Показать сообщение отдельно
Старый 09.01.2020, 01:19   #15
ІК Юглон
Пользователь
 
Регистрация: 31.08.2018
Сообщений: 35
Спасибо: 0
Спасибо 3 в 3 постах
Репутация: 10
По умолчанию

Цитата:
Сообщение от albert52 Посмотреть сообщение
Вставка 4.

Усиленное потр***ение глюкозы раковыми клетками (эффект Варбурга) породило надежду на то, что такая метаболическая особенность опухолей может быть использована для лечения больных раком. Интерес к эффекту Варбурга как ахиллесовой пяте, который будет использоваться при лечении рака, был дополнительно стимулирован демонстрацией того, что усиленный метаболизм глюкозы является частым следствием многих мутаций, ответственных за рак человека, и, следовательно, может быть центральным процессом, необходимым для рост опухоли.

Однако с точки зрения разработки стратегий лечения рака опухолевый метаболизм до сих пор является скорее священным Граалем, чем ахиллесовой пятой. Часть трудностей заключается в гибкости метаболических систем и разнообразии питательных веществ, к которым имеют доступ опухоли. Таким образом, полная картина метаболизма любой опухоли должна учитывать вклад нескольких питательных веществ одновременно.

Главным среди других питательных веществ, доступных опухолям, является глутамин, самая распространенная аминокислота в плазме и основной переносчик азота между органами. Важность глутамина в метаболизме опухолевых клеток обусловлена ​​характеристиками, которые он разделяет с глюкозой. Оба питательных вещества помогают удовлетворить две важные потребности в пролиферирующих опухолевых клетках: биоэнергетика (производство АТФ) и обеспечение промежуточных соединений для макромолекулярного синтеза.

Глютамин является универсальным питательным веществом, которое участвует в образовании энергии, окислительно-восстановительном гомеостазе, макромолекулярном синтезе и передаче сигналов в раковых клетках. В концентрациях 0,6–0,9 ммоль / л глутамин является наиболее распространенной аминокислотой в плазме. Хотя большинство тканей может синтезировать глютамин, в периоды быстрого роста или других стрессов спрос превышает предложение, и глютамин становится условно необходимым. Это требование к глютамину особенно верно в отношении раковых клеток.

У здоровых людей пул глютамина в плазме в основном является результатом высвобождения из скелетных мышц. Легкие человека также обладают способностью к заметному выделению глютамина, хотя такое выделение наиболее заметно во времена стресса. Стресс-индуцированное высвобождение из легких регулируется индукцией экспрессии глутаминсинтазы как следствие передачи сигналов глюкокортикоидами и другими механизмами. Хотя это приводит к небольшой артериовенозной разнице, общий выброс глютамина является значительным из-за большой легочной перфузии.

Жировая ткань является второстепенным, но потенциально важным источником глютамина. Печень обладает способностью синтезировать или катаболизировать глютамин, причем эти виды деятельности подвержены как региональной гетерогенности среди гепатоцитов, так и регуляторным эффектам системного ацидоза и гипераммонемии. Тем не менее, печень, по-видимому, не вносит основной вклад в пул глютамина в плазме у здоровых людей.

Потр***ение глютамина у здоровых людей происходит в основном в кишечнике и почках. Органы желудочно-кишечного тракта, дренированные портальной веной, особенно тонкая кишка, являются основными потребителями глютамина в плазме. Энтероциты окисляют более половины углерода глутамина до CO 2 , что составляет треть дыхания этих клеток у животных натощак. Почка также потр***яет много глютамина для поддержания кислотно-щелочного баланса.

Так, во время ацидоза почки существенно увеличивают поглощение глютамина, расщепляя его с помощью GLS с образованием аммиака, который выделяется вместе с органическими кислотами для поддержания физиологического pH. Глютамин также является основным метаболическим субстратом в лимфоцитах и ​​макрофагах, по крайней мере, во время митогенной стимуляции.

Рак, по-видимому, вызывает серьезные изменения в межорганном обороте глютамина. При этом не все раковые клетки нуждаются в экзогенной поставке глютамина. Так, клетки рака молочной железы демонстрируют системные различия в зависимости от глютамина, при этом клетки базального типа имеют тенденцию быть зависимыми от глютамина, а клетки люминального типа наоборот, более независимы. Устойчивость к депривации глютамина связана со способностью синтезировать глутамин de novo и / или вовлекать альтернативные пути анаплероза.

Катаболизм глутамина начинается с его превращения в глутамат в реакциях, которые либо отдают амидный азот в пути биосинтеза, либо выделяют его в виде аммиака. Последние реакции катализируются глутаминазами (GLS), из которых несколько изозимов кодируются генами GLS и GLS2.

Роль GLS2 в раке, по-видимому, зависит от контекста. Так, в некоторых тканях GLS2 является геном-мишенью p53 и, по-видимому, функционирует при подавлении опухоли. Так как онкоген c-Myc стимулирует экспрессию GLS, некоторые изозимы GLS можно позиционировать, по меньшей мере, как про-онкогенные.
с-Myc управляет поглощением глутамина и катаболизмом, активируя экспрессию генов, участвующих в метаболизме глутамина, включая GLS и SLC1A5 , который кодирует Na + -зависимый переносчик аминокислот ASCT2. Усиление Mус происходит в 20-25% нейробластом и коррелирует с плохим исходом.

Глутамат, продукт реакции GLS, является предшественником глютатиона, важного клеточного антиоксиданта. Он также является источником аминогрупп для заменимых аминокислот, таких как аланин, аспартат, серин и глицин, которые необходимы для макромолекулярного синтеза. В клетках, потр***яющих глутамин, глутамат также является основным источником α-кетоглутарата, промежуточного звена цикла TCA и трансаминирования аминокислот, а также субстрата для диоксигеназ, которые модифицируют белки и ДНК.

Превращение глутамата в α-кетоглутарат происходит либо посредством окислительного дезаминирования глутаматдегидрогеназой (GDH) в митохондрии, либо в процессе трансаминирования. Во время активного метаболизма глюкозы преобладает путь трансаминирования. Когда глюкозы мало, GDH становится основным путем доставки глютаминового углерода в цикл TCA и необходим для выживания клеток.
При дисфункции митахондрий вследствии мутаций или гипоксии полученный из глутамина α-кетоглутарат может восстанавливать цикл TCA (см. ваше). Глутамин также подавляет экспрессию тиоредоксин-взаимодействующего белка, негативного регулятора поглощения глюкозы.

Патологический рост раковых клеток зависит от поддержания пролиферативных сигнальных путей с повышенной автономией по сравнению с незлокачественными клетками. В некоторых раковых клетках избыток глютамина экспортируется в обмен на лейцин и другие незаменимые аминокислоты. Этот обмен облегчает активацию серин / треонинкиназы mTOR, основного положительного регулятора роста клеток. Кроме того, получаемый из глютамина азот является компонентом аминосахаров, известных как гексозамины, которые используются для гликозилирования рецепторов факторов роста и способствуют их локализации на клеточной поверхности. Нарушение синтеза гексозамина снижает способность инициировать сигнальные пути ниже факторов роста.
Написано очень доходчиво. Может Вы развернете процесс взаимодействия онкоклеток , например со стрептококками и вирусом Ньюкасла ?
ІК Юглон вне форума   Ответить с цитированием