Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Продолжим.
Широко известно, что эпителий предстательной железы подвержен повреждению ДНК из-за воспаления в стареющей предстательной железе. Как я уже упоминал, NKX3.1 представляет собой гаплонедостаточный белок супрессора рака предстательной железы ( в его гене оба аллеля должны быть функциональными для экспрессии дикого типа), экспрессия которого снижена в большинстве случаев первичного рака простаты человека. Во время прогрессирования рака простаты происходит нарастающая потеря экспрессии NKX3.1 (см.выше).
Подавление NKX3.1 является результатом генетической потери, метилирования ДНК или того и другого, и, кроме того, оборот NKX3.1 ускоряется убиквитинированием и протеасомной деградацией, вызванной воздействием на клетки воспалительных цитокинов. Таким образом, области воспалительной атрофии могут вызывать как подавление NKX3.1, так и окислительное повреждение, которое сопровождает воспаление .
Ранним шагом в ответе на повреждение ДНК является быстрое накопление белков, сигнализирующих о повреждении, в месте повреждения, соответствующем сенсорному комплексу белков MRE11, Rad50 и NBS1 (комплекс MRN).
ATM (мутация атаксии и телеангиэктазии - один из трех ДНК-зависимых киназоподобных белков PI3) служит ключевым преобразователем сигналов повреждения ДНК в клетках млекопитающих, частично активируясь комплексом MRN, связанным с двухцепочечными разрывами, для передачи сигналов посредством фосфорилирования гстона H2AX и множества других субстратов. Кроме того, АТМ также реагирует на уровни активных форм кислорода и может действовать как клеточный сенсор окислительного потенциала.
После активации повреждением ДНК, ATM подвергается аутофосфорилированию по сайтам, предпочтительным для субстратов ATM. ATM также активируется окислительным стрессом независимо от повреждения ДНК.
NKX3.1 и ATM имеют функциональное взаимодействие, ведущее к активации ATM, а затем к деградации NKX3.1 в строго регулируемом ответе на повреждение ДНК, специфичном для эпителиальных клеток простаты. Так, связывание NKX3.1 с ATM модулируется фосфорилированием ATM, которое происходит во многих сайтах во время ответа на повреждение ДНК. В течение нескольких минут после повреждения ДНК ATM фосфорилируется по S1981 и NKX3.1 по тирозину 222. Обе посттрансляционные модификации способствуют связыванию двух белков, что приводит к активизации ATM и накоплению pATM на участках повреждения ДНК. К 30 мин ATM фосфорилирует NKX3.1 на T166, а затем на T134, в результате чего происходит убиквитинирование и деградация NKX3.1.
Отметим, что NKX3.1 усиливает активацию ATM в большей степени в ответ на окисление, чем на присутствие поврежденной ДНК. Таким образом, важной функцией NKX3.1 является ускорение и усиление активации ATM в простате, ткани, которая подвержена чрезвычайно высокому уровню окислительного стресса из-за воспаления.
Возможно основным механизмом, с помощью которого потеря NKX3.1 влияет на канцерогенез простаты, является нарушение передачи сигналов повреждения ДНК. Даже в воспаленной или стареющей простате потеря NKX3.1 опосредуется воспалительными цитокинами, которые индуцируют фосфорилирование NKX3.1, что приводит к убиквитинированию и протеасомной деградации и, таким образом, к сокращению периода полужизни белка.
NKX3.1 также активирует топоизомеразу I (см. выше), фермент, раскручивающий ДНК; среди множества его эффектов играет роль восприимчивость клетки к повреждению ДНК. NKX3-1, AR, и FoxA1 способствуют выживанию клеток рака простаты также путем непосредственной активации RAB3B, члена семейства RAB GTPase.
RAB GTPases, как недавно было установлено, вовлечены в пути передачи сигналов и во внутриклеточные процессы, включая рост, пролиферацию, дифференцировку, выживание и клеточный цикл. Например, амплификация гена Rab25 способствует пролиферации, выживанию и агрессивности клеток рака груди и яичников, в то время как сверхэкспрессия секреторных белков Rab27 связана с инвазией и метастазированием клеток рака груди и плохим клиническим прогнозом. RAB3B является критическим компонентом пути выживания клеток РПЖ.
Отметим, что программа пространственной и временной экспрессии любого структурного гена обычно диктуется уникальной комбинацией факторов транскрипции, задействованных в регуляторных областях ДНК, которые функционируют вместе, чтобы либо активировать, либо репрессировать транскрипцию. В прошлом были предприняты большие усилия по описанию коактиваторов (например, SRC, p300 / CBP и медиаторов) и корепрессоров (например, NCoR и SMRT), см. выше. Так, установлено, что белок EZH2 Polycomb Group (PcG) является прямой мишенью для ERG и ESE3 и ключевым игроком в подавлении транскрипции Nkx3.1.
Пионерский фактор транскрипции FoxA1, который сверхэкспрессируется в опухолях простаты, связывается в сайтах связывания AR (ARBS) еще до передачи сигналов андрогена. FoxA1 обладает клон-специфическим транскрипционным цистроном, что определяется распределением моно- и диметилированных гистоновых меток H3K4, а также диметилированных гистоновых меток H3K9 как при раке простаты, так и при раке груди. К дополнительным факторам взаимодействия AR относятся также GATA2, ETS1, ERG и пр.
Нарушение регуляции экспрессии факторов ETS с предполагаемыми онкогенными и опухолевыми супрессорными свойствами очень часто, причем до 80% опухолей простаты имеют один или несколько аберрантно экспрессируемых генов ETS. Семейство ETS человека включает 27 членов, которые имеют общий высококонсервативный ДНК-связывающий домен и являются узловыми точками различных сигнальных путей, контролирующих пролиферацию, дифференцировку и выживание клеток. Так, эпителиально-специфический фактор ETS ESE3 часто подавляется при раке простаты, отрицательно влияет на пролиферацию и выживаемость клеток и действует как опухолевый супрессор в эпителиальных клетках простаты.
ESE3 негативно регулирует EZH2, так как он связывается с промотором EZH2, действуя как репрессор транскрипции гена. Однако связывание ESE3 снижено в клетках, экспрессирующих ERG, указывая на то, что прямая конкуренция за занятость промотора EZH2 может объяснять реципрокную регуляцию EZH2 этими двумя факторами ETS.
EZH2 является ключевым фактором в выполнении программ развития и дифференцировки, а также в поддержании плюрипотентности и самообновления стволовых клеток. EZH2 контролирует также гены, вовлеченные в клеточную адгезию, инвазию и миграцию, то есть пути, которые высоко экспрессируются в опухолях ERG high и ESE3 low.
NKX3.1 объединяет множество сигнальных путей, включая PTEN / PI3K / AKT, p53 и AR, которые все играют критическую роль в развитии простаты и онкогенезе . Таким образом, одновременная индукция EZH2 и ослабление Nkx3.1 может объяснить активацию широкой программы дедифференцировки, наблюдаемой в транскриптоме опухолей ERG high и ESE3 low. Отметим, что промотор Nkx3.1 приобретает репрессивную метку метилирования гистона H3K27 ERG-зависимым образом.
ESE3 может быть критическим фактором для поддержания равновесия между конкурирующими стимулами и обеспечения продолжения программ развития и дифференциации. Генетические события или патологические состояния, такие как перестройка генов или хроническое воспаление, может сдвинуть равновесие в пользу онкогенных ETS, таких как ERG и ESE1, и способствовать активации промитогенных программ, программ выживания и дедифференцировки. В этом контексте возможно, что измененная экспрессия факторов ETS, таких как ESE3 и ESE1, которые обычно присутствуют в эпителиальных клетках простаты, может представлять собой раннее событие, которое взаимодействует с перестройками гена ETS или даже предшествует им на ранних стадиях онкогенеза простаты.
Последний раз редактировалось albert52; 14.02.2021 в 05:08..
|