Показать сообщение отдельно
Старый 03.02.2020, 04:31   #24
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Как я уже упоминал, отщепляя электроны от многих соединений, АФК превращают их в новые свободные радикалы, и инициируют тем самым цепные окислительные реакции. Так возникает второй раунд окислительных реакций в клетке, при этом образующиеся в большом количестве свободные раликалы и, шире, разнообразные электрофильные вещества, способны также атаковать нуклеиновые кислоты и белки, обладающие центрами высокой электронной плотности.

В защите клеток от окислительного и ксенобиотического повреждения центральную роль играет связка белков Keap1 - Nrf2. Фактор транскрипции Nrf2 (связанный с NF-E2 фактор 2) является мощным активатором транскрипции и играет центральную роль в индуцируемой экспрессии многих цитопротективных генов (более 100). Целевые гены Nrf2 участвуют в синтезе глутатиона, элиминации активных форм кислорода (АФК), метаболизме ксенобиотиков, например, путем индукции ферментов глюкуронидации, которые связывают ксенобиотики для экскреции. NRF2 также может влиять на действие лекарств посредством индукции семейства генов, связанных с множественной лекарственной устойчивостью, например, к цисплатину, карбоплатину, 5-фторурацилу и т.д.

Keap1 (Kelch-подобный ECH-ассоциированный белок 1) важен для регуляции активности Nrf2. Он является датчиком содержания электрофильных веществ. При этом интактный гомодимер Keap1 образует структуру вишневого боба, в которой одна молекула Nrf2 связывается с двумя молекулами Keap1, используя два сайта связывания в домене Neh2 Nrf2. Это двухсайтовое связывание является критическим для убиквитинирования Nrf2 (напоминает регуляцию HIF-1).

При нормальных условиях Nrf2 постоянно разлагается через путь убиквитин-протеасома зависимым от Keap1 способом. Так, в спокойном состоянии Nrf2 постоянно разлагается с периодом полураспада <20 мин. Этот быстрый оборот поддерживает клеточный Nrf2 на низком уровне.
При воздействии стресса Keap1 инактивируется путем прямой модификации остатков тиола цистеина, а затем Nrf2 стабилизируется, транслоцируется в ядро ​​и активирует транскрипцию различных генов детоксикации и антиоксидантных ферментов. В присутствии электрофилов или АФК деградация Nrf2 прекращается, стабилизированный Nrf2 накапливается в ядрах, гетеродимеризуется с небольшими белками Maf и активирует гены-мишени для цитопротекции через элементы антиоксидантного ответа (ARE) / (EpRE). Таким образом, уровень белка Nrf2 регулируется процессами деградации, а индуцибельная стабилизация Nrf2 является сущностью клеточного ответа на окислительные и электрофильные стрессы.

Различные стрессоры могут по-разному реагировать с различными остатками цистеина в KEAP1, что позволяет предположить, что конкретные остатки цистеина, индивидуально или в комбинации, вносят уникальный вклад в общую активность KEAP1. Эта точная настройка, называемая «цистеиновым кодом», указывает на то, что модуль NRF2 – KEAP1 не является простым переключателем «включено» или «выключено», но вместо этого может по-разному реагировать на различные схемы образования аддукта различными стрессорами.

Отметим, что модуль NRF2 – KEAP1 является частью целой сети белков (тиоловый протеом), чья активность регулируется путем модификации остатков цистеина в ответ на окислительно-восстановительное состояние клеток. Реакционная способность этих остатков цистеина может модулироваться не только окислительно-восстановитель -ными реакциями, но также NO или гуанином. Классическими примерами таких белков являются множественные протеинтирозинфосфатазы, которые содержат активные остатки цистеина в своих активных центрах и влияют на многие аспекты жизни клеток.

Регуляция уровней Nrf2 с помощью Keap1 отменяется при некоторых раковых заболеваниях человека вследствие мутаций в генах NRF2 и KEAP1 . Эти мутации достаточны для того, чтобы привести к конститутивной активации NRF2 путем нарушения взаимодействия NRF2-KEAP1. Так, мутации в NRF2 обнаруживаются в основном в плоскоклеточных карциномах пищевода, кожи, легких и гортани. Мутантные белки обычно сохраняют свою транскрипционную активность, но теряют способность связываться с KEAP1.

Мутации в KEAP1 человека были обнаружены в карциномах легких, желчном пузыре, яичнике, груди, печени и желудка; эти мутации приводят к конститутивной активности NRF2. Кроме того, мутации KEAP1 могут иметь онкогенные роли помимо активации NRF2, такие как дисфункциональное связывание KEAP1 с другими белками, которые регулируют пролиферацию и апоптоз. Например, KEAP1 дикого типа связывается с ингибитором киназы NF-κB (IKK), что усиливает протеасомную деградацию IKK и приводит к активации NF-κB, являющегося онкогеном (см. выше). Это ингибирование про-онкогенной транскрипционной активности NF-κB теряется, когда KEAP1 мутирует.
Хотя частоты мутаций NRF2 и KEAP1 в опухолях часто бывают низкими, были обнаружены другие способствующие механизмы - такие как эпигенетическое гиперметилирование промоторов KEAP1 или NRF2, и нарушения уровней экспрессии KEAP1 и NRF2 часто наблюдаются при раке. Также такие распространенные онкогены, как KRAS , BRAF и MYC усиливают транскрипцию и активность NRF2, что приводит к увеличению цитопротекторной активности в клетке и, что особенно важно, к снижению уровня АФК.

Таким образом, если такие лекарства как сульфорафан и куркумин, активирующие Nrf2, используются для профилактики рака, то повышенная экспрессия генов-мишеней Nrf2 дает преимущества в отношении устойчивости к стрессу и пролиферации для уже раковых клетках. Отмитим, что в настоящее время в Китае проводятся исследования по химиопрофилактике рака человека с использованием богатых сульфорафаном экстрактов брокколи. С другой стороны, открытие и разработка селективных ингибиторов Nrf2 должны внести серьезный вклад в улучшение терапии рака.
albert52 вне форума   Ответить с цитированием