Форум общения  больных людей. Неизлечимых  болезней  нет!


Вернуться   Форум общения больных людей. Неизлечимых болезней нет! > Болезни и методы лечения > Рак, онкологические больные

Ответ
 
Опции темы Опции просмотра
Старый 22.09.2022, 09:56   #31
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Клетки со сбалансированным набором всех хромосом, как правило, здоровы, хотя гаплоидные и полиплоидные клетки менее приспособлены, чем диплоидные клетки. По мере того, как клетки отходят от эуплоидии, приспособленность снижается, и больший кариотипический дисбаланс обычно вызывает более тяжелые фенотипы. Так, изменения числа копий гена могут влиять на формирование или функцию белковых комплексов, чувствительных к стехиометрии.

Наиболее вероятным объяснением большинства вредных фенотипов, вызванных анеуплоидией, является гипотеза дозировки генов: увеличение или потеря целых хромосом немедленно изменяет дозировку сотен генов в клетке, тем самым приводя к дисбалансу критических белков. Так, аберрантные кариотипы также вызывают пропорциональные дисбалансы относительных уровней большинства белков. В целом тяжесть фенотипов, вызванных анеуплоидией, коррелирует с количеством приобретенных или утраченных генов.
Ключевым фактором, определяющим чувствительность к дозировке, является склонность некоторых белков к беспорядочным молекулярным взаимодействиям. Гены, которые являются токсичными при избыточной экспрессии, часто имеют много низкоаффинных бинарных партнеров по взаимодействию, что позволяет предположить, что нецелевые взаимодействия, вызванные массовым действием, могут нарушать клеточную приспособленность в анеуплоидных клетках . Такое часто встречается среди пионерных факторах транскрипции и генах инфраструктуры типа с-МУС.

Такой тип беспорядочного взаимодействия может объяснить фенотип усиления функции в сигнальных путях при некоторых видах рака. Например, когда рак легкого с мутациями, активирующими EGFR , лечится ингибитором EGFR , некоторые клетки приобретают лекарственную устойчивость за счет амплификации онкогена MET. Сверхэкспрессия МЕТ приводит к активации киназ ниже по течению от EGFR , которые не зависят от передачи сигналов МЕТ в клетках, содержащих нормальные уровни МЕТ.

Последствия изменения числа копий гена
A. Повышенная доза одного гена, такого как фермент, ограничивающий скорость, может увеличить выход или функцию клеточного пути.
B. Измененная доза гена может повлиять на функцию комплексов, чувствительных к стехиометрии.
C. Белок-белковые взаимодействия зависят от концентрации каждого связывающего партнера. Измененная экспрессия некоторых белков, таких как киназы передачи сигналов, может вызывать беспорядочные молекулярные взаимодействия, которые изменяют клеточные фенотипы.
D. Многим белкам для правильной укладки требуются шапероны. Если анеуплоидия подавляет клеточные шапероны, то неправильно свернутые белки, которые избегают шаперон-зависимой укладки, могут образовывать нерастворимые и потенциально цитотоксические агрегаты.
E. Механизмы контроля качества, в том числе убиквитин-протеасомный путь, гарантируют, что неправильно свернутые или неправильно экспрессированные белки будут быстро заменены. Регулируемая деградация белка также используется для запуска различных клеточных программ, включая прогрессирование клеточного цикла. Избыток некоторых белков может мешать сворачиванию или обороту других белков-клиентов.

Вредные фенотипы, связанные с анеуплоидией, также могут быть результатом синергетических эффектов изменения количества копий нескольких сотен генов одновременно. Анеуплоидия обычно бросает вызов способности клетки поддерживать белковый гомеостаз. Клетки используют ограниченное количество механизмов контроля качества для фолдинга и оборота белка. Например, большинству белков, которые содержат домен WD40, для правильной укладки требуется эукариотический шаперонин TRiC/CCT.
При отсутствии достаточной способности шаперонов вмещать сверхэкспрессированные белки другие клиенты шаперонов могут оставаться развернутыми, что приводит к фенотипам потери функции и образованию потенциально цитотоксических белковых агрегатов .
Неправильно свернутые белки, а также правильно свернутые белки, которые присутствуют в избытке, также могут нарушать клеточные механизмы обмена белков. Было продемонстрировано, что клетки обеспечивают целостность некоторых стехиометрических комплексов за счет быстрой деградации сверхэкспрессированных свободных субъединиц, таких как гистоны и рибосомные белки, то есть большинство белков с коррекцией дозы являются членами белковых комплексов.

Стехиометрический дисбаланс, вызванный анеуплоидией, может сильно нагрузить протеасому. Протеотоксический стресс является ключевым источником антипролиферативных эффектов анеуплоидии. Анеуплоидия также значительно изменяет метаболизм и увеличивает потребности клеток в энергии. Это может быть результатом того, что клетки тратят энергию впустую, транслируя, а затем перерабатывая избыточные белки из дополнительных хромосом.
Также было отмечено, что анеуплоидные клетки продуцируют значительно больше лактата во время пролиферации, чем эуплоидные клетки, фенотип, который они разделяют с раковыми клетками. Такое метаболическое сходство между анеуплоидными первичными клетками и раковыми клетками предполагает, что раковые клетки не полностью избежали стрессов, связанных с анеуплоидией.

Последний раз редактировалось albert52; 22.09.2022 в 10:00..
albert52 вне форума   Ответить с цитированием
Старый 22.09.2022, 14:49   #32
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вернемся к раковым стволовым клеткам (CSC)

В основе регуляции стволовых клеток кишечника (ISCs) лежит постоянное перекрестное взаимодействие в нише стволовых клеток кишечника между эпителиальными и мезенхимальными клетками. Эти перекрестные связи опосредуются ключевыми сигнальными путями, включая пути Wnt, Hedgehog (HH), Notch, PI3K и BMP. В частности, факторы, активирующие Wnt, которые секретируются компартментом стромальных миофибробластов, включают такие факторы, как фактор роста гепатоцитов (HGF) и остеопонтин, которые, как было продемонстрировано, вызывают фенотип или активность CSC. Кроме того, TGF-β имеет сходные эффекты, но также вызывает мигрирующий и прометастатический фенотип в раковых клетках либо напрямую, либо через ассоциированные с раком стромальные клетки.

Так как передача сигналов Wnt является важным детерминантом стволовости кишечника, был идентифицирован ген-мишень для Wnt, Lgr5 / GPR49, который экспрессируется исключительно в столбчатых клетках основания крипт (CBCs). Lgr5 / GPR49 может также экспрессироваться в компартменте стволовых клеток других эпителиальных тканей, включая волосяной фолликул, молочную железу и эпителий желудка. Lgr5 также известный как рецептор, связанный с G-белком 49 (GPR49), является «сиротским» рецептором, принадлежащим к семейству G-белковых рецепторов (GPCR). Lgr5 модулирует силу канонической передачи сигналов Wnt посредством связывания со своим лигандом R-spondin. Нацеливание на клетки Lgr5 + антител, конъюгированных с различными лекарствами, демонстрирует высокую эффективность в уменьшении размера опухоли и торможении пролиферации клеток рака толстой кишки.

Другие мишени Wnt включают c-myc и cyclin D1 и вместе с передачей сигналов Notch регулируют переключение ISC на транзитные амплификации клеток-предшественников секреторного эпителия крипт. Также наблюдается повышенная экспрессия гена-мишени Wnt сурвивина, который также считается предполагаемым маркером стволовых клеток.
Предполагается, что дифференцированная активация передачи сигналов Wnt регулирует разные функции дозозависимым образом. Так, инициирующие мутации (APC или β-catenin) приводят к слабой активации передачи сигналов Wnt, достаточной для нарушения нормальной регуляции ISC. Дополнительные соматические мутации, например, как показано для KRAS, или триггеры окружающей среды характорны для наиболее распространенных колоректальных аденокарцином человека. При этом динамическое микроокружение опухоли с гипоксией и воспалением может быть ответственным за варианты опухолевых клеток через геномную нестабильность и через эпигенетические изменения, что делает опухоль непредсказуемо разнообразной и трудно поддающейся лечению.

Также в эпителиальных клетках молочной железы человека активаторы EMT, например FoxC2, также могут придавать свойства стволовых клеток эпителиальным клеткам. А Lgr5 необходим для поддержания стволовых клеток рака груди и выявлена положительная корреляция между высокой экспрессией Lgr5 и более короткой выживаемостью пациентов.

Почти все колоректальные аденомы и карциномы человека обнаруживают генетические изменения в одном из компонентов пути Wnt, в основном APC с потерей функции или мутации, активирующие β-catenin (см. выше). При этом мутации APC приводят к переходу от асимметричного к симметричному делению ISCs. Интересно, что популяция клеток с высоким содержанием Wnt ответственна при CRC за метастазирование в отдаленные участки органов, такие как печень. Примером нацеливания на Wnt из (микро) окружающей среды могло бы быть блокирование рецептора MET и предотвращение активации происходящим из миофибробластов HGF.

СBCs расположены между клетками Панета, а позже были предложены как ISCs; сами клетки Панета обеспечивают нишу для ISCs, критически выделяя факторы, которые вносят вклад в состояние ISC, в частности лиганды Wnt. CBCs также экспрессируют Msi-1, который важен для передачи сигналов Notch путем ингибирования экспрессии репрессора Notch Numb. Только от пяти до семи ISC преимущественно участвуют в постоянной фиксации ниши.
Клетки CBC обнаруживают различия в экспрессии функциональных маркеров в зависимости от их расположения в пределах дна крипты и способны к двунаправленному преобразованию, для чего кажутся важными два фактора:
1) внутренняя способность переключать судьбу клетки, например, путем ремоделирования хроматина; при переходе от ISC к дифференцированному клеточному состоянию основные изменения происходят в сайтах доступности хроматина многих генов, специфичных для клеточного типа.
2) получение сигналов ниши для обратимого получения фенотипа и функциональности ISC. Даже терминально дифференцированные клетки Панета и энтероэндокринные клетки на поздних стадиях все еще обладают способностью переключаться обратно в состояние ISC, что указывает на то, что, вероятно, любая эпителиальная клетка кишечника обладает этим потенциалом.

Сорок процентов всех колоректальных карцином человека показывают активированный путь PI3K-Akt, в основном из-за инактивации PTEN. Более того, наследственные мутации PTEN (синдром Каудена) приводят к возникновению гамартоматозных полипов кишечника. Передача сигналов PI3K усиливает самообновление ISC, что может быть объяснено связью между передачей сигналов PI3K и путем Wnt: p-Akt может фосфорилировать β-catenin, главный эффектор канонического пути Wnt. PTEN экспрессируется в градиенте между криптой и просветом с наиболее сильной экспрессией в клетках просвета эпителия и, таким образом, может участвовать в ограничении передачи сигналов Wnt от основания крипты.

Костные морфогенетические белки (BMP) связываются с рецепторами BMP I или II типа (BMPR1 или BMPR2). Это приводит к фосфорилированию SMAD1, 5 или 8, которые затем образуют гетеродимер с SMAD4, перемещаются в ядро ​​и действуют как активаторы транскрипции. В кишечнике BMP4 секретируется межворсинчатыми стромальными клетками, а BMPR1 экспрессируется во всех эпителиальных клетках кишечника, способствуя их дифференциации. Ингибирование передачи сигналов BMP в эпителиальных клетках кишечника с помощью Gremlin активирует передачу сигналов Wnt. Более того, BMP стабилизирует PTEN, тем самым приводя к снижению активности Akt и последующему снижению накопления ядерного β-катенина.

Сразу после того, как клетки покидают богатую Wnt среду, в игру вступают такие сигнальные маршруты, как Notch, BMP и EGFR / MAPK. Активация Notch в клетках-предшественниках опосредуется паракринной передачей сигналов через секрецию лигандов Delta-like 1 (Dll1) и Dll4 и приводит к образованию абсорбирующего клона.
Передача сигналов Notch контролирует решения клеточной судьбы в развитии многих тканей, а регулируемое снижение передачи сигналов Notch в сотрудничестве с активацией специфических факторов bHLH, таких как Atoh1 и NeuroD, индуцирует специфическую дифференцировку в кишечные эпителиальные клоны. Были обнаружены различия клеточного цикла среди популяции стволовых клеток толстой кишки, из которых высокая экспрессия Notch и Lrig1 отмечает популяцию с медленным циклом.
albert52 вне форума   Ответить с цитированием
Старый 22.09.2022, 19:19   #33
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

В среднем предполагается, что одна стволовая клетка толстой кишки будет заменяться в крипте каждый год. В гомеостазе постоянная стохастическая конкуренция имеет место между 5–7 функциональными ISC. Эта динамика соответствует модели «нейтрального дрейфа», что указывает на случайное замещающее поведение ISC на дне крипты. Однако, когда ISC приобретает онкогенную мутацию, например, в APC или Kras , возникает смещение в пользу мутантных клеток (biased-drift). Например, вероятность того, что мутантная клетка Kras G12D заменит свои соседние ISC и, наконец, станет клональной внутри крипты, составляет соответственно 60–70% по сравнению с 12,5–20% для немутантных ISC. Важно отметить, что хотя мутировавшие ISC получают более высокую вероятность фиксации ниши, эти клетки по-прежнему подверга -ются замене нормальными ISC. Интересно, мутации Trp53 присутствуют только в случае более высокой скорости фиксации ниши в случае колита, что еще раз подчеркивает важность внешних факторов в злокачественной трансформации кишечных клеток.

Морфогены Sonic hedgehog (Shh) и Indian hedgehog (Ihh) секретируются эпителиальными клетками, а их рецептор Patched (PTCH) экспрессируется в субэпителиальных миофибробластах. Следовательно, передача сигналов Hedgehog (HH) не участвует напрямую в судьбе эпителиальных клеток, но важна для построения правильной общей структуры крипт и ворсинок слизистой оболочки кишечника. Поэтому нарушение передачи сигналов HH также оказывает сильные вторичные эффекты на эпителиальные клетки кишечника. При этом передача сигналов Wnt усиливается, увеличивается пролиферация и в ворсинах образуются атипичные структуры крипт. Эти эффекты могут быть приписаны снижению экспрессии BMP стромальными клетками, которая обычно запускается HH. Более того, Ihh, подавляет экспрессию TCF4 и β-catenin и, таким образом, его паттерн экспрессии с макси -мумом на сайте просвета крипт в эпителии толстой кишки ограничивает передачу сигналов Wnt от основания крипт.

Упрощенный взгляд на нишу стволовых клеток, который может оказаться гораздо более сложным: предполагаемые перекрестные связи передачи сигналов, определяющие нишу стволовых клеток и нишу дифференцирующихся клеток. В верхних областях крипт Ihh запускает экспрессию BMP в стромальных клетках, что затем активирует экспрессию PTEN в эпителиальных клетках. Все три фактора прямо или косвенно ингибируют передачу сигналов Wnt, направляя клетки к дифференциальным клонам.
В самой нише стволовых клеток окружающие стромальные клетки секретируют ингибиторы BMP Noggin и Gremlin, что приводит к ослаблению репрессии передачи сигналов Wnt. Кроме того, строма обеспечивает лиганды Wnt для индукции передачи сигналов Wnt через рецепторы Fzd в стволовых клетках и транзитно-амплифицирующих клетках.

На ппродвинутой стадии аденомы эпителий обнаруживает большие области незрелого фенотипа, напоминающий ограниченную зону транзита-амплификации в нижних частях нормальных крипт и указывающий на рост популяции пролиферативных клеток. Более того, ядерный β-catenin все чаще обнаруживается на всем протяжении крипт и ассоциируется с повышенной дисплазией в аденомах человека.
Рак можно рассматривать, по крайней мере частично, как следствие нерегулируемого контроля стволовых клеток. Обоснование, подтверждающее происхождение опухолей кишечника стволовыми клетками:
1. В отличие от короткоживущих дифференцированных кишечных эпителиальных клеток, в этой высокооборотной ткани ISC являются долгоживущими, что позволяет накапливать критические генетические изменения.
2. При колоректальном раке наиболее частые, ограничивающие скорость мутации, такие как мутации, встречающиеся в гене APC, усиливают передачу сигналов Wnt, которая оказывается решающим регулятором ISC.
3. Типичные колоректальные аденокарциномы человека и соответствующие метастазы неоднородны и демонстрируют множество стадий дифференцировки в пределах отдельной опухоли, что соответствует происхождению стволовых клеток.
4. Концепция раковых стволовых клеток, первоначально разработанная для гематопоэтических неоплазий, становится общепринятой для солидных видов рака, включая колоректальный рак.

Как и нормальные стволовые клетки, CSC обладают мультилинейным потенциалом дифференцировки и дают начало иерархично организованной клеточной популяции. Увеличение популяции самих CSC осуществляется благодаря преобладанию их симметричного деления (приводящему к образованию 2 дочерних клеток) над ассимметричным (в результате которого образуется 1 дочерняя CSC и 1 дифференцированная клетка). CSC демонстрируют высокий уровень экспрессии белков, принадлежащих семейству мембранных ABC транспортеров, вовлеченных в обеспечение резистентности к химиотерапии (ХТ).

По аналогии с причинами возникновения CSC (или нормальная стволовая клетка, или нормальная дифференцированная клетка) существуют 2 возможные теории развития рака толстой кишки: «восходящая» и «нисходящая». Первая предполагает развитие КРР из стволовой клетки, находящейся в базальном отделе крипты, в результате аномальной дифференцировки в направлении CSC (см. выше). В пользу этой теории говорит идентификация специфических генов, характерных для кишечных стволовых клеток, в предшествующих аденомах.
Сторонники «нисходящей» теории руководствуются гистологическими проявлениями аденомы толстой кишки, такими как дисплазия/неоплазия эпителия и повышенная экспрессия Ki-67, наблюдаемыми в вершине ворсинок при интактных клетках базальных отделов. Маркер Ki-67 свидетельствует об интенсивности пролиферативных процессов; отмечу только, что гипотеза о нисходящем развитии рака из-за высокого индекса клеточного деления вроде бы дифференцированных клеток на верхушках крипт легко обьясняется моей теорией: высокий уровень экспрессии классического гена инфраструктуры Мус в таких клетках заставляет их накапливать клеточную массу и делиться, хотя необходимости в этом нет.
Биосинтетические процессы в дифференцированных клетках (на стадии G0) вообще не интенсивны: нормально работающие станки нет необходимости менять. Таким образом при сверхэкспрессии Мус накапливаются преимущественно стройматериалы для последующего деления, а не специализированные белки клеток.

Одним из ключевых медиаторов, обеспечивающих трансформацию ISC, является антиапоптотический белок BCL-2, который одновременно высоко экспрессируется в Lgr5 + CBC и является геном-мишенью пути Nf-κB. Более того, учитывая способность кишечных эпителиальных клеток к пластичности во время повреждения и регенерации тканей, кажется вероятным, что воспалительные сигналы из окружающей среды придают дифференцированным клеткам такой же онкогенный потенциал, как и у клеток ISC.

Обычно считается, что активация воспалительного пути ядерного фактора NF-κB приводит к про-онкогенному воспалительному микроокружению. А комплекс IκB-киназы (IKKα и IKKβ) и его регуляторная субъединица (IKKγ) регулируют передачу сигналов NF-κB, при этом ядерная IκB-киназа α (IKKα) может напрямую связываться с промоторами факторов воспаления и Lgr5, что, в свою очередь, усиливает экспрессию Lgr5, в том числе за счет активации сигнального пути STAT3 во время прогрессирования, например, базальноклеточной карциномы.
Sox2 играет ключевую роль в поддержании стволовых клеток, детерминации их гибели и является необходимым фактором для репрограммирования соматических клеток по пути плюрипотентности. Sox2 участвует в развитии большого количества типов злокачественных новообразований и является маркером CSC. Для рака пищевода и легкого наличие Sox2 служит прогностическим маркером. Реакция Sox2 в норме имеет ядерную локализацию.

В нормальной слизистой оболочке толстой кишки экспрессия Sox2 чаще всего отсутствует. Вообще-то Sox2 играет большую роль в развитии верхнего, но не нижнего отдела пищеварительного тракта. Sox2 уменьшает экспрессию Е-кадгерина на плазматической мембране, что приводит к снижению связывающей способности адгезивного комплекса к β-катенину. Подавление транскрипции Sox2 приводит к ингибированию Wnt-сигнального пути у пациентов с КРР (раком ирлстой кишки).
Подавление транскрипции Sox2 приводит к достоверному снижению активности белка MMP2 и, как следствие, уменьшению клеточной миграции и подвижности. У больных раком толстой кишки с сильной реакцией Sox2 процент метастазов в печень и регионарные лимфатические узлы (ЛУ) был вдвое выше, чем у пациентов с отрицательной реакцией Sox2.
albert52 вне форума   Ответить с цитированием
Старый 23.09.2022, 00:18   #34
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вернемся к раку толстой кишки.

Морфологическая структура ткани кишечника предотвращает быстрое распространение мутировавших клеток, поскольку каждая из этих крипт сама по себе является динамической клеточной нишей без какого-либо обмена клетками между криптами. Однако количество крипт нестабильно из-за двух процессов, называемых делением и синтезом, что означает раздвоение и столкновение крипт соответственно. Эти противодействующие процессы компенсируют друг друга и случаются нечасто, если не происходит повреждение тканей.

В криптах с мутацией Kras наблюдается гораздо более высокая скорость деления. Множественные KRAS мутированные соседние крипты могут окружать CRC, предполагая , что в пределах области KRAS мутантных крипт одна крипта подверглась дальнейшей трансформации. Таким образом, деление крипт, по-видимому, является важным механизмом злокачественной трансформации и прогрессирования в кишечнике, включая процесс, называемый полевой канцеризацией. Она представляет собой замену популяции нормальных клеток популяцией клеток, примированных к раку, которая может не демонстрировать морфологических изменений.

Как только аденома образуется при разрастании мутировавших крипт и имеет размер не менее 1 см, существует ~ 25% риск того, что эта новообразованная аденома подвергнется в следующие два десятилетия злокачественной трансформации в инвазивную карциному. В аденоматозных криптах присутствует ~ 9 функциональных опухолевых стволовых клеток на сотни клеток в каждой железе. Это контрастирует с процентом клеток Lgr5 +, который обнаруживается в аденомах, примерно ~ 20% от общей популяции (~ 400 клеток на железу), то есть только часть стволовых клеток аденомы являются ОСК.
В случае аденом человека была также продемонстрирована множественная дифференцировка в пределах железистых структур, что предполагает существование мультипотентных стволовых клеток. Уже на ранней стадии туморогенеза также возникает интрааденомное эпигенетическое клональное разнообразие.

Во время роста CRC продемонстрирована явная гетерогенность в динамике роста пула раковых клеток в различных областях опухоли, например, в клетках, расположенных рядом с границей или ближе к центру. Примечательно, что клоногенный рост происходит в основном на границе опухоли, а не в центре опухоли, то есть размножаются в основном окислительные опухолевые клетки, как я уже упоминал, предпочтительно использующие лактат для получения энергии.

В дополнение к сигнатурным мутациям APC, TP53 и KRAS, углубленное геномное и транскриптомное профилирование выявило гетерогенность заболевания, отражаемую многочисленными низкочастотными мутациями и профилями транскрипции, классифицированными по четырем консенсусным молекулярным подтипам (CMS) :
* CMS1 (, 14%), характеризуется гипермутацией, MSI и активным иммунным ответом.
* СMS2 ((канонический, 37%), эпителиальный, хромосомно нестабильный, с заметной активацией передачи сигналов WNT и MYC;
* CMS3 (метаболический, 13%), эпителиальный, очевидная метаболическая дисрегуляция;
* CMS4 (мезенхимальный, 23%), заметная активация TGF-β, стромальная инвазия и ангиогенез.
Образцы со смешанными признаками (13%), возможно, представляют собой переходный фенотип или внутриопухолевую гетерогенность. МУС наиболее выражен в подтипах CMS3 и 4, хотя и в остальных подтипах тоже достаточно активен (всего в 70% CRC).

В целом можно сказать,что CMS1 содержит в основном микросателлитные нестабильные (MSI) опухоли с гипермутацией/гиперметилированием и сильной иммунной активацией. CMS2 представляет собой CIN, а также усиление передачи сигналов WNT и MYC. CMS3 обогащен мутациями KRAS и метаболически сверхактивирован. CMS4 определяется активацией пути TGF-бета, эпителиально-мезенхимальным переходом (EMT) и ангиогенезом.

Отмечены общие черты между GC и CRC, включающие специализированные типы клеток в исходной ткани (стволовые клетки LGR5, бокаловидные клетки и клетки сенсорного пучка), потеря опухолевого супрессора APC, активация передачи сигналов WNT и активация TGF-beta/ EMT. Также CMS4 является наиболее распространенным типом в GC, за ним следуют CMS1, CMS3 и CMS2. CMS4 тесно связан с подавлением семейства ингибиторов ЕМТ miR-200 и последующей активацией ЕМТ.
Примечательно, что CMS4 имеет сильную контингентность с подтипом ACRG EMT, а CMS1 имеет сильную контингентность для микросателлитных нестабильных подтипов во всех трех системах классификации рака желудка.

Классификация CMS обеспечивает основу для прогнозирования и улучшения назначения таргетной терапии в прецизионных исследованиях.

Теперь подробнее о CMS классификации. Опухоли CMS1 часто диагностировались у женщин с правосторонними поражениями и имели более высокую гистопатологическую степень, а также демонстрируют высокий статус гиперметилирования островков CpG; при локализации опухоли в прямой кишке только в 0,1% наблюдений определялся CMS1 подтип. Напротив, опухоли CMS2 были в основном левосторонними и имеют более частое увеличение числа копий в онкогенах и потерю генов-супрессоров опухолей, чем в других подтипах.

Опухоли CMS4, как правило, диагностировались на более поздних стадиях (III и IV) и демонстрировали более высокую хромосомную нестабильность (CIN), измеренную по количеству SCNA (изменению числа соматических копий хромосом или их частей). Также обнаружена лучшая выживаемость после рецидива у пациентов с CMS2. Интересно, что популяция CMS1 имела очень плохую выживаемость после рецидива, что согласуется с недавними исследованиями, показывающими худший прогноз у пациентов с MSI и рецидивирующей CRC с мутацией BRAF.

CMS1 характеризуется повышенной экспрессией генов, связанных с диффузным иммунным инфильтратом, в основном состоящим из TH1 и цитотоксических Т-клеток, наряду с сильной активацией путей уклонения от иммунной реакции. Отмечена высокая экспрессия хеммоатрактантов к Т-лимфоцитам (CXCL9, CXCL10 и CXCL16) или молекул, участвующих в формировании третичных лимфоидных структур (CXCL13), повышенная экспрессия INFγ и IL15, высокая экспрессия генов, кодирующих PD-1 лиганды. Интересно, что последние также выявлены и при мезенхимальном подтипе.
MSI oпухоли могут встречаться при разных подтипах, однако, если они ассоциированы с CMS1 подтипом, то обладают более высокой иммуногенностью за счет большого количества неоантигенов.

При каноническом (CMS2) же подтипе снижена презентация белков главного комплекса гистосовместимости I класса, низкая инфильтрация опухоли лимфоцитами. Индекс пролиферации опухолевых клеток был связан с успешным установлением PDX (patient-derived xenograft), что позволило выделить пациентов с плохими клиническими исходами в рамках CMS2. Отмечу, что модели PDX (ксенотрансплантаты, полученные от пациента) используются для создания среды, которая обеспечивает естественный рост рака, его мониторинг и соответствующие оценки лечения пациента.

Последний раз редактировалось albert52; 23.09.2022 в 00:31..
albert52 вне форума   Ответить с цитированием
Старый 23.09.2022, 19:38   #35
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вставка.

Микросателлитная нестабильность (MSI)

Дефект восстановления несоответствия (MIS-match reh-PAYR deh-FIH-shun-see) описывает клетки, имеющие мутации (изменения) в определенных генах, участвующих в исправлении ошибок, допущенных при копировании ДНК в клетке. Клетки с дефицитом репарации несоответствия (MMR) обычно имеют много мутаций ДНК, которые могут привести к раку.

Приобретение геномной нестабильности является одной из ключевых характеристик раковой клетки, а микросателлитная нестабильность (MSI) является важным сегментом этого явления. Неисправность пути восстановления MMR увеличивает мутационное бремя конкретных видов рака и часто участвует в его этиологии, иногда в качестве влиятельного свидетеля, а иногда в качестве основной движущей силы.

Чертежи конкретных опухолей MSI полезны для точной классификации, оценки вероятности рака и прогноза, чтобы помочь нам понять, как и почему возникают устойчивые к терапии раковые образования. Кроме того, данные показывают, что MSI является важным прогностическим биомаркером для применения иммунотерапии.

Совокупность наблюдаемых генетических изменений при раке часто называют «ландшафтами генома рака». Система восстановления несоответствия (MMR) отвечает за поддержание стабильности генома. Когда MMR не функционирует нормально, происходят изменения микросателлитов, и общая скорость мутаций данной клетки увеличивается.
MMR - это клеточный пострепликационный процесс, который сохраняет гомеостаз ДНК и как таковой является эволюционной гарантией стабильности генома. Основная задача системы репарации ошибочного спаривания ДНК состоит в том, чтобы исправить спонтанные неправильные пары основание-основание и небольшие петли вставок-делеций (инсерции), которые в основном образуются во время репликации ДНК.

Полимеразы, которые запускают синтез ДНК в репликационных вилках, работают не без ошибок. Частота ошибок, совершаемых эукариотическими ДНК-полимеразами, оценивается примерно в одну ошибку на каждые 10 5 нуклеотидов, что означает, что ~ 100000 ошибок происходит во время каждой клеточной S-фазы. Первая линия защиты от такой высокой частоты мутаций - это корректирующая активность ферментов полимеразы. Хотя ДНК-полимеразы обеспечивают такую ​​лекторирующую активность своими собственными доменами, некоторые внесенные мутации все еще могут проскальзывать незаметно, и их необходимо корректировать с помощью второй линии защиты - экспрессии генов, связанных с MMR.
Механизмы MMR включают следующие этапы: распознавание повреждений, инициирование восстановления, удаление повреждений и ресинтез ДНК (см. выше). У человека механизм MMR имеет 8 генов, кодирующих его компоненты; при этом вариации дефицита генов репарации ДНК важны для специфической восприимчивости опухоли.

Продукт гена hMSH2, расположенный на хромосоме 2p21, является основным корректирующим белком MSH. Чтобы исправить ошибочно спаренные основания, он создает два разных гетеродимера - один с MSH6, а другой с MSH3. Поскольку было показано, что MSH6 экспрессируется в 10 раз больше, чем MSH3, в клетках человека преобладает первый гетеродимер. Гетеродимеры MSH2-MSH6 и MSH2-MSH3 связываются с несовпадениями при проверке постреплицированной цепи ДНК, которая инициирует репарацию ДНК. Образованные комплексы MSH превращаются в скользящие зажимы на спирали ДНК. Они скользят до тех пор, пока не будут обнаружены неправильные пары оснований и другие дополнительные спиральные поражения. ПРи этом скользящий зажим MSH2-MSH6 может отделять нуклеосому от ДНК, если присутствует несоответствие, и что эта диссоциация усиливается ацетилированием H3.

Гетеродимеры MSH2-MSH6 обнаруживают несоответствия единичных оснований и искажения в виде вставок-делеций динуклеотидов, тогда как MSH2-MSH3 идентифицируют более крупные петли вставки-делеции длиной ~ 13 нуклеотидов. Их последующее присоединение к комплексам MLH1 / PMS2 приводит к деградации мутированного фрагмента последовательности ДНК и возобновлению синтеза.

После распознавания несовпадений ДНК и связывания первого гетеродимера другие молекулы, такие как ядерный антиген пролиферирующих клеток (PCNA), фактор репликации C (RFC), MutLα (гетеродимер MLH1-PMS2) и экзонуклеаза 1 (Exo1), привлекаются в комплекс, приводящий к окончательной диссоциации несоответствия.

Белки MMR вместе с ДНК претерпевают повторяющиеся конформационные изменения. Было продемонстрировано, что после обнаружения несоответствия гетеродимер MSH2-MSH3 изгибает спираль ДНК и что это конформационное изменение делает возможным правильную репарацию. Заболевания, связанные с аберрациями гена MSH3 , включают рак толстой кишки, мочевого пузыря и эндометрия.

hMSH5 расположен на 6p21.3, ассоциируется исключительно с MSH4 и действует во время мейоза в событиях кроссинговера и конверсиях генов. Было обнаружено, что гетеродимеры MSH4-MSH5 специфически и в большом количестве присутствуют в репродуктивных тканях млекопитающих, поскольку их основная роль заключается в мейотической рекомбинации. Он участвует в репарации двухцепочечных разрывов, ответе на повреждение ДНК и разнообразии иммуноглобулинов, а его SNP ( Single Nucleotide Polymorphism) локусы связаны со многими различными заболеваниями человека, включая рак.
Нарушения MLH3 проявляются в нестабильности длины коротких повторяющихся последовательностей и соматические мутации MLH3 часто обнаруживаются в опухолях, подверженных микросателлитной нестабильности. Заболевания, связанные с изменениями MLH3, включают рак толстой и прямой кишки, эндометрия и глиому низкой степени злокачественности.

Связывание и гидролиз АТФ жизненно важны для регуляции MMR. Когда обнаруживается несоответствие G / T, комплекс MSH2-MSH6 обменивает АДФ на АТФ, таким образом функционируя как молекулярный переключатель. Высококонсервативная область находится в гене MSH6 и координирует связывание и гидролиз АТФ.

Последний раз редактировалось albert52; 23.09.2022 в 19:41..
albert52 вне форума   Ответить с цитированием
Старый 24.09.2022, 21:48   #36
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Микросателлиты помимо кодирующих областей генов также менее распространены в эволюционно консервативных геномных областях, таких как CpG-островки и сайты связывания факторов транскрипции и более стабильны. Возникновение MSI может серьезно повлиять на фенотип из-за нарушений или потери функции белка. Так, предположено, что частота микросателлитов в кодирующих областях минимизирована давлением отбора против мутаций рамки считывания, а некодирующие области, такие как интроны, внутригенные области и сайты сплайсинга, имеют значительно больше микросателлитов. При этом микросателлитные локусы в интронах и других нетранслируемых областях играют роль в модуляции экспрессии генов, влияя на транскрипцию и сплайсинг генов.
Общая точка зрения на наследование частоты MSI состоит в том, что длина повторов и состав микросателлитов в определенных локусах пропорциональны их частотам.

Oбщее количество митозов, которые стволовые клетки осуществляют в определенной ткани, положительно коррелирует с пожизненным риском развития рака. При этом количество мутаций, обнаруженных в каждой опухоли, сильно отличается не только от количества, обнаруженного в нормальных клетках, но и между различными типами опухолей, в диапазоне от 500 до 100000 мутаций.

Поскольку они отвечают за коррекцию мутационной перегрузки, гены MMR приобрели роль генов-супрессоров опухолей. При спорадических ненаследственных формах рака MSI является следствием либо инактивирующих мутаций в одном из генов MMR, либо эпигенетических механизмов репрессии гена MMR, включая подавление регуляции микроРНК. Сравнительное исследование miRNAs, участвующих в колоректальном раке, показало, что снижение уровней miR-552, miR-592, miR-181c и miR-196b наблюдалось в опухолях с развитой MMR по сравнению с повышенными уровнями miR-625 и miR-31 в опухоли с дефицитом MMR.

Неисправность белков MMR из-за мутации или снижения экспрессии предполагает корреляцию развития рака с аберрациями всех или большинства белков MMR. MSI-H: 31,37% карциномы тела матки эндометрия, 19,72% аденокарциномы толстой кишки; 19,09% аденокарциномы желудка, 5,73% аденокарциномы прямой кишки.
В случае колоректального рака дефицит MMR может возникать как совершенно спорадический процесс из-за аберрантного гиперметилирования MLH1 в опухоли, обычно связанного с мутацией BRAF V600E. Дефицит MMR чаще всего проявляется как спорадический (ненаследственный) процесс, характеризующийся отчетливой гиперпролиферативной, зубчатой ​​морфологией, аномалиями метилирования ДНК, включая CIMP, и повышенной частотой активирующих мутаций BRAF.

Основная специфичность опухолей MSI-H - увеличение количества микросателлитных аллелей вместе с общим количеством нестабильных микросателлитных локусов. Пациенты, которым отнесено более высокое общее бремя MSI и которым поставлен диагноз MSI-H, демонстрируют тенденцию к более длительной выживаемости. Это можно объяснить иммунотерапевтическим ответом, который происходит при раке с повышенной частотой мутаций. Раковые клетки, которые часто встречаются в общем потенциале MSI, транслируют большее количество мутировавших и усеченных белков всех видов, что приводит к пробуждению иммунной системы, которая замедляет прогрессирование опухоли. Кстати, поэтому удаление первичной опухоли может создать благоприятные условия для развития метастазов в менее иммуногенной метастатической нише (см. выше).
Дефектный MMR (dMMR) в сочетании с MSI стал важным биомаркером, который может помочь в решении, является ли конкретный тип рака хорошим кандидатом для иммунотерапии контрольных точек.

При раке насчитывают от 87 до 9032 нестабильных микросателлитов, причем среднее количество нестабильных микросателлитных локусов значительно варьирует. Рак толстой кишки показывает самое большое количество локусов MSI. Нестабильные микросателлиты обнаруживаются внутри или в непосредственной близости от генов, уже известных своим онкогенным потенциалом. Таким образом, нестабильные микросателлиты могут быть полезны для распознавания новых генов-кандидатов, вызывающих рак.
Кроме того, профили MSI по отдельным микросателлитным локусам помогают их группировать. Так, присутствие MSI в опухолях астроцитом с использованием полиморфных микросателлитных маркеров для генов DVL показало, что MSI присутствует в 28,6% пилоцитарных, 61,5% диффузных, 45,5% анапластических астроцитом и в 34,3% глиобластом, что еще раз демонстрирует относительно постоянное присутствие MSI на разных степенях астроцитом.

Ранние колоректальные аденомы демонстрируют маркеры иммунореактивности даже при отсутствии высокой соматической мутации или неоантигенной нагрузки. По мере прогрессирования поражений до прогрессирующих аденом и карцином наблюдается соответствующий рост количества мутаций/ неоантигенов и маркеров иммунной толерантности.
Опухоли с дефицитом MMR часто демонстрируют высокую мутационную нагрузку и могут экспрессировать неоантигены, генерируемые мутациями сдвига рамки считывания в кодирующих микросателлитах. Неоантигены будут вызывать активное иммунное микроокружение и повышать иммуногенность опухоли.

Инфильтрирующих лимфоцитов больше при колоректальном раке с дефицитом MMR, сопровождающимся сверхэкспрессией воспалительных цитокинов. Более того, было продемонстрировано, что несколько контрольных точек, включая PD-L1 и CTLA4, были активированы при колоректальном раке. Универсальный биомаркер - мутационная нагрузка опухоли (TMB) оказался полезным для прогнозирования ответа на иммунотерапию на различные типы применяемых иммунотерапевтических средств. Высокая нагрузку опухолевых мутаций (TMB) обычно определяется как более 10 мутаций на мегабазу (Mb).

Каждая стратегия лечения нуждается в целенаправленном пересмотре рисков и преимуществ. Например, хотя антитела анти-PD-1/PD-L1 могут усилить иммунный надзор, они также связаны со значительной частотой тяжелых нежелательных явлений. К ним относятся иммуноопосредованные легочные, печеночные, кожные, неврологические, желудочно-кишечные и эндокринные токсические эффекты, некоторые из которых приводят к летальному исходу. Ингибиторы PD-1/PD-L1 также не имеют четкой реакции на дозу, что делает проблематичным назначение более низких доз этих препаратов для профилактики рака.

При синдроме Линча распространенность предраковых состояний (особенно аденом) зависит от возраста и генной мутации и кол***ется от 10,6% до 33%, но только около 50% этих аденом демонстрируют дефицит MMR, остальные связаны с CIN. Напротив, у ниъ гистологически нормальные крипты с дефицитом MMR относительно многочисленны в слизистой оболочке здоровых пациентов, что означает, что значительное количество MMR-дефицитных крипт подвергается «иммуноредактированию» до трансформации в аденомы.
Иммуноредактирование — это процесс, при котором аномальный рост клеток останавливается и регрессирует с помощью Т-клеточного иммунитета. В случаях, когда поражение не полностью искоренено, за иммуноредактированием следуют фазы равновесия и, в конечном итоге, фазы ускользания от иммунного ответа, когда оставшиеся клетки способны уклоняться от обнаружения иммунной системой.

Кстати, у пациентов с синдромом Линча нестабильность кодирующих и некодирующих микросателлитов дает надежную сигнатуру неоантигенов, специфичных для опухоли/ткани, на которые могут быть нацелены предварительно разработанные библиотеки вакцин. Сейчас ранняя фаза клинических испытаний с использованием пептидов, идентифицированных как иммуногенные.

Последний раз редактировалось albert52; 24.09.2022 в 21:56..
albert52 вне форума   Ответить с цитированием
Старый Вчера, 01:59   #37
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вставка.

Опухолевые почки (Tumor budding)

Значительное количество опухолей ведет себя агрессивно, несмотря на то, что они относятся к категории низкого риска на основании их стадии TNM. Таким образом, необходим поиск дополнительных прогностических факторов при оценке колоректальной карциномы. Из изученных на сегодняшний день гистопатологических факторов наиболее многообещающими являются экстрамуральная венозная инвазия, характер наступающего фронта (выталкивающий или инфильтративный), воспалительный инфильтрат, микросателлитная нестабильность и почкование опухоли — наличие небольших дискретных скоплений опухолевых клеток в инвазивном краю.

Опухолевые почки, определяемые как наличие одиночных опухолевых клеток или небольших скоплений до пяти опухолевых клеток на перитуморальном инвазивном фронте (перитуморальные почки) или внутри основного тела опухоли (внутриопухолевые почки), представляют собой гистоморфологический коррелят раковых клеток, подвергшихся ЕМТ.
Почкующиеся гнезда часто обнаруживаются рядом с областями инвазии лимфоваскулярного пространства, причем ряд «зачатков» на инвазивном крае опухоли фактически расположен в небольших лимфатических пространствах. Наличие почкования также связано с повышенным риском отдаленных метастазов. При подслизисто-инвазивной колоректальной карциноме высокая степень злокачественности опухоли, лимфоваскулярная инвазия и почкование опухоли являются тремя факторами, независимо связанными с метастазами в лимфатические узлы.
У пациентов без какого-либо из этих трех признаков была исключительно низкая частота метастазов в лимфатические узлы (1%); при наличии одного фактора риска частота узловых метастазов существенно увеличивалась до 21%, а при наличии двух или трех факторов риск составлял 36%.

Что касается категорий CRCSC, клетки ТБ показали профиль экспрессии генов, соответствующий «мезенхимальному фенотипу» (CMS4), также клетки в основной опухоли чаще всего имели связь с фенотипом CMS2 — большее количество опухолевых зачатков было обнаружено в опухолях CMS4, чем в опухолях CMS2 и CMS3 — и мутациями KRAS. ТБ-клетки у пациентов с CRC также демонстрируют повышенную экспрессию ZEB1 и сопутствующее снижение miR-200b и miR-200c, что подтверждает связь между членами семейства miR-200 и ЕМТ.

Поскольку у пациентов с колоректальной карциномой II стадии исходы сильно различаются, почкование опухоли может быть особенно полезным для выявления подгрупп высокого риска в этой популяции. Наличие почкования опухоли предсказывает плохой ответ на анти-EGFR-терапию у пациентов с метастатической колоректальной карциномой.

Сильное почкование опухоли тесно связано с опухолями, возникающими из опухолей с мутацией гена APC в отличие от микросателлитной нестабильности. В спорадических микросателлитных стабильных и низкочастотных микросателлитных нестабильных опухолях частота отпочковывания опухоли составляла примерно 50%, причем почкование опухоли практически отсутствует при спорадической высокочастотной микросателлитной нестабильной карциноме, что может, по крайней мере частично, объяснить относительно лучший прогноз.

Белки, участвующие в деградации внеклеточного матрикса, такие как MMP-9 и катепсин B, сверхэкспрессируются в опухолевых почках; экспрессируется также белок клеточной локомоции ламинин 5γ2. Другие белки клеточной адгезии, такие как EpCAM (Epithelial cell adhesion molecule), вовлечены в процесс почкования с потерей мембранной экспрессии; EpCAM активируется путем протеолиза, что приводит к высвобождению EpICD в цитоплазму, которая становится частью транскрипционного комплекса ß-catenin и LEF. Он обладает онкогенным потенциалом благодаря своей способности активировать c-myc, e-fabp и циклины A и E.

Молекула адгезии нейрональных клеток L1 также была идентифицирована как ген-мишень β-катенина и преимущественно экспрессируется в опухолевых зачатках, где она совместно регулируется с ADAM10, металлопротеазой, участвующей в отщеплении внеклеточного домена L1s; L1 индуцирует передачу сигналов NF-κB в клетках колоректального рака, при этом NF-κB участвует в EMT.

Маркер стволовости CD133 преимущественно экспрессируется на переднем фронте инвазивной опухоли, но не внутри самих опухолевых зачатков. Вообще, экспрессия CD133, CD44 и CD90 является редким событием в опухолевых зачатках, что свидетельствует о том, что опухолевые клетки в зачатках подвергаются дифференцировке в мезенхимальный фенотип.
Что же касается экспрессии Lgr5, то обнаружено, что небольшое подмножество зачатков является положительным для этого предполагаемого продуцента стволовых клеток, но в отдаленных метастазах была обнаружена в 6-11,5 раз более высокая степень экспрессии.

В целом считается, что опухолевые клетки, происходящие из ЕМТ, являются гипопролиферативными. В самом деле, опухолевые зачатки демонстрируют цитоплазматическую экспрессию p16. В нормальных условиях ядерный p16 является прямым ингибитором циклина D1, останавливая клеточный цикл, однако считается, что расположенный в цитоплазме р16 связывается с CDK4, блокируя его транспорт в ядро. CDK4 необходим для активации циклина D1, следовательно, в отсутствие CDK4 циклин D1 образует неактивный комплекс с CDK2, что объясняет явно парадоксальную ко-активацию p16 и циклина D1.
В дополнение к их гипопролиферативному состоянию опухолевые зачатки обладают антиапоптотическим действием благодаря относительному отсутствию их реактивности в отношении каспазы 3, что позволяет предположить, что опухолевые зачатки способны противостоять аноикису.

Ген-супрессор опухоли RKIP был связан с EMT на нескольких уровнях, например, как ингибитор сигнального каскада Ras-Raf-MEK-ERK на уровне Raf. Кроме того, RKIP модулирует другие сигнальные пути, включая NFκB-Snail. Отмечена дифференциальную экспрессию RKIP в зонах колоректального рака с постепенной потерей экспрессии по направлению к фронту опухоли.

Нейротрофический тирозинкиназный рецептор TrkB был связан с EMT посредством RAS/MAPK-зависимой передачи сигналов Twist-Snail, и было продемонстрировано, что он является мощным и специфическим супрессором аноикиса, что подтверждается его сверхэкспрессией в опухолевых зачатках. Кроме того, колоректальный рак с мутациями KRAS также сверхэкспрессирует TrkB, что согласуется с известной зависимостью передачи сигналов MAPK от TrkB-индуцированной EMT.
Хемокин CXCL12 связывается со своим рецептором CXCR4, активируя последующие внутриклеточные пути, участвующие в хемотаксисе, выживании клеток и транскрипции генов. Поскольку CXCR4 экспрессируется в клетках многих органов, включая лимфатические узлы, легкие и печень, эпителиальные опухолевые клетки могут использовать принцип самонаведения для направления метастазов CXCL12-положительных опухолевых клеток в CXCR4-положительные органы. CXCL12 также может стимулировать образование капиллярных структур. Было обнаружено, что экспрессия CXCL12 в опухолевых зачатках коррелирует с метастазами в печень и является независимым прогностическим маркером.

Сигналы, происходящие от окружающих мезенхимальных клеток в микроокружении опухоли, могут играть важную роль в фиксации пропочковавшегося фенотипа. Так TWIST1, известный активатор ЕМТ, экспрессируется в опухолевых стромальных клетках; эти клетки демонстрируюи те же неопластические аберрации, что и сама опухоль.

Последний раз редактировалось albert52; Вчера в 02:03..
albert52 вне форума   Ответить с цитированием
Старый Вчера, 15:52   #38
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Рак поджелудочной железы (PDAC)

Рак поджелудочной железы (РПЖ) — злокачественное новообразование, исходящее из эпителия железистой ткани или протоков поджелудочной железы. Обычно опухоль поражает головку железы (50-60 % случаев), тело (10 %), хвост (5-8 % случаев). Также наблюдается полное поражение поджелудочной железы — 20-35 % случаев. Для РПЖ с начала появления клинических симптомов характерно быстрое и агрессивное течение. Сами симптомы часто не специфичны и не выражены, поэтому на момент постановки диагноза менее 20% злокачественных опухолей поджелудочной железы являются операбельными.
Если опухоль поражает головку железы, то для дифференциации появляющейся желтухи используют синдром Курвуазье: при пальпации правого верхнего квадранта живота обнаруживается желчный пузырь, увеличенный вследствие давления желчи.

Рак поражает преимущественно людей пожилого возраста, одинаково часто мужчин и женщин. Факторами риска рака поджелудочной железы являются употр***ение спиртных напитков, курение (считают, что до 25—33% случаев рака ПЖ связано с курением), обилие жирной и острой пищи, избыточное употр***ение в пищу, особенно в жареном и копченом виде, животных жиров и мясных продуктов, которые содержат канцерогены (тетрациклические амины и полициклические ароматические гидрокарбоны), сахарный диабет и цирроз печени. К предраковым заболеваниям относятся аденома и киста поджелудочной железы, а также хронический панкреатит.

При хроническом панкреатите (ХП) наблюдается значительная извитость и расширение протоков с ретенционными кистами. Значительная структурная перестройка протоковой системы ПЖ у больных ХП наблюдалась в 87,5 % случаев, в 17,5 % случаев картина дополнялась явлениями ацинарно-протоковой метаплазии с трансформацией ацинарных клеток в протоковые и формированием мелких дуктулоподобных структур, так называемых тубулярных комплексов.
В дальнейшем это приводит к образованию белковых пробок и панкреатический секрет инфильтрирует окружающую ткань с формированием отека железы, за которым следует интрапанкреатическая активация пищеварительных ферментов с угрозой панкреонекроза. В 87,5 % случаев ХП паренхима ПЖ, таким образом, представляла собой небольшие атрофичные ацинусы, окруженные плотными фиброзными муфтами, с увеличенным количеством зияющих протоков разного диаметра.

В протоковой аденокарциноме к этому присоединяются клеточный атипизм прежде всего клеток мелких интеркалированных протоков, а также тканевой атипизм с высокой степенью извитости мелких протоков, часто тупиковых (см. ниже). Пациенты с хроническим панкреатитом более 5 лет имеют более чем 14-кратный риск развития рака поджелудочной железы по сравнению с общей популяцией.

Значительным прогрессом в диагностике рака поджелудочной железы на ранней стадии является эндосонография (эндоскопический ультразвук). В отличие от обычного УЗИ, для эндосонографии используется гибкий эндоскоп с видеокамерой и ультразвуковым датчиком, который можно ввести в кишку непосредственно к исследуемому образованию. При раке поджелудочной железы эндоскопический ультразвук позволяет установить диагноз в 90—95% случаев на самой ранней стадии. ТИАБ ( тонкоигольная аспирационная биопсия) позволяет выявить опухолевые клетки лишь у 80 % больных РПЖ.

Предложено применение в качестве скрининг‑теста РПЖ определение уровня опухолевых маркеров (ОМ). Достаточно информативным и хорошо изученным является ОМ СА 19‑9, уровень которого при РПЖ, как правило, превышает 100 Е/мл, тогда как при ХП такой уровень наблюдается крайне редко. Но его уровень бывает нормальным на ранних стадиях РПЖ, так как СА 19‑9 и многие другие ОМ – белки эктодермального происхождения, образующиеся у людей, эритроциты которых содержат Lewis‑антиген.
Повышение уровня СЕА (канцерэмбрионального антигена) при РПЖ чаще всего свидетельствует о метастатическом поражении печени. Пациенты, у которых уровень СЕА больше 15 нг/мл, имеют достоверно меньшую выживаемость.

Опухоль представляет собой плотный бугристый узел без чётких границ, на разрезе — белый или светло-жёлтый. Крупные опухоли, как правило, обнаруживаются в хвосте железы, в левом подреберье и при пальпации ошибочно принимаются за увеличенную селезенку. У одной четверти больных присутствуют, кроме основного очага, участки с карциномой in situ. Таким образом, возможно полифокальное возникновение очагов озлокачествления.

Всего насчитывают 5 гистологических форм РПЖ, но наиболее распространена аденокарцинома, наблюдающаяся в 80 % случаев рака поджелудочной железы. Чаще всего она исходит из эпителия выводных протоков. Вокруг опухоли желези*стые элементы подвергаются резкой атрофии, выводные прото*ки расширены, а окружающая их ткань склерозирована.

Выявлены три основных предшественника инвазивной аденокарциномы поджелу дочной железы : интраэпителиальная неоплазия поджелудочной железы (PanIN), IPMN (Intraduktal Papillär Muzinöse Neoplasien) и муцинозно-кистозное новообразование (MCN). PanIN является наиболее распространенным типом предшественников опухоли, возникающих из эпителиальных клеток протоков. Предполагается, что эти поражения проходят путь прогрессирования от интраэпителиальной протоковой гиперплазии (PanIN-1) через умеренную дисплазию (PanIN-2) до дисплазии высокой степени (карцинома in situ) и инвазивной карциномы .
По мере увеличения протоковой атипии увеличивается частота генетических изменений; в зрелой опухоли их в среднем около 60.
Хотя IPMN и MCN ответственны только за меньшую часть случаев рака поджелудочной железы (менее 15%), они дают возможность идентифицировать предраковые поражения поджелудочной железы, особенно с увеличением использования неинвазивных процедур визуализации брюшной полости высокого разрешения .

При спорадическом раке в среднем считают 11-12 лет от исходного события, начавшего канцерогенез поджелудочной железы, до развития ракового родительского клона и еще 6,8 года до развития метастатических субклонов в первичном раке, при этом пациенты умирают в среднем 2,7 года спустя. Пациент с первичной опухолью диаметром 1 см имеет вероятность возникновения метастазов на момент постановки диагноза 28%; когда основной размер увеличивается до 2 и 3 см, риск скрытых метастазов возрастает до 73 и 94% соответственно. Средний размер опухоли на момент обнаружения — 5 см. Средняя выживаемость— 16 нед от момента установления диагноза; 1 год живут 17% больных, 5 лет — 1%. Более 70% пациентов не реагируют на текущую терапию и, что еще хуже, неудача химиотерапии первой линии приводит к ускорению роста опухоли, способствуя резистентносим и метастазам.
Считается, что протоковый РПЖ, наиболее частый подтип, станет к 2030 году второй связанной с раком причиной смерти после рака легких . Высокая смертность из-за раннего распространения и устойчивости к радио- и химиотерапии. Три дополнительных фактора - обильные реакции стромы, преимущественное распространение по интрапанкреатическим нервам и выраженное иммунное отклонение.

Особенностью РПЖ является выраженный склероз как самой ткани опухоли еще на стадии рак in situ, так и вокруг опухоли, образуя как бы защитный вал. Это обьясняется тем, что на стадии тканевого атипизма вновь образующиеся атипичные протоки (см. ниже) часто тупиковые и агрессивный поджелудочный сок не находя выхода начинает переваривать окружающую ткань железы.

В отличие от большинства опухолей, клетки РПЖ могут образовывать только небольшие островки в обширной строме опухоли. Основными клеточными компонентами являются ассоциированные с раком фибробласты (CAF), преимущественно происходящие из звездчатых клеток поджелудочной железы (PSC) и воспалительных клеток. В склерозированной ткани мало кровеносных сосудов, в результате чего опухолевые клетки находятся в состоянии постоянной гипоксии и выживают наиболее агрессивные субклоны. А изоляция опухолевых клеток задерживает клинические проявления.
albert52 вне форума   Ответить с цитированием
Старый Вчера, 15:59   #39
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Пищеварительные ферменты продуцируются клетками серозного ацинуса в большей экзокринной части поджелудочной железы. Каждый ацинус поджелудочной железы состоит из нескольких серозных клеток, окружающих очень маленький просвет. Ацинарные клетки поляризованы, с округлыми базальными ядрами и апикальными многочисленными гранулами зимогена, типичными для секретирующих белок клеток. Ацинусы окружены лишь небольшим количеством соединительной ткани с фибробластами.

Каждый ацинус дренируется коротким интеркалированным протоком с одинарным плоским эпителием. Клетки этих небольших протоков простираются в просвет ацинуса в виде небольших бледно-окрашенных центроацинарных клеток , уникальных для поджелудочной железы и выделяют большой объем жидкости, богатой HCO3 (бикарбонат-ионы), которая которая увлажняет, очищает и подщелачивает ферментативную секрецию ацинусов.
Эти пищеварительные ферменты включают в себя несколько протеаз, альфа-амилазы, липазы и нуклеазы ( ДНКазы и РНКазы ). Протеазы секретируются как неактивные зимогены ( трипсиноген, химотрипсиноген, проэластазу, калликреиноген и прокарбоксипептидазы). Так, ингибитор трипсина совместно упаковывается в секреторные гранулы с трипсиногеном, который расщепляется и активируется энтеропептидазами в двенадцатиперстной кишке, генерируя трипсин, который активирует другие протеазы в каскаде.

Интеркалированные протоки сливаются с внутрилобулярными протоками и более крупными межлобулярными протоками , которые имеют все более столбчатый эпителий, прежде чем присоединиться к основному протоку поджелудочной железы, который проходит по длине железы.
Все протоковые клетки имеют базовый уровень активации SOX9 генов, препятстующий превращению этих клеток в ацинарные и эндокринные клетки. Также для SOX9 была показана его связь с процессом регенерации ПЖ при повреждениях. Регенерационный потенциал во взрослом органе обычно связан с Ptf1a+ ацинарными клетками, в которых при повреждении ПЖ происходит факультативная реактивация мультипотентных факторов SOX9 и Hnf1β, в результате чего происходит ацинарно-протоковый переход (АПМ — ацинарно-протоковая метаплазия - см. выше).

Одной из основных проблем, стоящих перед этим заболеванием, является гетерогенность, наблюдаемая среди пациентов в отношении симптомов, клинической эволюции, предрасположенности к раннему метастазированию и чувствительности к лечению. Гетерогенность может возникать на разных этапах эволюции опухоли, начиная с первых генетических мутаций, которые привели к возникновению опухоли, ее взаимодействия с микроокружением и в результате давления отбора и клональной экспансии. Тем не менее, были охарактеризованы два клинических подтипа PDAC: базальный (сквамозный), с худшим прогнозом и классический. Базальный подтип частично - но не полностью - совпадает с типом плоских клеток и с EMT; он, как правило, более устойчив к различным химиотерапевтическим средствам и особенно к схеме лечения, называемой FOLFIRINOX (фолиевая кислота, 5-фторурацил (5-FU), иринотекан и оксалиплатин).

Эти фенотипы PDAC определяются различными эпигенетическими ландшафтами, в частности паттернами метилирования ДНК, которые трансдуцируются на уровне транскрипции и изменяют взаимодействие между опухолью и ее стромой. Так, ключевыми игроками в гетерогенности PDAC являются супер-энхансеры; комплекс SWI / SNF ремоделирования нуклеосом может регулировать эти супер-энхансеры, и, что интересно, генетические изменения у членов этого комплекса часты среди опухолей PDAC. Когда комплекс SWI / SNF не способен правильно собираться, он не может противостоять поликомбо-репрессивному комплексу, локализованному в промоторах и типичных энхансерах генов дифференцировки, и это нарушение равновесия способствует онкогенезу.
Поскольку природа подтипов PDAC не является генетической, можно было бы преобразовать оба подтипа просто путем инактивации MET в базальных или GATA6 в классических выборках, что в опухолях часто и происходит. В запущенных случаях между этими двумя крайними формами опухолевого фенотипа имеется континиум промежуточных состояний.

Согласно современной концепции развития ПАПЖ (протоковой аденокарциномы ПЖ), клетками-родоначальниками ее классического подтипа являются ацинарные клетки. Ключевым инициирующим событием является АПМ. Этот процесс активируется при остром панкреатите и непосредственно связан с регенерацией ПЖ. В норме это заканчивается редифференциацией «протоковых» клеток в ацинарные, однако при появлении дополнительных факторов могут развиться ПанИН-I, II, III и в конечном итоге инвазивная аденокарцинома.
РПЖ происходит в основном из ацинарных клеток, чувствительных к мутантному KRAS, но хотя при РПЖ эти клетки претерпевают изменения, больше дистрофические, но так как РПЖ обычно является следствием многократно повторяющего воспаления (явного или скрытого), то ацинарные клетки при этом метаплазируют скорее в подобие центроацинарных клеток, образуя как бы разветвленный воротник вокруг ацинуса. Со временем вследствие накапливающихся мутаций связи между клетками в этом воротнике слабеют и он разрывается, образуя клеточные обрывки. Эти обрывки и дают начало раку, большая их часть попадает под власть генов-предшественников и далее дают начало классическому подтипу, меньшая часть превращается в псевдомезенхимальные клетки и дает начало сквамозному (плоскоклеточному) подтипу (см. выше).

Таким образом в результате хронического воспаления центроацинарные клетки образуют полиповидные разрастания со всем спектром PANIN, но агрессивный рак образуется, когда эти полипы разрываются с образованием фрагментов разной величины. Более крупные фрагменты образуют трубчаые структуры, более мелкие - рыхлые пласты плоских клеток. Метастазируют и те, и другие, только судьбв метастазов разная.

Блуждающие клетки классического трубчатого подтипа образуют (простите за тавтологию) классические метастазы, напоминающие исходную структуру опухоли, только клетки сцеплены часто крепче, что впрочем не мешает им интенсивно размножаться. Более стойкие псевдомезенхимальные клетки плоскоклеточного подтипа могут долго блуждать, постепенно дичая и превращаясь в настоящих лангольеров и образуя скопления разных размеров по всему телу (их число может достигать сотек и даже тысяч).
Зрелые клетки протоков и ацинусов благодаря стройной системе генов дифференцировки и их защитников, в том числе эпигеномных, наскоком не возьмешь. В протоках могут образовываться сравнительно редко метастазирующие IPMN и MCN (см. выше), а клеткам ацинусов, когда им плохо, есть во что превращаться; первичный ацинарный рак наблюдается очень редко.

Последний раз редактировалось albert52; Вчера в 16:15..
albert52 вне форума   Ответить с цитированием
Старый Сегодня, 04:39   #40
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Согласно новой классификации ПАК (протоковая аденокарцинома) ПЖ выделяются четыре главных молекулярных подтипа: сквамозный (квазимезенхимальный), панкреатический классический (из клеток-предшественников), иммуногенный и аберрантно-дифференцированный экзокрино-эндокриноподобный (ADEX).

Сквамозный подтип запускается ЕМТ-программой и характеризуется высокой экспрессией мезенхимальных маркеров и наихудшим прогнозом. Гистологически он включает железисто-плоскоклеточный рак ПЖ. Сквамозные опухоли богаты мутациями генов семейства TP53, отражающими активацию TP63ΔN и его транскрипционную сеть. Ген TP63ΔN стимулирует дифференцировку клеток плоского эпителия в противовес железистой дифференцировке эпителия протоков ПЖ.
Гиперметилирование генов, ответственных за апоптоз (PDX1, GATA6 и HNF1B), способствует развитию дедифференцированного и мезенхимального характера этого подтипа. Множество других фенотипических характеристик патогномоничны для сквамозного подтипа ПАК ПЖ: частые мутации гена KDM6A, ответственного за перестройку хроматина, сигнальный путь TGF-β, активацию гена MYC и т.д. Клеточные линии сквамозного подтипа более чувствительны к воздействию гемцитабина.

Панкреатический классический (из клеток-предшественников) подтип характеризуется наиболее эпителиальным характером ПАК ПЖ с высоким уровнем экспрессии эпителиальных маркеров, особенно CDH1/E-cadherin. Данный подтип по молекуляр -ному фенотипу подобен KRAS-зависимым клеточным линиям ПАК ПЖ. Также присуща высокая экспрессия генов, способствующих развитию ПЖ (FOXA2/3, PDX2, MNX1 и GATA6); например, PDX2 индуцирует начальную дифференцировку эпителия поджелудочной железы. В отличие от сквамозного, этот подтип происходит из клеточных линий, чувствительных к ингибитору EGFR – эрлотинибу. Любопытна взаимосвязь классического подтипа ПАК ПЖ с развитием “диабета молодых” (MODY).

В подтипе c аберрантной эндокринной-экзокринной дифференцировкой (ADEX) нарушена регуляция генов, играющих роль в ацинарной и эндокринной дифференцировке, которая носит в норме взаимно исключающий характер, также в процессах регенерации и при панкреатите. Часть этих генов связана с активацией KRAS. ПАК ПЖ подтипа ADEX гистологически связан с ацинарно-клеточным раком.

Иммуногенный подтип ПАК ПЖ отличается различными иммуно-ассоциированными транскрипционными программами. Эти программы связаны с сигнальными путями и рецепторами В- и Т-клеток, представлением антигена и приобретенной иммунной супрессией через ключевые моменты соответствующих путей – CTLA4 и PD1. Кроме того, иммуногенный подтип ПАК ПЖ демонстрирует существенное увеличение в инфильтрате В- и Т-клеток. Гистологически ПАК ПЖ этого подтипа проявляются в виде муцинозных некистозных (коллоидных) опухолей.
Отметим,что в целом ПАК ПЖ является "иммунно-холодной" (см.выше), что обьясняется как выраженными иммунносупрессивными свойствами опухолевых клеток (в тесном стромальном ложе особо не навоюешь), так и трудностями доставки иммунных клеток к опухоли. Вот и приходится выделять отдельныq подтип, где это затруднение как то устранено.
ПАК ПЖ в целом не чувствительна к новым классам ингибиторов анти-i-PD1 иммуномодуляторов импа пембролизумаб (почему - см.выше). Однако ПАК ПЖ иммуногенного подтипа могут быть чувствительными к препаратам этой группы либо сами по себе, либо в сочетании с другими химиотерапевтическими средствами.

Молекулярные механизмы канцерогенеза РПЖ

Молекулярные изменения, которые накапливаются во время канцерогенеза поджелудочной железы, можно классифицировать на ранние (укорочение теломер и активирующие мутации в KRas в PanIN-1), промежуточные (инактивирующие мутации или эпигенетическое молчание CDKN2A в PanIN-2) и поздние (инактивирующие мутации р53 и SMAD4 в PanIN-3) события. Во время формирования PanIN могут также происходить мутации в других генах, впрочем наиболее значимо накопление мутаций, а не появление их в определенном порядке.
Наиболее распространенной является мутация в онкогене K-ras (встречается в 90% случаев). Приобретение онкогенной мутации KRas в ацинарных клетках поджелудочной железы приводит к их трансдифференцировке в протоковидные клетки.

Онкогенные KRas могут также модулировать митохондриальный метаболизм и выработку АФК посредством регуляции рецептора трансферрина (TfR1), который высоко экспрессируется в ракe поджелудочной железы. Кроме того, КRas могут вызвать подавление дыхательной цепи комплекса I и III, приводя к митохондриальной дисфункции (что-то напоминает).

Ген Р16/CDKN2A при РПЖ инактивируется наиболее часто (в 95% наблюдений). Белок р16 играет критическую роль: его инактивация приводит к утрате контроля над клеточным циклом, так как продукт гена p16 INK4а ингибирует взаимодействие циклина D с циклин -зависимой киназой 4 (CDK4). В спорадических опухолях p16 иногда инактивируется гомозиготными делециями и внутригенными мутациями, а в остальном ген INK4a выключается путем метилирования промотора.

Ген-супрессор опухолей DPC4 расположен на хромосоме 18q21 и кодирует ядерный фактор транскрипции Smad 4 - важный элемент TGF-ß сигнального пути. При раке поджелудочной железы DPC4 был инактивирован в 55% наблюдений, а при других злокачественных опухолях инактивация этого гена происходит очень редко.

Канонический каскад передачи сигналов Smad инициируется фосфорилированием рецептор-регулируемых факторов транскрипции Smad (R-Smads) Smad2 и/или Smad3 активированным ALK5 (Anaplastic Lymphoma Kinase). Это позволяет связывать R-Smad с Smad4 и транслокацию комплекса в ядро, где он может привлекать транскрипционные коактиваторы или корепрессоры к Smad-связывающим элементам (SBE) в промоторах генов-мишеней TGF-β. Отметим, что потеря функции SMAD4 почти всегда происходила в связи с генетической инактивацией TP53 , но не наоборот, указывая на то, что изменения SMAD4 были связаны с генетическими изменениями TP53 .
Эта взаимосвязь также предполагает, что инактивация SMAD4 происходит позже, чем инактивация TP53. Трансформирующий фактор роста (TGF -β) действует как супрессор опухоли во время инициации рака, но как промотор опухоли во время прогрессирования опухоли. Рост опухолевых клеток TGF-β способен ингибировать путем тормозного взаимодействия с циклином D1.

При инвазивной карциноме гиперактивирован сигнальный путь Hedgehog; эта активация может быть зависимой от лиганда Hedgehog (при РПЖ) или из-за мутации Patched (при базально-клеточном раке кожи). Ингибирование этого пути препаратом циклопамином останавливает рост опухоли в эксперименте.

Последний раз редактировалось albert52; Сегодня в 04:44..
albert52 вне форума   Ответить с цитированием
Ответ

Социальные закладки

Опции темы
Опции просмотра

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Текущее время: 21:31. Часовой пояс GMT.


Powered by vBulletin® Version 3.8.6
Copyright ©2000 - 2011, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум общения и взаимопомощи больных людей. Советы для выздоровления.