Показать сообщение отдельно
Старый 15.09.2022, 20:11   #20
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 246
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Эпигеномика рака желудка

Эпигенетические механизмы регулируют поведение клеток, контролируя доступность транскрипции различных частей генома посредством дифференциального метилирования ДНК, маркировки хроматина и упаковки ДНК посредством модификаций гистонов.
Рак развивается вследствие нарушения механизмов, регулирующих фундаментальные процессы в клетке, и возникает в результате эволюционного процесса, который стабильно кодирует приобретенные онкогенные изменения в геноме и эпигеноме, которые затем могут накапливаться в клональных линиях. Эпигенетические изменения при раке возникают рано и встречаются чаще, чем генетические изменения.

У млекопитающих, около 75% CpG динуклеотидов ДНК в соматических клетках метилированы, тем самым обеспечивая их генный профиль. Метилирование ДНК может влиять на транскрипцию генов двумя способами. Во-первых, метилирование самой ДНК может физически препятствовать связыванию транскрипционных белков с геном, а во-вторых, и, что более важно, метилированная ДНК может быть связана белками, известными как белки метил-CpG-связывающих доменов (MBD). Затем белки MBD рекрутируют в локус дополнительные белки, такие как гистондеацетилазы и другие белки ремоделирования хроматина, которые могут модифицировать гистоны, образуя тем самым компактный неактивный хроматин, называемый гетерохроматином .

Во всех без исключения исследованных неопластических клетках был показан дисбаланс метилирования. Сочетанно с гипометилированием генома происходит аномальное метилирование CpG-островков в промоторных районах генов, участвующих в регуляции клеточного цикла, что приводит к их полной инактивации. Также метилируются гены, участвующие в апоптозе, ангиогенезе, дифференцировке, репарации ДНК, метастазировании, передаче сигнала, детоксикации, лекарственной резистентности и др. Так при отсутствии каких-либо структурных изменений нуклеотидной последовательности гена он полностью теряет свою активность.

Отметим, что CpG островки промоторных районов в нормальных тканях не метилированы, что свидетельствует о функционально нормальном состоянии гена. Всего за исключением повторяющихся последовательностей, в геноме человека имеется около 25000 островков CpG, 75% из которых имеют длину менее 850 п.н. Около 50% CpG-островков расположены в областях промоторов генов, в то время как еще 25% находятся в генных телах, часто выступая в качестве альтернативных промоторов.
Отметим, что функция метилирования самого тела гена не совсем понятна; он может регулировать сплайсинг и подавлять активность внутригенных транскрипционных единиц .

CIMP ( фенотип метилирования островков CpG, приводящий к отключению генов-супрессоров опухоли ) присутствует в 15% кишечной метаплазии и 50% аденом. Вообще, метилирование CpG островков может считаться третьим молекулярным фенотипом GC, и гены, имеющие отношение к развитию опухоли, такие как APC (аденоматозного полипоза толстой кишки), CDH1, MHL1, CDKN2A, CDKN2B и RUNX3, часто подвергаются метилированию. Причиной инактивации генов CDKN2A, CDH1 и MLH1 чаще является именно метилирование промотора, а не мутации.

Супрессор RUNX3 играет роль в подавлении EMT посредством SMAD-пути, активированного TGF-β. RUNX3 – это ген, кодирующий белок, относящийся к семейству транскрипционных факторов, содержащих Runt-домен. Гетеродимер этого домена и бета-субъединицы образуют комплекс, который связывается с основной последовательностью ДНК 5'-PYGPYGGT-3 ', обнаруженной в ряде энхансеров и промоторов, и может активировать или подавлять транскрипцию.
При GC часто наблюдается потеря экспрессии этого гена, в основном из-за гемизиготной делеции (при анэуплоидиях) или гиперметилирования. Этот ген экспрессирован только у 45–50 % пациентов с РЖ, позитивно регулирует экспрессию BIM и p21 и негативно – сосудистый эндотелиальный фактор роста (VEGF), что сказывается на апоптозе, задержке роста клеток и ангиогенезе. Потеря или существенное снижение экспрессии RUNX3 протеина при РЖ значимо ассоциировано с низкой выживаемостью.

Изменения в метилировании генов являются также наиболее хорошо изученными эпигенетическими изменениями, связанными с полевой канцеризацией при РЖ. Имеются также доказательства того, что экспрессия микроРНК (например, hsa-miR-150 , hsa-miR-664a иhsa-miR483 ) во время этого процесса дерегулируется. Напомню, что miRNAs играют важную роль в клеточном и тканевом гомеостазе, поскольку они участвуют в посттранскрипционной регуляции генов и играют ключевую роль в правильном функционировании клеток.
Анализ с использованием генов, регулируемых пятью микроРНК ( hsa-miR-21 , -miR-135b, -miR-148a , -miR-150 и -miR-204 ), связанных с инфекцией H. pylori , показал, что эти гены участвуют в важных путях для развития инфекции и GC (например, путей MAPK и HIF-1) и эти микроРНК могут служить биомаркерами патологического процесса.

Помимо нестабильности генома, ремоделирование хроматина также становится важным клеточным путем в развитии рака. Так, ARID1A кодирует субъединицу комплекса ремоделирования хроматина SWI-SNF и был идентифицирован как часто мутирующий ген ремоделирования хроматина в GC. SWI-SNF участвует в ремоделировании нуклеосом АТФ-зависимым образом, чтобы либо активировать, либо репрессировать транскрипцию генов. В соответствии с его функцией супрессора опухолей, мутации ARID1A в GC распределены по всей кодирующей области и обычно инактивируют его, включая усекающие мутации и вставки / делеции, приводящие к изменениям рамки считывания.
Рак ЖКТ с мутацией ARID1A более экспрессирует PD-L1, чем рак ЖКТ с ARID1A дикого типа; также мутации ARID1A часто были взаимоисключающими с мутациями TP53. ARID1A может способствовать репарации несоответствия (MMR) путем взаимодействия с белком MMR MSH2. В результате дефицит ARID1A может привести к нарушению MMR и, таким образом, коррелирует с гипермутагенностью рака MSI, где он встречается чаще всего.

Кроме ARID1A , другие компоненты SWI-SNF ( ARID1B , PBRM1 и SMARCC1 ) мутировали в GC. Кроме того, обнаружены мутации других комплексов ремоделирования хроматина, таких как комплекс MLL ( MLL2 и MLL3 ), комплекс ISW1 ( SMARCA1 ) и комплекс NuRD ( CHD3 , CHD4 и MBD2 ), а также гены, кодирующие гистон-модифицирующие белки ( SIRT1 и SETD2 ).

Последний раз редактировалось albert52; 15.09.2022 в 20:18..
albert52 вне форума   Ответить с цитированием