первоначальным всплеском пролиферативной активности гепатоцитов следуют вторичные волны митоза, пока не восстановится первоначальная масса печени. В остановку роста вовлечено множество факторов, включая семейство TGF-ß (TGF-ß1, активины), IL-1 и гены-супрессоры опухолей (p53, p21). TGF-ß1 является известным супрессором пролиферации гепатоцитов и индуктором апоптоза. Отметим, что уровни TGF-ß в плазме повышаются вместе с HGF, указывая на то, что цитокин высвобождается после ремоделирования внеклеточного матрикса, где он связывается с декорином. Однако чувствительность регенерирующей печени к этому фактору временно снижается, в частности из-за снижения уровня НАДФН-оксидазы NOX4, опосредующей апоптоз, индуцированный TGF-β; в конце LR его уровень восстанавливается. Это должно быть дополнительным механизмом, позволяющим избежать супрессорных эффектов TGF-β во время раннего процесса регенерации печени.

Среди других игроков, связанных с фазой терминации, определенную роль должна сыграть интегрин-связанная киназа (ILK). ILK находится под плазматической мембраной, связан с интегрином ß1, подавляющим рост гепатоцитов. Еще следует упомянуть снижение экспрессии Yap (Yes-ассоциированный белок), контролируемой путем Hippo и считающейся центральным игроком, контролирующим размер клеток и, в частности, гепатостатическую функцию печени. Таким образом, правильный баланс всех этих сигналов во время разных фаз может быть важным фактором, определяющим эффективность LR.

Когда печень повреждена определенными химическими веществами, когда повреждение серьезное или когда зрелые гепатоциты не пролиферируют, вклад стволовых клеток печени / клеток-предшественников (LS / PC или HPC) имеет решающее значение для успеха LR. Реакция LS/PC включает активацию, пролиферацию, миграцию и дифференцировку, в конечном итоге приводящая к образованию гепатоцитов или холангиоцитов.

HGF, EGF, TGF-α и SCF стимулируют пролиферацию LS/PC. Напротив, TWEAK/Fibronectin 14 будет участвовать в активации, а SDF-1/CXC рецептор 4 (SDF-1/CXCR4) будет участвовать в миграции этих клеток. Наконец, пути Wnt и Notch участвуют в противоположных ролях: в то время как первые направляют LS/PC к судьбе гепатоцитов, вторые способствуют их дифференцировке в сторону билиарного клона. Также воспалительная микросреда регулирует размножение и судьбу клеток-предшественников.

Предполагают, что и гепатоциты и холангиоциты могут быть сами по себе клетками-предшественниками печени при трансдифференцировке от одного типа клеток к другому, действуя как «факультативные стволовые клетки». Также стволовые клетки из внепеченочных участков, в частности костного мозга (КМ), могут участвовать и вносить вклад в LR, хотя и с низкой эффективностью.

В норме LS/PC располагаются в каналах Геринга; эти каналы соединяют канальцевую систему гепатоцитов и билиарное дерево, и такое расположение LS/PC согласуется с их бипотенциальными свойствами. Активация компартмента LS/PC в печени человека называется протоковой реакцией из-за роли активации протокового эпителия. В нише HPCs окружены эпителиальными и непаренхиматозными клетками, иммунными клетками и компонентами ECM, которые транспортируют активирующие сигналы. TNF-подобный слабый индуктор апоптоза (TWEAK) является членом суперсемейства TNF и основным индуктором активации HPC. Макрофаги и NK-клетки являются первичными источниками этих лигандов, а взаимодействие с клетками-мишенями осуществляется FGF-индуцируемыми рецепторами.

Низкие уровни активных форм кислорода способствуют пролиферации HPC посредством киназы 1/2, а транс-ретиноевая кислота, которая является важным активным метаболитом витамина А, участвует в дифференцировке HPC путем увеличения экспрессии miR-200a, которая регулирует клеточную аутофагию. Аутофагия также может регулировать дифференцировку HPC в BEC, поскольку она ингибирует сигнальный путь Notch1, необходимый для развития клеток желчных протоков. Следовательно, аутофагия снижается на ранних стадиях регенерации печени.

Недавно в перибилиарных железах, представляющих собой эпителиальные инвагинации внепеченочных и крупных внутрипеченочных желчных протоков, был идентифицирован новый пул мультипотентных билиарных клеток-предшественников, которые могут дифференцироваться в гепатоциты, BECs и островки клеток Лангерганса. Этот пул был назван стволовыми/прогениторными клетками билиарного дерева (BTSC). BTSC в первую очередь участвуют в регенерации билиарного эпителия при хронических заболеваниях, таких как первичный склерозирующий холангит и холангиокарцинома.

Как HCC, так и ICC являются гетерогенными заболеваниями с точки зрения клеточной морфологии и клинического исхода; также сообщалось о комбинированной ГК-холангиоцеллюлярной карциноме (HCC-CCA ), содержащей субпопуляцию клеток, экспрессирующих различные маркеры стволовых клеток. При ГК (HCC) маркеры РСК включают молекулу адгезии эпителиальных клеток (EpCAM), CD133, CD90, CD44, CD24, CD13, или активность альдегиддегидрогеназы.

Регенерация печени после серьезной операции также может активировать скрытые микрометастазы и способствовать росту опухоли, что приводит к рецидиву опухоли печени. Хотя операция на печени может обеспечить долгосрочный контроль у некоторых пациентов с ранним ГК, частота рецидивов опухоли высока и составляет примерно 50% при 3-летнем наблюдении после резекции печени. Наличие сателлитных поражений, внутрипеченочная микроваскулярная инвазия и плохая гистологическая дифференциация являются маркерами рецидива и н***агоприятного прогноза, причем чем короче период времени от первичной операции до диагностики рецидива, тем хуже прогноз. Повторная гепатэктомия здесь, по-видимому, является лучшим методом лечения с частотой резектабельности от 10% до 77%.

Факторы, связанные с самим хирургическим стрессом, представляют собой преходящие изменения, тогда как процесс регенерации печени может выступать более сильным и устойчивым стимулом, способствующим росту скрытых опухолей и развитию новообразований. Рост опухоли требует баланса факторов роста и цитокинов в микроокружении, чтобы способствовать ангиогенезу. Ингибиторы ангиогенеза, белки ЕСМ и их фрагменты являются определяющими для поддержания состояния покоя; разрушение и восстановление ВКМ во время регенерации печени необходимы для активизации этих микрометастазов. Кстати, ингибирование опухолевой пролиферации и ангиогенеза было предложено посредством блокады ренин-ангиотензиновой системы (РАС).

В онкогенезе различные пути, активируемые HGF (см. выше), включают ERK1/2/MAPK и PI3K/Akt; известно, что эти сигнальные каскады являются классическими путями выживания, участвующими в уменьшении повреждения печени и улучшении регенерации печени после. Как и в оси HGF-cMet, активация таких путей выживания защищает от повреждения печени и способствует ее регенерации, но также может способствовать в присутствии неопределяемых микрометастазов развитию опухоли. Примечательно, что взаимодействие между сигнальными путями Ras / Raf / MEK / ERK и PI3K / Akt может приводить к регуляции роста и развития клеток в большей степени, чем один из них.

Конститутивная активация пути Ras / Raf / MAPK наблюдалась в HCC, что указывает на его роль в онкогенезе. В солидных опухолях путь RAF / MEK / ERK обычно активируется двумя основными механизмами: (1) онкогенные мутации в гене RAS, что приводит к конститутивной активации RAF, и (2) активная конститутивная RAF, возникающая в результате нарушение гиперэкспрессии факторов роста и их рецепторов. Так, сообщалось, что фосфорилирование MEK1 / 2 увеличивается в семь раз в тканях ГЦК по сравнению с соседними доброкачественными тканями.

Raf / MEK / ERK - это повсеместный путь передачи сигнала, активируется связыванием нескольких факторов роста с рецепторами, что, в свою очередь, активирует комплекс молекулы адаптера, известный как GRB2 / SHC / SOS, который и запускает путь RAF / MEK / ERK. ERK1 / 2 регулируют клеточную активность, воздействуя на различные субстраты в цитоплазме и ядре, причем существует путь обратной связи, регулирующий активность B-Raf, Raf-1 и MEK1 посредством активации ERK.
Недавно биологические исследования показали, что аберрантная активация сигнального пути Raf / MEK / ERK является центральной для роста, выживаемости и подвижности рака, а также для механизмов адресной терапии резистентности. Так, сорафениб является ингибитором киназы Raf-1 и является единственным одобренным лекарственным средством для лечения ГЦК.
Кстати, механизм канцерогенеза ГЦК может быть связан с активацией пути Ras / Raf / MEK / ERK инфекцией HCV. Так, коровый белок HCV вместе с тканевым активатором плазминогена может способствовать влиянию на MEK1 вышестоящей протеинкиназы.

albert52 19.02.2023 21:14

Продолжим.

В сигнальных каскадах очень важную роль играют каркасные белки. Они позволяют образовывать белковые комплексы, взаимодействующие с широким спектром клеточных мишеней. Они объединяют два или более белков, например мембранные рецепторы/транспортеры и цитоплазматические сигнальные молекулы, в относительно стабильной конфигурации, образуя макромолекулярные комплексы. Белки каркаса оказывают свое влияние посредством простого связывания сигнальных белков, правильной ориентации целевых белков или аллостерической сборки компонентов сигнального пути. Они могут усиливать специфичность передачи сигналов путем секвестрации белков, предотвращая нежелательное перекрестное влияние между белками в различных путях передачи сигналов. Они также могут повысить эффективность передачи сигналов за счет увеличения локальной концентрации каждого компонента передачи сигналов.

Каркасы способствуют координации и положительной или отрицательной регуляции специфических сигнальных путей. В этом отношении, в зависимости от субклеточной локализации, из которой исходят активирующие сигналы, определенные каркасы определяют, какие субстраты могут быть фосфорилированы (киназы активируют белки - мишени путем фосфорилирования). Было высказано предположение, что каркасы могут защищать киназы от дефосфорилирования, что может быть связано с тем, что фосфатазы свободно диффундируют и, следовательно, присутствуют в гораздо более низких локальных концентрациях, или фосфатазы могут быть в каркасе стерически затруднены. Отметим, что терминальная киназа должна быть связана довольно свободно, чтобы искать мишени в цитоплазме и ядре после ее активации. Так, в клетках млекопитающих путь MAPK через терминальную киназу ERK запускает различные и часто противоположные клеточные исходы, которые включают пролиферацию, апотоз, миграцию и дифференцировку клеток.

Отметим, что среди регуляторных белков, которые связаны с составляющими сигнального каскада, общепринятым условием для рассмотрения белка как «каркаса» является его способность одновременно связываться по крайней мере с двумя членами такого каскада, образуя функционально стабильный комплекс (затвор для белков). Список белков млекопитающих, которые квалифицируются как каркасы для пути RAS-ERK, постепенно расширился до 15 с лишним членов (всего известно 78 каркасных белков для сигнальных киназных путей, причем 60% каркасных белков связаны с более чем одним путем).

Некоторые частично перекрывающиеся пути участвуют в различных биологических процессах и могут регулироваться различными белками каркаса. Например, один сигнальный путь, а именно PLK1 → WEE1 → CDC2 → CDC25C, связан с каркасным белком PIN1. Этот путь частично перекрывается с путем CDC2 → CSNK2A1 → AKT1, который связан с каркасным белком тирозин-протеин-фосфатазой нерецепторного типа 1 (PTPN1). Хотя CDC2 участвует в обоих путях, два каркасных белка могут обеспечивать специфичность сигнальных путей и предотвращать возможные нежелательные перекрытия между путями.

Также они играют центральную роль в качестве пространственных регуляторов сигналов ERK. Концептуально, если мы рассмотрим клетку, в которой сигналы ERK настраиваются независимо с помощью 15 белков каркаса, большинство из которых действуют специфично для сублокализации, любое изменение экспрессии одного из них должно влиять на общую активность ERK только примерно на одну пятнадцатую. Однако, похоже, это не так. Это можно легко представить, учитывая, что сверхэкспрессия любого каркаса должна оказывать влияние на другие виды каркасов, которые конкурируют за те же пулы киназ, что приводит к увеличению количества неполных комплексов каркасов для каждого каркаса и, следовательно, к менее эффективным. сигнализация в целом. Точно так же истощение каркаса A может даже способствовать передаче сигналов, опосредованной каркасом B, за счет уменьшения конкуренции за те же киназы и тем самым увеличения количества полных комплексов каркаса B.

Таким образом, можно предположить, что, контролируя флуктуации концентраций каркаса, биологическая система найдет эффективный режим для регулирования выходного сигнала MAPKs. Следовательно наклонная экспрессия каркасов вверх или вниз может быть действенным средством ослабления сигналов MAPK. Примечательно, что экспрессия большинства белков каркаса довольно стабильна и не подвержена серьезным немедленным изменениям в ответ на внешние стимулы и другие факторы, которые управляют активацией MAPKs. Здесь интригующий аспект белков каркаса ERK заключается в том, что истощение или избыточная экспрессия любого из них оказывает драматическое влияние на общую интенсивность сигнала ERK (например, при мутациях или амплификации).

Так, стимуляция клеток с помощью EGF загружает B-Raf в KSR1 каркас, также ERK локализуется в этом комплексе и после этого фосфорилируется. Когда стыковка ERK нарушается мутацией, комплекс KSR1-MEK-B-Raf сохраняется даже после стимуляции, в то время как в противном случае почти весь B-Raf покинул бы комплекс. И KSR1, и B-Raf являются мишенями фосфорилирования по обратной связи для ERK, и эти обратные связи усиливаются за счет стыковки ERK. Это фосфорилирование, по-видимому, связано с диссоциацией сигнального комплекса, поскольку показано, что опосредованное ERK фосфорилирование по обратной связи предотвращает устойчивую передачу сигналов ERK.

Т.о. каркасы не только обеспечивают платформу, на которой может происходить передача сигналов, но также регулируют пространственную и временную передачу сигналов MAPK путем направления сигнала в специфические субклеточные компартменты. Например, β-аррестин 2 в основном направляет ERK1 / 2 к ямкам, покрытым клатрином, а Sef захватывает активированный ERK в аппарате Гольджи, предотвращая ядерную транслокацию, но позволяя фосфорилировать субстраты в цитоплазме.
Другой пример - KSR1 (см. выше), который может перемещаться динамически: в покоящихся клетках KSR1 изолируется цитоплазмой. При стимуляции KSR1 перемещается к мембране клетки для облегчения передачи сигналов MAPK, приводя MEK в тесный контакт с его киназой Raf.

Вообще, стержневой концепцией теории каркасов является то, что для любого заданного каркаса существует оптимальная концентрация, которая дает максимальную эффективность сигнала, приводящую к колоколообразной кинетике активации MAPK. В этом процессе субоптимальная активация MAPK происходит как тогда, когда нет достаточных каркасов для объединения всех доступных MAPK, MAPKK и MAPKKK, так и когда чрезмерная концентрация каркасов разбрасывает MAPK, MAPKK и MAPKKK в неполных каркасах, что приводит к непродуктивности комплексов. Это явление получило название «комбинаторное торможение» и «эффект прозоны». Также каркас, который объединяет MEK и ERK, при высоких уровнях экспрессии будет образовывать в основном комплексы только с MEK или только ERK, но только несколько комплексов с MEK и ERK.

В случае каркасов для пути ERK ассоциации между различными объектами были продемонстрированы для: IQGAP1 и MP1, MP1 и MORG1, IQGAP1 и β-аррестина2, паксиллин и GAB1. И такое взаимодействие кажется важным для определенных клеточных процессов. Например, связь между IQGAP1 и MP1, по-видимому, имеет решающее значение для регуляции динамики очаговой адгезии во время клеточной миграции.
Регуляция пути PI3K/AKT с помощью каркасного белка NHERF1 (Na + /H + обменный регуляторный фактор 1) при стимуляции тромбоцитарным фактором роста (PDGF) является одним из наиболее изученных путей. Считается, что особенно слабые сигналы передаются только в присутствии каркасов, так как динамическое перемещение каркаса из цитоплазмы к рецептору на мембране увеличивает шанс успешной инициации сигнала.

NHERF1 может взаимодействовать как с AKT, так и с его негативными регуляторами PTEN и PHLPP. С-концевой хвост PTEN содержит PDZ-связывающий мотив, способный взаимодействовать с доменом PDZ1 NHERF1. NHERF1 связывается с PDGFRβ и рекрутирует PTEN в компартмент мембраны рядом с PDGFR, формируя каркас комплекса между PDGFRβ и PTEN. Этот тройной комплекс регулирует передачу сигналов PI3K/AKT в ответ на лиганд PDGF, избегая сверхактивации пути.
Так, взаимодействие PTEN-NHERF1 повышает стабильность белка PTEN и зависит от статуса фосфорилирования PTEN, поскольку фосфорилирование PTEN уменьшает его привлечение к плазматической мембране. Обычно PTEN деградирует с помощью убиквитинового протеасомного пути, но взаимодействие PTEN-NHERF1 предотвращает связывание PTEN с NEDD4, убиквитин-E3 лигазой, тем самым предотвращая убиквитин-зависимую деградацию PTEN.
Также β-Catenin является хорошо зарекомендовавшим себя партнером NHERF1, который может действовать как позитивный регулятор передачи сигналов Wnt, связываясь как с β-катенином, так и с TCF-1ß, образуя тройной комплекс, усиливающий активность этих факторов транскрипции.

albert52 20.02.2023 10:35

Продолжим.

Каркасный белок KSR1 (киназный супрессор Ras) также может направлять сигналы в цитоплазму: помимо связывания Raf и MEK, KSR1 (но также и другие каркасы, такие как Sef и IQGAP1) помогает собирать димеры ERK1 / 2, которые необходимы для взаимодействия ERK с цитоплазматическими субстратами. Например, большие количества cPLA 2 , цитоплазматического субстрата ERK1 / 2, были связаны с KSR1 после стимуляции EGF. Поскольку одновременное связывание cPLA 2 и каркаса с ERK2 было бы стерически маловероятным, и поскольку известно, что ERK гомодимеризуется при активации, текущая модель состоит в том, что димеры ERK образуются там, где одна молекула ERK2 связана с cPLA 2, в то время как другая привязана к KSR1.

Механизм димеризации возникает, когда фосфорилированный мономер ERK, связанный с каркасом, взаимодействует со свободным мономером фосфо-ERK, который, вероятно, высвобождается из комплекса MEK-ERK. Эти димеры специфически фосфорилируют субстраты ERK в цитоплазме.
Были предложены альтернативные пути для фосфорилированных мономеров ERK, включая транслокацию в ядро ​​для фосфорилирования факторов транскрипции или свободное димеризацию в цитоплазме с последующим перемещением в ядро. Следовательно, KSR1 может контролировать, активируются ли субстраты в ядре или цитоплазме. Другие белки, которые, как известно, взаимодействуют с KSR, включают 14-3-3, G-белок-βγ, белки теплового шока 70 и 90, cdc37 и C-TAK1. Интересно, что MEK конститутивно связан с KSR, тогда как ERK связывается только в ответ на стимул. Как это типично для скаффолдов, оптимальные уровни экспрессии KSR необходимы для максимального ответа MAPK на сигнальные сигналы.

Роли каркасов, таких как KSR1, могут быть очень разными в разных типах клеток, а экспрессия каркасов клеточного типа и тканеспецифическая может играть важную роль в приписывании различных функций передаче сигналов MAPK в разных тканях.

Принятие клеточных решений включает в себя способность реагировать на постоянно меняющийся стимул определенным ответом - да или нет. Причиной переключающегося поведения может быть крутой профиль реакции на стимулы, описываемый как сверхчувствительность, но это также может быть бистабильность, когда система переключается из одного устойчивого состояния в другое. Наличие каркаса может увеличить вероятность возникновения бистабильности, особенно когда сродство субстрата и модифицирующего фермента низкое.

Сверхчувствительные ответы полезны, поскольку они позволяют отфильтровывать шум и энергично реагировать на соответствующие стимулы. Предположительно, сверхчувствительные ответы генерируются механизмами, которые встроены в структуру сигнальной сети и могут быть видны уже на уровне соответствующего MAPK. В общем, многоступенчатые процессы (де) активации могут вызывать устойчивые сверхчувствительные ответы. Примерами являются активация киназы несколькими последовательными событиями фосфорилирования, а также насыщение фермента путем ступенчатого связывания лигандов с положительной кооперативностью.
Теоретически трехуровневый каскад MAPK, включающий одиночное фосфорилирование Raf и двойное фосфорилирование MEK и ERK, по своей природе сверхчувствителен, и критическим детерминантом этого свойства является предполагаемый распределительный механизм (де) фосфорилирования. В конечном счете, дифференцированный ответ может быть результатом непосредственной близости каркасов, занятых по-разному, из-за локализации на мембране. Киназы, находящиеся на разных каркасах, затем могут транс-активировать друг друга.

Передача сигналов EGF инициируется в нанокластерах Ras-GTP, которые состоят примерно из 7 молекул Ras-GTP со временем жизни около 0,4 с и которые привлекают Raf к мембране. Показано, что каждый нанокластер действует как молекулярный переключатель, который преобразует ступенчатый вход в ответ «все или ничего». Однако, поскольку количество кластеров линейно увеличивается со стимулом, интегральный ответ по всем кластерам градуируется, давая линейный ответ фосфорилирования ERK на стимуляцию EGF.
Такие градуированные профили стимула-ответа часто наблюдаются в клетках млекопитающих, при этом свойства профиля сигнал-ответ не определяются на уровне каркаса. Например, измерения фосфорилирования ERK в клетках показывают, что путь MAPK может показывать ступенчатый ответ на стимуляцию хемокином SDF-1 или линейный ответ, когда задействован рецептор Т-клеток; на характер ответа обоих путей не влияет уровень экспрессии KSR1.

Что касается непосредственно пути митоген-активируемой протеинкиназы (MAPK), то некоторые факторы роста, такие как эпидермальный фактор роста (EGF), фактор роста эндотелия сосудов (VEGF), инсулин, нейротрофины и воспалительные цитокины активируют MAPK. Клетки стимулируются этими факторами и реагируют на изменения в окружающей среде посредством манипулирования передачей сигналов MAPK. У млекопитающих идентифицировано пять различных групп МАРК. Это киназа MAPK/ERK/внеклеточно регулируемая киназа (MEK/ERK), N-концевая киназа c-Jun (JNK), p38, ERK5 и ERK3. МАРК могут контролировать как события в ядре, такие как регуляция генов, так и внеядерные события, такие как реорганизация цитоскелета, посредством фосфорилирования и активации мишеней в цитозоле и ядре.

Наиболее охарактеризованным из путей MAPK является каскад MEK/ERK. Будучи активными, ERKs димеризуются и либо перемещаются в ядро, где они фосфорилируют факторы транскрипции, либо остаются в цитозоле, где они фосфорилируют субстраты во многих клеточных компартментах. Преобладающими последствиями передачи сигналов MEK/ERK являются пролиферация или дифференцировка.

IQGAP1 является большим, широко экспрессируемым белком , который регулирует многие сигнальные пути и клеточные функции. Имея несколько доменов, IQGAP1 способен связываться с широким спектром белков, тем самым модулируя динамику актина, динамику микротрубочек, межклеточную адгезию и регуляцию транскрипции. IQGAP1 является каркасом для каскада MAPK. IQGAP1 связывается непосредственно с B-Raf, MEK1, MEK2, ERK1 и ERK2 и регулирует их активацию в ответ на EGF и CD44. Кроме того, у мышей выработка условного рефлекса страха увеличивает ассоциацию IQGAP1 с активным ERK2.
Аналогично KSR, как увеличение, так и снижение уровня экспрессии IQGAP1 осла***ют EGF-зависимую активацию MEK и ERK, указывая на то, что правильная стехиометрия компонентов IQGAP1 и MAPK необходима для эффективного распространения каскада. IQGAP1 преимущественно активирует сигнальный путь MEK1 и было высказано предположение, что MEK1 способствует пролиферации, тогда как MEK2 способствует дифференцировке и поэтому IQGAP1 может регулировать клеточный ответ на передачу сигналов MAPK. Что же касается B-Raf, то, например, нокаут IQGAP1 из клеток делает B-Raf нечувствительным к стимуляции EGF, предполагая, что IQGAP1 действует «выше» B-Raf и необходим для активации B-Raf факторами роста.

IQGAP1 является регулятором актина и цитоскелета микротрубочек, и заманчиво предположить, что IQGAP1 связывает передачу сигналов MAPK с динамикой цитоскелета. Отметим, что как IQGAP1, так и ERK2 локализуются в микротрубочках, ассоциированных с белком-2 в нейрональных клетках. Кроме того, IQGAP1 образует комплекс с CD44, Cdc42 и актином в ответ на гиалуронан, а также необходим для гиалуронан-зависимой активации ERK и Elk.

MEK partner-1 (MP-1), широко экспрессируемый каркас для пути MEK/ERK; чтобы усилить передачу сигналов MAPK в клетках, MP1 необходимо присутствие взаимодействующего с ним белка p14, который локализует MP1 в эндосомах. И MP1, и p14 необходимы для EGF-зависимой активации ERK.

β-аррестины являются хорошо известными регуляторами GPCR. После активации рецептора β-аррестин вызывает диссоциацию гетеротримерного G-белка, что нацеливает GPCR на ямки, покрытые клатрином. Также активный Src рекрутируется на β2-адренергические рецепторы посредством прямого взаимодействия с β-arrestin. Здесь Src фосфорилирует адапторный белок Shc, что приводит к активации Grb2 и, следовательно, активации каскада MAPK (см. выше).
Также в ответ на активацию рецептора протеазой (PAR), β-аррестин рекрутирует Raf, MEK и ERK к рецептору, усиливая активацию ERK. Эти комплексы сопровождают рецептор к ранним эндосомам, способствуя эффективной передаче сигналов MAPK. Важно отметить, что β-аррестин предотвращает транслокацию активной ERK в ядро, ограничивая ERK цитозольными субстратами .

Также каркасный белок Sef захватывает активные комплексы MEK/ERK в Golgi и ингибирует диссоциацию комплекса MEK/ERK; следовательно, Sef ингибирует ядерную локализацию ERK и ограничивает ERK цитозольными субстратами. Sef является ингибитором передачи сигналов FGF; интересно, что в отличие от его роли в передаче сигналов FGF, Sef увеличивает продолжительность EGF-зависимой активации ERK. Поэтому возможно, что Sef регулирует передачу сигналов MAPK от факторов, отличных от EGF и FGF.

albert52 25.02.2023 14:25

Продолжим.

В покоящихся клетках KSR1 конститутивно взаимодействует с MEK1 / 2 и PP2A (протеинфосфатазой 2, дающей большую долю фосфатазной активности в эукариотических клетках), а комплекс KSR1-MEK-PP2A сохраняется в цитозоле благодаря его взаимодействиям с 14-3-3 и Ras-чувствительная E3-убиквитинлигаза препятствует распространению митогенного сигнала (IMP).

Каркас MP1-p14 участвует в PAK1-зависимой активации ERK во время адгезии и миграции клеток. MP1-p14-опосредованная активация ERK необходима для подавления сигнальной оси ROCK (RH-ассоциированной спирально-содержащей протеинкиназы, что является дополнительным условием для адгезии и миграции клеток. С другой стороны, каркас MP1 является необязательным для ответа ERK, активированного тромбоцитарным фактором роста (PDGF).

Скаффолд MORG1, может связываться с Raf-1, B-Raf, MEK1, MEK2, ERK1 и ERK2. Роль MORG1 в передаче сигналов ERK, по-видимому, специфична для лигандов / рецепторов; похоже, что MORG1 участвует в облегчении передачи сигнала от рецепторов, связанных с G-белком, таких как рецепторы LPA (лизофосфатидиновой кислотой), но не от рецепторных тирозинкиназ (RTK).

Контекстно-специфичные каркасы для модуля ERK обеспечиваются цитоскелетным белком паксиллином во время морфогенеза эпителиальных клеток, опосредованного фактором роста гепатоцитов (HGF). Паксиллин представляет собой белок 68 кДа, расположенный в фокальных адгезиях в ассоциации с другими специфическими для фокальной адгезии белками, такими как винкулин, ФАК, актопаксин и ПАК.
В покоящихся клетках паксиллин конститутивно связан с MEK, однако в клетках, стимулированных HGF, Src-опосредованное фосфорилирование паксиллина приводит к рекрутированию неактивного ERK. Впоследствии активированный Raf связывается с паксиллином, тем самым активируя связанные MEK и ERK, а ERK вовлекается в комплекс фокальной адгезии для передачи сигналов другим сигнальным белкам, таким как киназа фокальной адгезии (FAK ), облегчая рекрутирование FAK в комплексы фокальной адгезии для быстрого обновления. Таким образом, paxillin обеспечивает эффективный каркас для модуля ERK для организации сигнального узла в непосредственной близости от фокальных адгезий, чтобы способствовать миграции клеток посредством передачи сигналов ERK.

Мембранная челночная киназа MEKK1 представляет собой MAP3K, участвующую в активации модулей ERK и JNK; она может физически ассоциироваться с компонентами трехуровневого модуля ERK, а именно Raf-1, MEK1 и ERK2 в дополнение к Ras. Эти киназы тесно выровнены на поверхности каркаса, предоставленной MEKK1; коэкспрессия конститутивно активного мутанта MEKK1 стимулирует фосфорилирование MEK1 и MEK2. Помимо области каркасного белка MAP3K1 содержит домен протеинкиназы и цинковый палец PHD (который имеет структуру, подобную домену пальца RING ), который служит в качестве убиквитинлигазы E3.

Есть также несколько других белков, таких как CNK1, CNK2 и 14-3-3, которые могут взаимодействовать с различными компонентами модуля ERK, вызывая специфический для контекста ответ. Например, CNK1, по-видимому, участвует в Src-опосредованной активации Raf-1, необходимого для полной активации Raf-1. В случае CNK2 было показано, что он обеспечивает специальный сигнальный канал для опосредованной NGF (фактором роста нервов) активации модуля ERK. Белок 14-3-3 привязывает передачу сигналов киназы С (PKC) к Raf в дополнение к его модуляторной роли в каркасах KSR и PEA-15 (эндосомальный фосфопротеин), и, по-видимому, опосредует цитоплазматическую секвестрацию ERKs.
Поскольку эти каркасные белки не взаимодействуют со всеми компонентами трехуровневого киназного модуля, можно утверждать, что они сами по себе не образуют «настоящие» функциональные каркасы. Тем не менее, возможно, что они могут действовать как «вложенные скаффолды» в тандеме или в сотрудничестве с другими каркасными белками при передаче сигналов ERK.

В зависимости от субклеточной локализации, из которой исходят активирующие сигналы, определенные каркасы определяют, какие субстраты могут быть фосфорилированы. Как уже упоминалось, три уровня сигнального каскада MAPK первоначально активируются на плазматической мембране. Однако на более поздних стадиях комплексы присутствуют в эндосомах, что необходимо для достижения правильного сигнального ответа. По-видимому, эндоцитоз активированных рецепторов и связанных с ними сигнальных комплексов имеет решающее значение для максимальной активации MAPK, а активированные Ras, C-Raf, MEK1 и ERK1 могут быть обнаружены в эндосомах.
Эндоцитоз может способствовать более контролируемому пространственно-временному разрешению сигнального каскада. Кроме того, он также может защищать сигнал при передаче на большие расстояния, тогда как медленная диффузия белка и быстрое дефосфорилирование белка могут мешать ему.

Взаимодействие MP1 с p14 оказалось важным для локализации каркасного комплекса MP1-MAPK в поздних эндосомах / лизосомах во время второй устойчивой фазы передачи сигналов MAPK, при этом p14 взаимодействует с MEK1 и ERK1 только косвенно через MP1. Вообще, передача сигналов MAPK, ассоциированная с эндосомами, может играть роль в регуляции биогенеза эндосом и лизосом. Эндосомной локализации комплексов MP1 / p14 способствует небольшой адаптерный белок p18, который связан с липидными рафтами.
Более подробный анализ выявил роль специфических компартментов плазматической мембраны в передаче сигналов MAPK. Например, кавеолы обогащены многими сигнальными рецепторами, такими как EGFR, VEGFR2, p75 NTR и TrkA. Эти мембранные компартменты обеспечивают некоторую степень спецификации сигнала, регулируя активацию MAPK в ответ на специфические стимулы. Так, многие компоненты передачи сигналов MAPK, включая Shc, Grb2, Sos и Ras, были обнаружены в эндосомах, содержащих EGFR; эндосомы т.о. действуют как сигнальные платформы, обеспечивая распространение каскадов MAPK.

Белки Ras локализуются как в аппарате Гольджи, так и в эндоплазматическом ретикулуме (ER). Интересно, что в то время как активация H-Ras, зависящая от фактора роста, как на плазматической мембране, так и на ER происходит быстро, в течение 1 минуты и полностью прекращается через 20-40 минут, активация H-Ras в аппарате Гольджи задерживается, занимая 10 минут и сохраняется в течение 60 минут.
Будучи привязанным к аппарату Гольджи, конститутивно активный Ras, RasQ61L, является сильным активатором ERK и протеинкиназы Akt, но слабо активирует JNK. Наоборот, будучи привязанным к ER, Ras61L сильно активирует JNK, в то время как лишь слабо активирует ERK и Akt.

Что касается онкогенеза, то IQGAP1, например, активируется за счет амплификации гена при некоторых диффузных типах карциномы желудка, а также сверхэкспрессируется при колоректальной карциноме, особенно на фронте инвазии. Транслокация IQGAP1 из цитоплазмы на клеточную мембрану, которая ингибирует E-кадгерин-опосредованную межклеточную адгезию, коррелирует с дисфункцией E-кадгерина и дедифференцировкой опухоли при карциноме желудка. IQGAP1 и кальмодулин, вероятно, играют важную роль в метастазировании.
Потеря экспрессии Sef коррелирует с метастатическим раком простаты высокой степени злокачественности. Кроме того, посредством взаимодействия с c-Src, β-arrestins модулируют трансактивацию EGFR простагландином E2 в клеточных линиях колоректальной карциномы; взаимодействие между β-аррестином и c-Src имеет решающее значение для миграции клеток колоректальной карциномы in vitro и метастазирования in vivo.

albert52 02.03.2023 00:06

Продолжим о каркасных белках

В пути ERK различная кинетика активации может определять разные клеточные судьбы. Эта кинетическая информация расшифровывается в дифференциальные биохимические реакции посредством дифференциальной стабилизации или активации факторов транскрипции или сборки различных белковых комплексов. Но в целом передача сигнала требует координации действий между различными путями и фундаментальный вопрос заключается в том, как сигнальные сети генерируют конкретные решения.

Сигнальный путь Hippo включает многочисленные белки, которые регулируют размер и форму органов, регенерацию и биологию стволовых клеток. Путь Hippo отвечает на несколько стимулов, таких как стресс, нарушение полярности клеток и сигналы адгезии, и участвует в онкогенезе. Основными компонентами этого каскада являются модуль киназы и модуль транскрипции.

Центральные компоненты пути Hippo включают основную киназную кассету, состоящую из Ste20-подобной киназы 1/2 млекопитающих (MST1/2) и большой киназы-супрессора опухолей 1/2 (LATS1/2); и нижележащие транскрипционные коактиваторы Yes-associated protein (YAP) и коактиватор с PDZ-связывающим доменом (TAZ). MST1/2 фосфорилирует и активирует LATS1/2, который впоследствии фосфорилирует YAP и TAZ. Функциональная активность фосфорилированных YAP и TAZ ингибируется путем секвестрации в цитоплазме белками 14-3-3 и/или протеасомной деградации. Также семейство белков ангиомотина (AMOT) связывается с YAP и способствует его удержанию в цитоплазме.

Когда путь Hippo отключен, нефосфорилированный YAP перемещается в ядро ​​и действует как коактиватор факторов транскрипции. YAP в основном взаимодействует и регулирует ассоциированный домен факторов транскрипции TEAD 1/2/3/4, чтобы индуцировать транскрипцию набора генов, которые способствуют пролиферации клеток и ингибируют апоптоз.

Путь Hippo содержит два каркасных белка, SAV1 (сальвадор белок 1), содержащий домен WW семейства, и активатор киназы MOB 1 (MOB1), которые образуют основной киназный комплекс, ингибирующий YAP, первичный эффектор пути. В н***агоприятных условиях роста MST1/2 связывается с SAV1 и MOB1, фосфорилируя их, образуя комплекс SAV1–MST1/2–MOB1. В дополнение к своей роли каркаса для MST1/2, SAV1 рекрутирует MST1/2 на мембрану, где он активирует LATS1/2, и для этой регуляции необходимо взаимодействие SAV1- NF2 (нейрофиброматоз II типа). Mob1, будучи фосфорилированным с помощью MST1 / 2, связывается с аутоингибирующим мотивом в Lats1 / 2, выключая его, что, в свою очередь, приводит к образованию петли активации Lats.

Еще один каркасный белок CORO7 локализуется в цитозоле и сети транс-Гольджи, где он регулирует организацию актинового цитоскелета, морфологию Гольджи и транспортировку белков после Гольджи. Повреждение актинового цитоскелета активирует путь Hippo через фосфорилирование LATS1/2 при содействии CORO7, который действует как каркас для LATS1, помогая ему взаимодействовать с SAV1 и MST2. При этом CORO7 может играть защитную роль для LATS1 с точки зрения стабильности белка.

В целом CORO7 взаимодействует с подмножеством компонентов пути Hippo, включая LATS1, MST2 и SAV1, при этом SAV1 может опосредовать связывание MST2 с CORO7. Тирозинкиназа Src ингибирует путь Hippo посредством фосфорилирования CORO7 по остаткам тирозина, т.е. является вышестоящим регулятором CORO7, который является критическим каркасным белком в пути Hippo. При этом Src активируется за счет адгезии клеток к внеклеточному матриксу, который, как известно, служит восходящим сигналом, ингибирующим путь Hippo.

IQGAP1 является каркасом в нескольких сигнальных каскадах, которые интегрируются с передачей сигналов Hippo. Например, IQGAP1 связывается с AKT и модулирует его активность: AKT фосфорилирует YAP по Ser 127 и индуцирует его взаимодействие с 14-3-3 в клетках, стимулированных EGF. Следовательно, IQGAP1 может регулировать зависимую от фосфорилирования локализацию YAP в ответ на специфические сигналы, такие как EGF-индуцированная активация AKT.

Путь Hippo т.о. не функционирует изолированно, а тесно интегрирован с путями Raf/MEK/ERK (кратко путь ERK) и Akt на разных уровнях их перекрестных связей. Первый уровень перекрестных связей проходит через Akt, который фосфорилирует MST2 и одновременно ингибирует его функциональную активность по отношению к LAST1, так как Akt-опосредованное фосфорилирование MST2 усиливает его связывание с Raf-1, что препятствует димеризации и активации MST2, и в то же время подавляет активацию Raf-1/ERK, изолируя Raf-1 от комплекса Ras/Raf-1.
Следующим уровнем перекрестных связей является LATS1-опосредованное фосфорилирование Raf-1 по серину 259, который затем неактивен по отношению к пути ERK, а его дефосфорилирование является центральной частью физиологического процесса активации Raf-1. С другой стороны, фосфорилирование Serine 259 способствует связыванию Raf-1 с MST2 и его ингибированию.

Akt в целом может играть противоположные роли в регуляции активности ERK, которые переключаются дозозависимым образом: Akt действует как промотор, когда его уровни низкие, и как ингибитор, когда его уровни высоки. Так, увеличение Akt, начиная с низкого уровня, фосфорилирует и ингибирует MST2, тем самым осла***я отрицательную обратную связь LATS1-Raf-1, что приводит к повышению активности Raf-1/ERK (фаза I). Однако дальнейшее увеличение Akt способствует накоплению неактивной формы MST2, которая изолирует Raf-1 от активации Ras посредством образования комплексов MST2-Raf-1, что приводит к подавлению активности ERK.

Клетки различного тканевого происхождения (или от разных пациентов) могут демонстрировать значительные различия в экспрессии компонентов этой сигнальной сети. Также очевидно, что уровни экспрессии белка могут значительно изменяться в клетках, несущих генетические изменения, такие как амплификация генов, мутации или эпигенетические модификации, по сравнению с нормальными клетками. Давно известно, что петли обратной связи создают динамику сложных и нелинейных систем.

Ожидается, что перекрестные связи и взаимодействия обратной связи между путями MST2 и ERK будут играть важную роль в определении динамического поведения всей сети. В целом сеть Hippo-ERK может генерировать очень разнообразные динамические профили, которые можно сгруппировать в несколько различных моделей доза-реакция для активных MST2 и ERK .

albert52 06.03.2023 09:28

Продолжим.

Регуляция активности ERK1/2 в ядре и цитоплазме сложна, так как сплайс-изоформа p38MAPK-альфа, взаимодействующfy с белком Max (Mxi-2), может связывать ERK1/2 и обеспечивать его транслокацию в ядро, а также предотвращать дефосфорилированиe ERK1/2 в ядре фосфатазами MAPK-1 (MKP1) и DUSP5 (вероятно, в конечном итоге будет доказано, что большинство фосфатаз являются генами-супрессорами опухолей). Это позволяет активированной ERK1 /2 фосфорилировать транскрипционный фактор c-Myc и другие важные субстраты. Примечательно, что около половины идентифицированных в настоящее время субстратов ERK1/2 являются ядерными белками и участвуют в регуляции многих стимулированных ядерных процессов.

В ядре ERK может фосфорилировать факторы транскрипции, такие как: Elk-1, рецептор эстрогена (ER), Fos, глобиновый фактор транскрипции 1 (Gata-1), c-Myc, сигнальный трансдукционная активация транскрипции 1 и 3 (STAT1 и 3) и др . Эти факторы транскрипции связывают промоторы многих генов, включая гены факторов роста и цитокинов, которые важны для стимуляции роста и предотвращения апоптоза многих типов клеток.
ERK также может фосфорилировать и модулировать активность факторов транскрипции Twist, Snail, Slug и Zeb1 прямо или косвенно, которые могут регулировать клеточную пролиферацию, выживание, а некоторые могут модулировать эпителиально-мезенхимальный переход (EMT). Фосфорилирование факторов транскрипции с помощью ERK1/2 или, в некоторых случаях, родственной MAPK, p38MAPK, предотвращает их убиквитинирование и приводит к их стабилизации и повышению активности в ядре и способности стимулировать EMT.

В ядре ERK также может фосфорилировать митоген и стресс-активируемые протеинкиназы (MSK), которые, в свою очередь, могут фосфорилировать TF, такие как активатор транскрипционного фактора-1 (ATF-1), который важен для регуляции активности многих ранних генов после стимуляции митогенами/факторами роста (активируются AP-1).
MSK также фосфорилируют многие белки, участвующие в модуляции структуры хроматина, включая: гистон H3 и (белок-14 группы высокой подвижности) HMG14, что может привести к транскрипции немедленных ранних генов (IEG). Быстрая транскрипция IEG после стимуляции требует активации их факторов транскрипции в течение нескольких минут после стимуляции, и это происходит в основном с помощью быстро перемещаемой ERK1/2.
Одним из наиболее хорошо изученных факторов транскрипции, активируемых ERK1/2, является ядерный домен ETS, содержащий Elk1. Одним из самых ранних транскрипционных событий, регулируемых Elk1, при стимуляции является индукция IEG c-Fos, которая важна для правильного развития пролиферации и дифференцировки. Подобное фосфорилирование с помощью ERK1/2, по-видимому, важно для стабильности и активности других IEG, таких как c-Myc и Fra1.
ERK1/2 может также фосфорилировать многие белки, важные для структуры/реорганизации цитоскелета.

Функция, которую Akt играет в регуляции активности ERK, критически зависит от баланса между Ras и LATS1. Увеличение Akt истощает активный MST2, тем самым осла***я обратную связь LATS. Одновременно накопленный неактивный MST2 секвестрирует Raf-1 посредством их связывания, что приводит к снижению активности Raf-1 и, следовательно, активности ERK (см. выше). В целом Akt играет критическую роль в координации противоположной активности сигнальных осей Hippo и ERK, т.о. хотя Akt всегда ингибирует активность MST2, его дозоспецифическая функция по отношению к ERK предполагает, что Akt обладает способностью независимо настраивать одну сигнальную ветвь, не влияя на другую.

Что же касается Ras, то поскольку Ras находится непосредственно перед Raf-1, естественно ожидать, что увеличение содержания Ras приводит к увеличению активности ERK.
Переключение в отношении MST2 («выключено») и активности ERK («включено») происходило при разных пороговых значениях Ras, что предполагает, что в зависимости от концентрации Ras система может включать только MST2 (низкий Ras), только ERK ( высокий Ras), или оба (промежуточный Ras). Таким образом, Ras оказывает многофункциональное действие в зависимости от его содержания.
Вообще после активации некоторые пути MAPK достигают критического уровня силы сигнала и ведут себя подобно переключателям. Следовательно, отдельные клетки в популяции будут либо «включены», либо «выключены» по отношению к конкретному результату. Другие пути реагируют ступенчато, когда все клетки в популяции демонстрируют равномерное увеличение «выходного сигнала», пропорциональное активирующему стимулу.

Сам путь Raf/MEK/ERK проявляет свойства усилителя отрицательной обратной связи (NFA). По сути, передача сигналов NFA аналогична по биологическому устройству тем, которые используются в электронных схемах. NFA в электронных схемах оптимизируют надежность, стабилизацию сигнала и линеаризацию нелинейного усиления сигнала. Эти свойства Raf/MEK/ERK NFA важны для определения кинетики активации, реакции на лекарства и различных других последующих эффектов активированной ERK.

МАРК-модули состоят из трех отдельных киназ, а именно, MAP-киназной киназы (MAP3K), MAP-киназной киназы (MAP2K) и нижестоящей MAPK. Из наблюдения, что непропорционально большое количество MKKKs присутствует в клетках млекопитающих для регуляции ограниченного количества MAPKs , было сделано заключение, что белки каркаса облегчают специфичную для контекста сборку различных MAP3K, MAP2Ks и MAPKs. На сегодняшний день идентифицировано девять различных модулей MAPK. Это ERK1 / 2, ERK3, ERK4, ERK5, ERK6 / p38MAPK γ , ERK7, ERK8, JNK1 / 2/3 и p38MAPK α / β / δ; многие из каркасных белков, идентифицированных на сегодняшний день, участвуют в регуляции этих модулей.

Подсемейства JNKs и p38s участвуют в реакции на клеточные события, такие как воспаление, инфекция и стресс окружающей среды. Считается, что белок-белковые взаимодействия имеют решающее значение для нормальной функции сигнального пути JNK. Так, были идентифицированы каркасные белки для группы JNK МАРК. К ним относится группа предполагаемых каркасов JNK-взаимодействующих белков (JIP). Белки JIP1 и JIP2 являются близкородственными белками, которые связываются с JNK, MKK7 и протеинкиназами смешанного происхождения. Они наиболее сильно экспрессируются в инсулин-секретирующих β-клетках поджелудочной железы и в нейронах и, как предполагается, регулируют экспрессию гена инсулина и гена переносчика глюкозы GLUT2.
Исследования гена Jip1 человека привели к выявлению миссенс-мутаций, которые сегрегируют с диабетом II типа; можно предположить, что JIP1 регулирует апоптоз β-клеток поджелудочной железы.

Отметим, что связанный модуль JNK не будет функционировать для усиления сигналов. Вместо этого сборка модуля JNK каркасным белком может привести к эффективной активации JNK в ограниченной области клетки с помощью определенного стимула. Возможна также динамическая регуляция субклеточной локализации каркаса. Еще недавние исследования установили, что актин-связывающий белок филамин может функционировать в качестве предполагаемого каркаса для сборки модуля цитокинового рецептора, который активирует JNK; филамин взаимодействует с MKK4 и TRAF2.

Cуществует множество каркасных/шаперониновых белков, которые взаимодействуют с различными компонентами каскада Raf/MEK/ERK, например , 14-3-3, MP-1, белок теплового шока-90 (HSP-90), KSR, RKIP (ингибирующий белок киназы Raf). Белки теплового шока, такие как HSP-90, считаются сторожами, поскольку они обычно служат для защиты активности белков-клиентов. Мутации в KRAS придают чувствительность к ингибиторам HSP-90, таким как гелданамицин, что подтверждает важность HSP-90 в регуляции этого пути.

RKIP также считается геном-супрессором метастазирования при некоторых видах рака и обладает эффектами привратника и сторожа. Было показано, что активация Raf-1 с помощью Ras зависит от белка-прогибитина, повсеместно экспрессируемого белка, который также может служить белком-шаперонином. Прогибитин , также известный как PHB , представляет собой белок , кодируемый у людей геном PHB.

albert52 09.03.2023 17:04

Продолжим.

Фосфатидилинозитол-3-киназа (PI3K) представляет собой гетеродимерный белок с регуляторной субъединицей 85 кДа и каталитической субъединицей 110 кДа ( PIK3CA ). PI3K служит для фосфорилирования ряда мембранных фосфолипидов. Чаще всего PI3K активируется посредством связывания лиганда с его родственным рецептором, в результате чего р85 связывается с фосфорилированными остатками тирозина на рецепторе через домен Src-homology 2 ( SH2). После ассоциации с рецептором каталитическая субъединица р110 затем переносит фосфатные группы на вышеупомянутые мембранные фосфолипиды. Именно эти липиды, особенно PtdIns(3,4,5)P3 , привлекают ряд киназ к плазматической мембране, тем самым инициируя сигнальный каскад.

Ниже PI3K находится первичная эффекторная молекула сигнального каскада PI3K, Akt/ протеинкиназа B (PKB); Akt активируется посредством фосфорилирования двух остатков: T308 и S473.
Фосфотидилинозитид-зависимые киназы ( PDK ) ответственны за активацию Akt . PDK1 является киназой, ответственной за фосфорилирование T308. Akt также фосфорилируется mLST8 (возможным PDK2), нечувствительным к рапамицину компаньоном комплекса mTOR / mTORC2. Следовательно, фосфорилирование Akt несколько затруднено, так как он фосфорилируется комплексом, расположенным ниже самого активированного Akt.

После активации Akt покидает клеточную мембрану для фосфорилирования внутриклеточных субстратов, а также способен перемещаться в ядро, где он влияет на активность ряда регуляторов транскрипции, например, CREB, E2F, NF-кВ (через IКК), транскрипционные факторы вилки и MDM2, который регулирует активность p53.

Главный ингибитор пути PI3K PTEN. Ген PTEN кодирует липидную и протеиновую фосфатазу, первичным липидным субстратом которой является PtdIns( 3,4,5 ) P3. Впрочем субстраты PTEN более разнообразны, включая киназу фокальной адгезии (FAK), обменный белок Shc и регуляторы транскрипции ETS-2 и Sp1, а также PDGFR.

Другим негативным регулятором PI3K-пути являются фосфатазы PHLPP (PH domain and Leucine rich repeat Protein Phosphatases). PHLPP (PHLPP1 и PHLPP2) дефосфорилирует Ser-473 (гидрофобный мотив) в Akt, тем самым частично инактивируя киназу. Кроме того PHLPP может дефосфорилировать киназы AGC, такие как S6K и PKC на их гидрофобных мотивах, а также ингибирующий сайт проапоптотической киназы Mst1, что приводит к ее активации.
PHLPP способен подавлять ацетилирование и фосфорилирование гистонов, чтобы уменьшить экспрессию генов рецепторных тирозинкиназ, таких как EGFR. Кроме того, PHLPP1 дефосфорилирует RAF1, обеспечивая еще один путь подавления передачи сигналов MAPK .

Две другие фосфатазы, SHIP-1 (инозитол - 5'- фосфатаза, содержащая домен SH1) , и SHIP-2 удаляют 5-фосфат из фосфолипида PtdIns(3,4,5) P 3 с образованием PtdIns(3,4) P 2. Мутации этих фосфатаз, устраняющие их активность, также могут приводить к опухолевой прогрессии.

Как известно, главной функцией Akt является ингибирование комплекса TSC1/TSC2, блокирующего белок Rheb, связывающий/обменяющий GTP, который играет ключевую роль в регуляции mTORC1 и контроле эффективности трансляции белка.
В присутствии питательных веществ mTORC1 рекрутируется на поверхность лизосом с помощью RAPTOR и активированных Rag GTPases. Оказавшись на лизосомальной мембране, mTORC1 параллельно активируется Rag GTPases вместе с Rheb GTPase. Сама Rheb GTPase представляет собой точку регуляции, поскольку ее активность регулируется комплексом TSC1/TSC2, который управляет гидролизом GTP до GDP в Rheb, тем самым вызывая его инактивацию. Активность TSC1/TSC2 регулируется множеством сигналов окружающей среды, включая присутствие фактора роста и уровня энергии клетки.

Кстати Rheb является мишенью FTI (ингибиторов фарнезилтрансферазы), с помощью которой изопренильная группа добавляется к остаток цистеина. Это важный процесс, обеспечивающий белок-белковые и белок-мембранные взаимодействия. Эти ингибиторы были разработаны с целью нацеливания на Ras. К сожалению, клинические испытания ингибиторов FT (FTI) дали неутешительные результаты. Отсутствие полезности FTI может быть связано с несколькими причинами. Во-первых, есть много белков, которые регулируются FT. Во-вторых, хотя FT модифицирует чаще всего H-Ras и в меньшей степени K-Ras, N-Ras также может модифицироваться геранил - геранил - трансферазой (ГГТ). Этот модифицированный N-Ras по-прежнему способен поддерживать биологическую потребность в Ras в раковой клетке.
Но некоторый клинический эффект FTI был связан с блокадой Rheb. Дело в том, что Rheb располагается в различных эндомембранных структурах, включая ER и Golgi, причем обнаруживается в основном в цитозольной фракции, что свидетельствует о слабом взаимодействии с мембранами.
Фарнезилирование Rheb делает возможным его слабое взаимодействие с мембраной ER и что это временное и обратимое взаимодействие необходимо для активации mTORC1. В случае Rheb на мембранах Гольджи предполагается, что непосредственная близость с mTORC1 на лизосомальных мембранах опосредуется через взаимосвязанные поверхности между этими органеллами.

mTORC1 представляет собой S/T-киназу с молекулярной массой 289 кДа. Он регулирует трансляцию в ответ на питательные вещества и факторы роста путем фосфорилирования компонентов механизма синтеза белка, включая p70 S6K и эукариотический фактор инициации трансляции 4EBP-1 , последний приводит к высвобождению фактора эукариотической инициации-4E (eIF-4E), позволяя eIF-4E участвовать в сборке комплекса инициации трансляции.
mTOR контролирует несколько стадий, участвующих в синтезе белка, но, что также важно, усиливает продукцию ключевых молекул, таких как c-Myc, cyclin D1, p27 Kip1 и белок ретинобластомы (pRb). mTOR также контролирует трансляцию мРНК HIF-1α, активация которого приводит к увеличению экспрессии ангиогенных факторов, таких как VEGF и PDGF. Более того, HIF-1α регулирует гликолитический путь, контролируя экспрессию молекул, чувствительных к глюкозе, включая переносчики глюкозы Glut 1 и Glut3.

Многие из мРНК, кодирующих ранее упомянутые гены, содержат 5'- нетранслируемые области , которые богаты G+C и трудно транслируются и поэтому называются слабыми мРНК. 4EPB-1 образует комплекс с этими мРНК и др. связывающими факторами, что делает возможным трансляцию этих слабых мРНК. ERK, p90 Rsk-1 , MNK1/2 и p70S6K регулируют фосфорилирование многих белков, участвующих в ключевом комплексе, необходимом для трансляции слабых мРНК. Mcl-1 является примером слабой мРНК и играет ключевую роль в регуляции апоптоза. Ингибиторы рапамицина и киназы mTOR подавляют трансляцию этих критических мРНК, участвующих в выживании и росте клеток.

Недавние данные показали, что в солидных опухолях ингибирование mTORC1 приводит к активации ERK 1/2 посредством p70 S6K /PI3K/Ras/Raf/MEK. Также mTORC2 может функционировать как неуловимая PDK-2, которая фосфорилирует Akt на S473 в ответ на стимуляцию фактором роста. Предполагается, что между этими двумя комплексами существует равновесие; когда образуется комплекс mTORC1, это может препятствовать образованию комплекса mTORC2 и снижать активность Akt.

albert52 13.03.2023 00:24

Вставка.
Регуляция биосинтеза белка

Регуляция необходима для поддержания баланса разнообразных белков в клетке или организме, для изменения этого баланса в меняющихся условиях окружающей или внутриорганизменной среды, для обеспечения смены белков в процессах клеточной дифференцировки и развития организма, для адекватного ответа на специфические внешние сигналы или н***агоприятные воздействия.
Живые клетки используют несколько различных способов или путей такой регуляции, но практически во всех случаях она осуществляется через регуляцию инициации трансляции. Это означает, что регуляторные механизмы трансляции направлены на то, чтобы разрешить или не разрешить инициацию трансляции данной мРНК, и если разрешить, то с какой эффективностью (скоростью инициации): чем больше скорость, тем больше образуется белка.

Существуют три основных способа, как регулировать трансляцию. Первый способ – позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам инициации (дискриминация мРНК (англ. discriminate — отличать, распознавать)). Второй способ – негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия). При этом белок-репрессор имеет специфическое сродство к участку мРНК в районе инициации трансляции (часто к участку с нестабильной вторичной структурой) и, связываясь с ним (и стабилизируя его), создает барьер либо для посадки инициирующих рибосомных частиц, либо для движения рибосомы к месту инициации.

Этими двумя способами регулируются индивидуальные мРНК, то есть трансляция каждой мРНК может специфически контролироваться независимо от других мРНК клетки. Третий способ – тотальная регуляция трансляции всей совокупности мРНК клетки посредством модификации факторов инициации. Отметим что при наличии общих черт регуляции на уровне трансляции у прокариотических (бактерии) и эукариотических организмов тотальная регуляция за счет модификации факторов инициации характерна, по-видимому, только для эукариот.

Скорость или частота инициации трансляции рибосомами может сильно различаться для разных мРНК. У прокариотических организмов это определяется тем, что инициирующие или рибосомосвязывающие участки разных мРНК имеют разное сродство к рибосомам и, таким образом, с разной эффективностью связывают рибосомные частицы. На основании разницы в эффективности инициации можно говорить о «сильных» и «слабых» мРНК. На сильных мРНК инициация происходит часто, на них нанизывается много рибосом (образуются плотные полирибосомы) и соответственно продуцируется много молекул белка. Редкая инициация трансляции на слабых мРНК дает в результате редкую посадку рибосом на эти мРНК и, следовательно, низкую белковую продукцию.

Как правило, если белок имеет четвертичную структуру, построенную из разных субъединиц в различном соотношении, то сила мРНК или ее отдельных участков (цистронов), кодирующих эти субъединицы, координирована с пропорцией субъединиц в структуре. Например, мембранный комплекс протонной АТФазы бактерий построен из трех типов субъединиц в соотношении 1:2:10 (a1b2c10), и соответственно субъединица c кодируется очень сильным цистроном мРНК, субъединица a – слабым, а субъединица b – цистроном промежуточной силы.

Похожая ситуация наблюдается и в эукариотических клетках, но там дискриминация мРНК обусловлена скорее разным сродством факторов инициации, а не самих рибосом к разным 5'-проксимальным инициаторным структурам мРНК. Так как факторы инициации в любом случае локализуются на инициирующих малых рибосомных субчастицах, то они и определяют разную эффективность посадки рибосом на разные мРНК.
Различная сила мРНК в значительной мере определяет соотношение продукции различных белков в клетке. Так, структурные белки мембран, рибосомные белки, факторы элонгации, белки оболочки вирусов и другие белки, требуемые в большом количестве, например, пищеварительные ферменты, кодируются сильными мРНК, а многие регуляторные белки – слабыми мРНК.

Трансляция контролируется с помощью большого количества механизмов, наиболее понятным из которых является фосфорилирование факторов трансляции и их регуляторов, особенно ключевых факторов инициации трансляции эукариот (eIFs). mTORC1-опосредованное фосфорилирование eIF4E-связывающих белков (4E-BP) и рибосомных киназ S6 (S6Ks) приводит к устойчивой эффективности инициации трансляции (см выше).

eIF4F представляет собой гетеромерный комплекс, который связывает структуру кэпа и состоит из eIF4A (РНК-геликазы), eIF4E (связывающего кэп белка) и eIF4G (каркасный белок), который связывает как eIF4E, так и eIF4A. После связывания с кэпом eIF4F раскручивает 5'-проксимальную вторичную структуру мРНК, чтобы облегчить связывание преинициативного комплекса 43S (который включает 40S рибосомную субъединицу). После сканирования вдоль 5'-UTR на предмет подходящего стартового кодона AUG, комплекс предварительной инициации затем растворяется, и рибосомная субъединица 60S присоединяется к субъединице 40S с образованием трансляционно компетентной 80S рибосомы.

Этому процессу способствует фактор eIF5B (5B), который инициирует удлинение трансляции. Фаза элонгации характеризуется добавлением аминокислот к растущему пептиду и транслокацией рибосом по мРНК, процессом, который частично контролируется фактором элонгации eEF2. Наконец, прекращение трансляции связано с высвобождением вновь синтезированного пептида и диссоциацией рибосомы от мРНК.

Для связывания инициаторной аминоацил-тРНК (Met-tRNAi) с малой рибосомной субчастицей в процессе инициации трансляции требуется eIF2 в комплексе с ГТФ (GTP); в ходе инициации ГТФ гидролизуется на ГДФ (GDP) и ортофосфат и eIF2 в комплексе с ГДФ (eIF2 : GDP) освобождается из рибосомы.
В норме дополнительный фактор eIF2В принимает участие в том, чтобы превратить отработанный (неактивный) eIF2 : GDP в необходимый для следующей инициации eIF2 : GTP. Этот фактор играет каталитическую роль в обмене ГДФ на ГТФ, и его в клетке мало. Когда eIF2 фосфорилируется фосфокиназой (eIF2Р), он может обычным образом участвовать в инициации трансляции, но, освободившись из рибосомы с ГДФ (в форме eIF2Р : GDP), он образует прочный комплекс с eIF2В (eIF2В : eIF2Р : GDP) и тем самым связывает весь eIF2В клетки, лишая последнюю возможности катализировать регенерацию eIF2 : GTP из eIF2 : GDP, тем самым подавляя синтез белка.

Механизмы трансляционной репрессии обеспечивают пути модуляции скоростей инициации трансляции в широких пределах либо в зависимости от внешних сигналов (эффекторов), либо по типу обратной связи, когда мРНК репрессируется своим же продуктом. Что же касается эффекторов, то, например, в животных клетках белок-репрессор блокирует инициацию синтеза белка ферритина, а железо в качестве эффектора лишает репрессор его мРНК-связывающих свойств и дерепрессирует ферритиновую мРНК, тем самым разрешая ее трансляцию.

Кроме типичной трансляционной репрессии эукариоты выработали механизм маскирования мРНК, когда соответствующая мРНК становится недоступной не только для инициации трансляции, но и фактически выведена из всех других процессов ее возможных превращений или изменений – деградации нуклеазами, ферментативной модификации ее 3'-конца путем полиаденилирования и пр.
Маскирование и демаскирование мРНК являются особенно характерными для процессов гаметогенеза (оогенеза и сперматогенеза), раннего эмбрионального развития, клеточной дифференцировки, гормонального включения или выключения функций. Например, в оогенезе происходит запасание некоторых материнских мРНК в маскированной форме, и часть этих мРНК демаскируется в ответ на оплодотворение яйцеклетки, обеспечивая белковый синтез на самых ранних стадиях эмбриогенеза: дробления, бластулы и ранней гаструлы.

Наиболее обычный путь тотальной регуляции белкового синтеза у эукариот, во всяком случае у животных и грибов, – это активация специальной фосфокиназы (eIF2Р), которая фосфорилирует фактор инициации eIF2, что приводит к подавлению инициации трансляции всех мРНК клетки (см. выше). Сигналами для активации фосфокиназы в клетке являются тепловой шок и другие виды стрессовых воздействий, недостаток ростовых факторов, аминокислотное голодание, недостаток железа, вирусные инфекции. Степень подавления белкового синтеза может варьировать в зависимости от уровня стресса.

Для многих локализующихся мРНК репрессия трансляции отменяется сразу после прибытия в конечный субклеточный пункт назначения. Субклеточное положение белка является ключевым фактором, определяющим его функцию. Локализующиеся мРНК упакованы в рибонуклеопротеидные комплексы (комплексы RNP), которые взаимодействуют с моторами цитоскелета для направленного транспорта по дорожкам цитоскелета, что является эволюционно консервативным механизмом для контроля локализации белка. При этом мРНК совместно собираются в мультимолекулярные транспортные единицы. Различные регуляторы трансляции, которые обнаруживаются в комплексах RNP, представляют собой челночные белки, которые содержат сигналы ядерной локализации и накапливаются, по крайней мере, временно в ядре.
Транспортные RNP могут иметь общие компоненты с процессинговыми тельцами (P-тельцами) - общими цитоплазматическими сайтами для подавления трансляции.

Локализованные мРНК впоследствии транслируются в ответ на локализованные сигналы. Синтез на месте придает белку новые сигнальные свойства и помогает поддерживать локальный протеомный гомеостаз.
Локализация РНК может быть эволюционно консервативным механизмом, который децентрализует геномную информацию и делегирует ее контроль субклеточным компартментам. Генетическая информация, закодированная в ядре, обеспечивает поставку мРНК путем транскрипции, из которой выбираются определенные наборы мРНК для субклеточной локализации. Т.о. субклеточные целевые коллекции мРНК могут функционировать как геномный форпост.

albert52 17.03.2023 14:13

Вставка

Стрессовые гранулы

Стрессовые гранулы (SG) представляют собой разделенные по фазам биомолекулярные конденсаты РНК-связывающих белков (RBP) и мРНК, которые образуют жидкие каплеобразные безмембранные цитоплазматические компартменты в ответ на стресс. Основная функция SG заключается в том, чтобы способствовать выживанию клеток в условиях стресса, обеспечивая временный резервуар для хранения остановившихся в трансляции мРНК, RBP и рибосомных белков. Эукариотические клетки отключают некоторые клеточные трансляции в ответ на стрессы в окружающей среде (обычные стрессы в окружающей среде - гиперосмолярность, тепло и окислительные условия), чтобы сэкономить энергию и ответить на повреждение, вызванное стрессом.
Домен низкой сложности, содержащийся во многих RBP, связанных с SG, имеет тенденцию быть внутренне неупорядоченным и служит движущей силой для разделения липид-липидной фазы (LLPS), которое инициирует сборку SG.

В нормальных клетках после снятия стресса динамические SG быстро разбираются молекулярными шаперонами, UPS и VCP (UPS, убиквитин-протеасомная система; VCP, валозинсодержащий белок), тогда как аберрантные SG и твердые белковые агрегаты очищаются путем аутофагии. Дело в том, что при болезненных состояниях может происходить аберрантная сборка SG и/или фазовый переход из жидкости в твердую, вызывая образование твердых белковых агрегатов, которые считаются патогенными . Показано, что вызывающие заболевание мутации в генах, кодирующих SG-ассоциированные RBP, изменяют свойства белков, делая их менее растворимыми и склонными к агрегации. Кроме того, неправильное сворачивание белков увеличивается при клеточном стрессе и нарушении протеостаза. Неправильно свернутые белки, по-видимому, накапливаются в SG, что приводит к тому, что последние теряют жидкоподобную динамику и образуют агрегацию белков.

Белковый гомеостаз (протеостаз) относится к сбалансированному состоянию, в котором белки поддерживаются в правильной конформации, концентрации и внутриклеточном расположении, чтобы они могли выполнять свои клеточные функции для поддержания целостности и функциональности клетки. Для регуляции протеостаза в клетках развилась сложная система, которая контролирует весь жизненный цикл белков от синтеза до утилизации. Система регуляции протеостаза включает множество компонентов, в том числе механизм трансляции, молекулярные шапероны и ко-шапероны, убиквитин-протеасомную систему (UPS) и путь аутофагии.

Молекулярные шапероны представляют собой класс белков, которые способствуют сворачиванию и повторной укладке белков, а также сборке белковых комплексов. Белки теплового шока (Hsps), вероятно, являются наиболее широко изученными шаперонами, которые делятся на подсемейства в зависимости от их молекулярной массы, включая Hsp90, Hsp70, Hsp40 и малые Hsps. Hsps играют жизненно важную роль в рефолдинге, деградации и секвестрации неправильно свернутых белков либо АТФаз-зависимым, либо АТФаз-независимым образом, а также регулируют разборку и клиренс SG.

Убиквитинирование белков, по-видимому, является молекулярным сигналом, используемым как для деградации белков с неправильной укладкой, так и для оборота аберрантных SG. VCP извлекает РНК-связывающий белок G3BP1 из SG и запускает разборку SG; G3BP является ядром сети взаимодействия в SG. При тепловом шоке G3BP1 в SG подвергается массовому убиквитинированию; белок, ассоциированный с ER, FAF2 распознает убиквитинированный G3BP1 и доставляет его в VCP. «Извлечение» G3BP1 из SG с помощью VCP запускает диссоциацию других белков SG, что приводит к разборке SG.

У млекопитающих семейство белков G3BP состоит из трех гомологичных белков; G3BP1 (основной вариант), G3BP2a и его вариант сплайсинга G3BP2b; общая структура белка создает трехмерную платформу, которая связывает РНК. Отметим, что статус фосфорилирования G3BP1 может функционировать как переключатель роста клеток, где фосфорилированный G3BP1 путем связывания с 3'-UTR опосредует деградацию мРНК белков роста, и, таким образом, уменьшает клеточную пролиферацию. В целом статус фосфорилирования G3BP может влиять на судьбу мРНК, защищая их от деградации во время клеточного стресса, доставляя в SG. Кстати в пролиферирующих клетках G3BP1 гипофосфорилируется, теряя способность расщеплять мРНК.
3'-нетранслируемые области ( 3'-UTR ) матричных РНК (мРНК) регулируют процессы, основанные на мРНК, такие как локализация и стабильность мРНК, и трансляция. Именно к ним присоединяются RBP (см. выше), определяя посттрансляционные модификации. В целом 3'-UTR действуют как каркасы для регуляции локализации мембранных белков.

Хотя G3BP экспрессируются во всех нормальных клетках, некоторая специфическая экспрессия изоформ в тканях была идентифицирована для G3BP1 в легких и почках, для G3BP2a в мозге и для G3BP2b в тонкой кишке. G3BPs представляют собой главным образом цитоплазматические белки, но различие в распределении было зарегистрировано для различных изоформ: G3BP1 может локализоваться в ядрах в покоящихся клетках, наиболее вероятно из-за фосфорилирования в Ser149.

Раковые клетки требуют экспресии G3BPs, которые служат вспомогательными генами, способствующими их выживанию . Отметим, что G3BP являются важными составляющими вирусных фракций CHIKV и HCV, облегчая репликацию и сборку вирусов. Кстати, PTEN может модулировать уровни экспрессии нескольких белков, негативно регулируя уровни экспрессии белка G3BP1 и AKAP121.

Сверхэкспрессия G3BP1 опосредует EMT в клетках рака молочной железы через сигнальный путь Smad; нокдаун G3BP1 блокировал мезенхимный фенотип клеток. G3BP2 играет роль в инициации рака молочной железы путем стабилизации транскриптов мРНК онкогена SART3(Squamous cell carcinoma antigen recognized by T-cells 3), отвечающего за экспрессию плюрипотентных факторов транскрипции Oct-4 и Nanog. G3BP2 может служить позитивным регулятором инициации рака молочной железы, а также негативным регулятором метастазирования рака, так как G3BP2 нужен для приобретения свойств, инициирующих рак, а при метастатической колонизации раковые клетки должны потерять свой EMT-фенотип.
Кроме того, G3BP1 сверхэкспрессируется при гепатоцеллюлярной карциноме (HCC) и участвует в EMT из HCC, стимулируя экспрессию Slug, члена семейства транскрипционных факторов цинкового пальца SNAIL, которые индуцируют EMT. При раке поджелудочной железы межклеточное вещество уплотняется (жесткая матрица), TWIST1 отсоединяется от G3BP2 и движется к ядру, что приводит к индукции EMT.

albert52 19.03.2023 01:23

Продолжим.

Сборка стрессовых гранул (SGs) и процессинговых Р-телец является хорошо известной клеточной стратегией для уменьшения повреждений, связанных со стрессом, и обеспечения выживания клеток. Остановка процесса трансляции из-за стресса создает обширный репозиторий компонентов SG, таких как факторы инициации трансляции, РНК- и не-РНК-связывающие белки и мРНК (см. выше). С снятием стресса и прекраще -нием ингибирования трансляции SG разбираются, и мРНК направляется к транслирующимся полисомам, а P-тела рекрутируют мРНК для возможной деградации.

Основной белковый компонент SG, состоящий из РНК-связывающих белков, также может иметь два специфических домена: прионоподобные богатые глицином домены низкой сложности (PLD) и внутренне неупорядоченные домены (IDD), которые могут образовывать белковые агрегаты. Перегруженные РНК белки (особенно белки с доменами IDD и PLD), диспергированные в цитоплазме или нуклеоплазме (растворимая фаза), сливаются в концентрированное состояние с образованием SG; при этом происходит разделение фаз жидкость-жидкость (конденсированная фаза).

В то время как многие острые стрессы способствуют конденсации SG через фосфорилирование eIF2α, было показано, что хронические стрессы преодолевают фосфорилирование eIF2α, что в конечном итоге снижает образование SG. При этом мРНК может идти тремя путями: оставаться в структуре SG и запасаться, возобновлять трансляцию или двигаться в сторону деградации.
С другой стороны, хронический стресс в некоторых случаях может способствовать увеличению фосфорилирования eIF2α, например, во время эпителиально-мезенхимального перехода и при нейродегенеративных заболеваниях; oжидается, что эти условия способствуют сборке SG. Фосфорилирование eIF2α, аналогично его роли в контексте острых стрессов, важно для индукции образования SG в условиях хронической нехватки питательных веществ; вероятно, это происходит посредством активации GCN2 (general control nonderepressible 2) вследствие накопления незагруженных транспортных РНК (тРНК), которые связываются с GCN2, что приводит к конформационным изменениям и активации киназы.

Отметим, что гомеостатическая интегрированная реакция на стресс (ISR) представляет собой эволюционно консервативный гомеостатический процесс, который позволяет клеткам млекопитающих ощущать, адаптироваться и соответствующим образом реагировать на широкий спектр внеклеточных и внутриклеточных сигналов стресса. Четыре различных эукариотических киназы фактора инициации 2 (eIF2), включая GCN2, РНК-зависимую протеинкиназу (PERK), протеинкиназу R (PKR) и гем-регулируемую киназу eIF2α (HRI), опосредуют ISR. GCN2 ощущает недостаток аминокислот, PERK активируется стрессом эндоплазматического ретикулума, PKR ощущает вирусную двухцепочечную РНК (dsRNA), а HRI ощущает депривацию гема. Кстати, большинство химиотерапевтических препаратов обычно стимулируют накопление SG, активируя эти фосфорилирующие киназы.

Белок-белковые и РНК-РНК-взаимодействия, которые удерживают вместе хронические SG, вероятно, аналогичны тем, которые были описаны для острого SG. Как и в случае острых стрессов, истощение G3BP1 и G3BP2 полностью нарушает конденсацию SG; при этом при хроническом алиментарном голодании истощение SG приводит к улучшению выживаемости. Дело в том, что внутри стрессовых гранул происходит частичная секвестрация рецепторов активированной С-киназы-1 (RACK1), что снижает активацию каспазы-3, то есть если образование SG блокируется во время стресса, выживаемость клеток значительно снижается. Однако SG, индуцированные патологическим хроническим стрессом (нейродегенерация, голодание по питательным веществам), лишены нескольких классических компонентов SG, которые вносят вклад в выживательные функции канонических SG (RACK1, малые рибосомальные белки) и, наоборот, имеют функцию про-апоптоза.

Образование SG, по-видимому, регулирует несколько канонических сигнальных путей (NF-κB, mTORC1, PKR, RIGI) в ответ на стресс. Так, SGs перехватывают и изолируют компоненты передачи сигналов, такие как RACK1 (передача сигналов p38/JNK), TRAF2 (передача сигналов NF-kB), Raptor (передача сигналов mTOR) и RhoA/ROCK1 (передача сигналов Wnt). Аутофагия частично отвечает за клиренс SG, предполагая, что благоприятные эффекты препаратов, индуцирующих аутофагию, могут быть частично связаны с усилением клиренса SG во время лечения.

SG и онкогенез

Рак можно обсуждать с трех разных точек зрения: формирование рака и онкогенез, выживание рака и метастазирование, инвазия и прогрессирование раковых клеток. Опухолевые клетки часто подвергаются хроническому стрессу, и помимо влияния на клеточную пролиферацию, проонкогенные гиперактивные сигнальные пути усиливают образование SG, что продлевает жизнь раковых клеток. Истощение SG приводит к улучшению выживаемости больных.

При раке от двадцати до тридцати процентов всех раковых заболеваний человека имеют изменения RAS (KRAS-HRAS-NRAS). KRAS часто встречается при аденокарциноме поджелудочной железы и колоректальном раке, NRAS — при меланоме, раке щитовидной железы и лейкемии. Мутантный белок RAS вооружает клетку против стрессов, связанных с опухолью; так, мутанты KRAS индуцируют образование SG путем повышающей регуляции 15d-PGJ2 (15-дезокси-дельта-простагландина J (2)) посредством нижестоящих эффекторных молекул, RALGDS и RAF, а также увеличения экспрессии циклооксигеназы-2 (COX-2).
15d-PGJ2 нацелен на цистин 264 в eIF4A, нарушая его взаимодействие с eIF4G, необходимое для процесса трансляции. Кстати, сорафениб, противораковый препарат, который попутно увеличивает продукцию SG по пути GCN2/eIF2a, сильно зависит от экспрессии COX-2, секвестированного в SG, и ингибирование COX-2 целекоксибом приводит к усилению ответа на лечение сорафенибом.

В пути pi3k/Akt mTORC1 ингибирует действие 4E-BP на eIF4E путем фосфорилирования и инактивации eIF4E-BP во время киназного каскада PI3K-mTOR, образуя комплекс eIF4F, который отвечает за идентификацию кэп-структуры на 5'-конце мРНК, инициируя, таким образом, трансляцию. Ингибируя mTORC1 при стрессе, eIF4E-BP остается активным и ингибирует образование комплекса eIF4F, останавливая процесс трансляции на начальной стадии. Этот процесс предрасполагает к формированию SG, оставляя PIC (преинициаторный комплекс) на мРНК, что действует как гнездо для SG.

Таким образом mTOR является одним из наиболее важных путей образования SG; ингибирование mTORC1 торкинибом может привести к нарушению образования SG или истощению eIF4G1 или eIF4E, что может нейтрализовать связанный с SG антиапоптотический путь p21. Также Grb7 (адаптерный белок 7, связанный с рецептором фактора роста) фосфорилирует условиях стресса тирозинкиназу Syk по остатку тирозина, вызывая образование SG, и сам рекрутируется в структуру SG. Когда стресс снимается, это рекрутирование способствует образованию аутофагосом и клиренсу SG в клетке, повышая способность клеток противостоять стрессовому стимулу.

В целом влияние SG на пролиферацию идет по двум путям — влияние на клеточный цикл и факторы, регулирующие пролиферацию, и влияние на транскрипты этих факторов. SG играют важную роль в поддержании клеток в развитии клеточного цикла и предотвращении вступления клеток в фазы клеточной гибели.
SP1 представляет собой транскрипционный фактор, играющий важную роль в регуляции SG-нуклеирующих белков, таких как HuR, TIA1/TIAR и G3BP1; истощение клеток по SP1 приводит к гибели клеток. HuR и CIRP совместно локализованы в SG, и CIRP играет ключевую роль в положительной регуляции HUR, а HuR повышает уровень циклина-Е1 в раковых клетках. Сверхэкспрессия циклина E1 увеличивает долю клеток в S-фазе, что приводит к усилению фосфорилирования Rb и клеточной пролиферации во многих моделях линий раковых клеток.

Отметим что регуляция сборки или разборки SG может быть ключевым методом контроля судьбы клеток или лечения заболеваний. Следовательно, это многообещающая область для разработки потенциальных терапевтических стратегий путем нацеливания на белки SG. Как пример рекрутирование мРНК в цитоплазме для слияния со зрелыми SG требует транспортировки по микротрубочкам моторными белками; таким образом, целостность микротрубочек важна для сборки SG. Микротрубочки представляют собой внутриклеточные структуры, собранные из гетеродимеров α- и β-тубулина и отвечающие за различного рода движения в клетках.
Деполимеризующие тубулин агенты могут вызвать исчезновение SG. Как обратимый ингибитор микротрубочек, нокодазол связывается с β-тубулином и нарушает кинетику сборки и разборки микротрубочек, тем самым предотвращая митоз и индуцируя апоптоз в опухолевых клетках. Нокодазол ингибирует образование SG, но не предотвращает фосфорилирование eIF2α, указывая на то, что он действует после фосфорилирования eIF2α.
Винбластин также вызывает деполимеризацию микротрубочек и, подобно нокодазолу, нарушает образование SG и разборку образовавшихся SG. Однако более высокая концентрация или длительное лечение винбластином сильно способствует репрессии трансляции и индуцирует микроскопические SG.


Текущее время: 21:18. Часовой пояс GMT.

Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум помощи больным людям - инвалидам, онко и ВИЧ больным.