Показать сообщение отдельно
Старый 02.01.2020, 19:39   #7
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вообще, само дыхание – это окислительно‑восстановительная реакция. В процессах гликолиза и цикла Кребса, происходящих соответственно в цитоплазме клетки и матриксе митохондрий, окислителем являются молекулы НАД+: НАД+ + 2H ⇌ HAДH + H+

Молекула НАД+ присоединяет один атом водорода целиком (электрон и протон), а от второго – только электрон. Оставшийся от второго атома протон уходит в окружающий раствор.

В дыхательной цепи, наоборот, НАДН является восстановителем, отдавая протон и электроны водорода. В конце цепи на одну молекулу кислорода (O2) тратится четыре электрона (e–) и четыре протона (H+), давая в результате две молекулы воды (H2O). Электроны приходят по мембранной цепи, их переносящей, а протоны захватываются из водного раствора.

Белки дыхательной цепи энергию потока электронов используют не для синтеза АТФ, а для транспорта протонов. Это типичный активный транспорт: протоны принудительно переносятся из матрикса (где их и так меньше) в межмембранное пространство (где их и так больше - «протонный резервуар»). Причем такие встроенные системы сопряженного транспорта есть подряд в нескольких белках дыхательной цепи, через которые последовательно проходят переносимые электроны. В результате изнутри наружу суммарно выбрасывается 64 протона на каждую исходную молекулу глюкозы. И таким образом, снаружи от внутренней мембраны становится не просто больше, а намного больше протонов, чем внутри.

Согласно законам биоэнергетики, энергию протонного потенциала всегда можно конвертировать в энергию АТФ: ∆μH > АТФ. Именно это и делает встроенная во внутреннюю мембрану митохондрии протонная АТФ‑синтаза. С белками дыхательной цепи она не связана. Она просто пропускает накопившиеся протоны снаружи (где их больше) внутрь (где их меньше), а за счет высвобожденной при этом энергии синтезирует АТФ. Тот самый АТФ, благодаря которому мы живем.

Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов Н+ в день, образуя протонный потенциал. За это же время Н+-АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а процессы, использующие АТФ, гидролизуют всю эту массу АТФ назад в АДФ и фосфат.

Добавлено через 1 минуту
В клетке образующийся из глюкозы глюкозо-6-фосфат распределяется между гликолизом и пентозофосфатным путем, причем чем интенсивнее клетки размножаются, тем больше удельный вес последнего пути (но в норме не больше 20-30% поступающей в клетку глюкозы). Этот путь состоит из 2-х этапов.

На окислительном этапе образуются пентозофосфаты и НАДФH.
Быстроделящиеся клетки, такие как клетки костного мозга, кожи и слизистой кишечника, используют пентозы для синтеза РНК, ДНК и таких коферментов, как АТР, НАДН, ФАДН2 и кофермент А. В других тканях важным продуктом пентозофосфатного пути являются не пентозы, а донор электронов НАДФН, необходимый для восстановительного биосинтеза и защиты от повреждающего действия радикалов кислорода, например, для восстановление глутатиона. Наибольшую потребность в НАДФН испытывают те ткани, в которых происходит активный синтез жирных кислот (печень, жировая ткань, молочные железы) или холестерина и стероидных гормонов (печень, надпочечники, половые железы).

Неокислительный этап – это совокупность большого количества обратимых реакций, но в конце этапа пентозофосфаты превращаются в глюкозо-6-фосфат, то есть получается цикл, правда с потерей одной молекулы глюкозо-6-фосфата. Он является источником моносахаридов с разным числом углеродных атомов. Это строительный материал для разных синтезов, в том числе для синтезов различных олигосахаридов, которые входят в состав клеточных рецепторов.

Все ферменты, принимающие участие в пентозофосфатном пути, как и при гликолизе, локализованы в цитоплазме.

Опухолевые клетки в нуждаются в интенсификации этого пути потр***ения глюкозы. При этом между ферментами глюколиза и пентозофосфатного пути существуют конкуренция за субстрат и только быстрый гликолиз за счет увеличения количества субстрата (см. ниже)спасает ситуацию. В клетках опухолей часто наблюдается недостаток кислорода (гипоксия), что тормозит пентозофосфатный путь. В результате страдает синтез нуклеотидов и других важных для деления клеток веществ.

Последний раз редактировалось albert52; 02.01.2020 в 19:44..
albert52 вне форума   Ответить с цитированием