Форум общения  больных людей. Неизлечимых  болезней  нет!


Вернуться   Форум общения больных людей. Неизлечимых болезней нет! > Болезни и методы лечения > Рак, онкологические больные

 
 
Опции темы Опции просмотра
Старый 10.04.2021, 21:13   #23
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 246
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Ген RBBP6 имеет 17 интронов, которые альтернативно сплайсируются для получения четырех транскриптов: разные изоформы RBBP6 обладают уникальными функциями. Так, изоформа 3 представляет собой регулятор клеточного цикла, необходимый для контрольной точки G2 / M, и обладает антипролиферативным действием, поскольку его сверхэкспрессия стабилизирует p53 и подавляет рост (в отличие от изоформы 1). Изоформа 3 не регулируется в опухолях, но обильно экспрессируется в нормальной ткани, ассоциированной с опухолью.

Сам p53 контролирует обе фазы G1 / S и G2 / M, поскольку его транскрипционная мишень, p21, ингибирует циклинзависимые киназы в контрольных точках G1 / S, а также киназу cdc2 в G2 / M. PRb, с другой стороны, является ключевым регулятором границы G2 / M, и его истощение приводит к остановке G2.

Путь, необходимый для репликации и стабильности генома человека, состоит из трех компонентов: убиквитинлигазы E3, репрессора транскрипции и белка репликации. Убиквитинлигаза Е3 RBBP6 убиквитинирует и дестабилизирует репрессор транскрипции ZBTB38. Этот репрессор отрицательно регулирует транскрипцию и уровни фактора репликации MCM10 на хроматине.

RBBP6 регулирует репликацию генома и стабильность CFS, поскольку в его отсутствие репликация ДНК замедляется, и CFS теряются из генома. Репликационный белок MCM10 является прямой мишенью репрессии транскрипции с помощью ZBTB38, и его подавление отвечает за нарушения репликации, которые возникают в отсутствие RBBP6. Эти данные предоставляют доказательства решающей роли оси RBBP6 / ZBTB38 / MCM10 в сохранении и стабильности генома.

Репликация ДНК - это период, в течение которого геном особенно уязвим. Среди областей, которые очень чувствительны к аномалиям репликации, есть общие ломкие сайты (CFS) - участки генома, склонные к разрыву ингибиторами репликации (внешний стресс репликации). Так, вызванный онкогенами репликационный стресс (RS) вызывает повреждение ДНК в CFS на самых ранних стадиях рака.

Геномные изменения чаще встречались в CFS при эпидермальных и уротелиальных предопухолевых поражениях, а также при раке. CFS были в среднем менее гибкими, чем нехрупкие области, содержали больше последовательностей гуанин-цитозин (GC) и Alu. Отметим, что элементы Alu имеют тенденцию отдавать предпочтение GC- островкам и областям, богатым генами. Регионы с потерей гетерозиготности были также менее гибкими и имели более высокий процент Alu.

Большинство транслокаций, связанных с раком, содержат точки останова в CFS, и многие гены, которые были идентифицированы как опухолевые супрессоры или онкогены, расположены в CFS, решительно подтверждая, что хрупкость СХУ причинно способствует развитию рака.

Повреждения CFS могут иметь далеко идущие последствия, если они могут инициировать цикл теломерного разрушения-слияния-разрушения. При таком сценарии может быть создан порочный круг прогрессирующего ухудшения хромосомной нестабильности. С другой стороны их раннее вовлечение может служить для усиления клеточного ответа на потенциальную геномную угрозу, как ранний сенсор избыточного RS. В этом случае разрывы в этих местах могут функционировать как «система сигнализации», вызывающая быстрый защитный отклик в нормальных условиях, когда механизм ответа на повреждение ДНК не поврежден.

Супрессор опухолей р53 играет ключевую роль в защите от рака. В физиологических условиях вновь синтезированный р53 быстро подвергается убиквитинированию и деградации, что приводит к «бесполезному циклу» и очень низкому «устойчивому» уровню белка. Это в значительной степени контролируется лигазой RING finger E3, MDM2 (Mouse double minute 2 homolog, HDM2 у человека). Помимо того, что MDM2 является ингибитором транскрипции p53, он также тесно взаимодействует с самим белком p53, узнавая N-концевой домен трансактивации (TAD), позволяя p53 подвергаться убиквитинированию и последующей протеасомной деградации. Mdm2 подвергается ускоренной деградации на ранней стадии повреждения ДНК, тем самым вызывая быструю стабилизацию и активацию p53.

В дополнение к активности транс-E3-лигазы в отношении p53, Mdm2 также опосредует собственное разложение посредством автокаталитического механизма. В стрессовых условиях, таких как повреждение ДНК, Mdm2 подвергается ATM -опосредованному фосфорилированию и последующей деградации, тем самым запуская стабилизацию и активацию p53. Mdm2 стабилизируется структурно родственным белком Mdmx и его сплайсированными формами. Также E3 лигаза NEDD4-1 увеличивает стабильность Mdm2 за счет стимулирования его полиубиквитинирования, связанного с Lys 63. Но деубиквитинирующий фермент HAUSP способен стабилизировать Mdm2 посредством удаления его полиубиквитиновых цепей.

Как негативный регулятор p53, MDM2 сверхэкспрессируется при многих раках либо за счет амплификации гена, либо за счет усиления транскрипции. Так, Mdm2 часто сверхэкспрессируется при остром лимфобластном лейкозе у детей с помощью пост-транскрипционных механизмов. Среди всех малых молекул, которые ингибируют MDM2, Nutlins, семейство аналогов цис-имидазолина, выявленных с помощью высокопроизводительного скрининга, обладает наибольшим потенциалом и в настоящее время проходит клинические испытания. Обработка Nutlin индуцировала накопление дикого типа, но не мутантного белка p53, так как большинство мутантов p53 больше не подвергаются убиквитинированию с помощью MDM2 и становятся стабилизированными.

Отметим, что молекулы, нацеленные на восстановление нативной конформации мутантов p53 и реактивацию их опухолевой супрессорной функции, могут принести больше пользы при более широком спектре рака. Например: PRIMA-1 и его аналог APR-2 ковалентно модифицируют мутанты p53 посредством алкилирования тиоловых групп, восстанавливая конформацию дикого типа и функцию мутантного p53.

Стабилизация p53 после ионизирующего излучения является результатом ингибирования связывания MDM2 через каскад фосфорилирования, который сначала требует фосфорилирования p53 S15, что необходимо для последующего фосфорилирования T18.

В прошлом считалось , что цитоплазма является эксклюзивным местом деградации р53, таким образом , ядерный экспорт р53 является необходимым условием для его доставки в цитоплазматический протеас. После признания того, что сам p53 обладает сигналами ядерного экспорта (NES), самотранспортный p53 также был включен в модель. Позже было обнаружено, что домен пальца MDM2 RING, но не NES MDM2, необходим как предпосылка для эффективного экспорта p53 в цитоплазму. MDM2 моноубиквитинирует все доступные остатки лизина на COOH-конце p53, тем самым выявляя NES в соседнем домене тетрамеризации и позволяя взаимодействовать с экспортным рецептором CRM1.

Ядро ​​также является физиологическим местом деградации p53. Важно отметить, что 26S протеасомы в равной степени находятся в изобилии в цитозоле и ядра. Более того, убиквитинирование p53 - предварительное условие его деградации - явно происходит в ядре, и фактически ядро, вероятно, является единственным местом для этой модификации. Таким образом, в нелетальных исходах клеточного стресса, когда повреждение ДНК было успешно восстановлено и активный ответ p53 необходимо быстро подавить для восстановления нормального гомеостаза, задействуются как ядерные, так и цитоплазматические протеасомы для эффективного разрушения повышенного уровня p53 и MDM2. уровни белка. Локальная ядерная деструкция добавляет более жесткий контроль и ускоряет выключение пути p53.

Разные активаторы ответа контрольной точки p53 нацелены на путь деградации MDM2. Ионизирующее излучение действует через каскад так называемый стресс - киназы, с сигнала АТМ киназы к контрольной точке киназ hCHK1 и hCHK2 с целью фосфорилировать p53 в несколько NH 2 концевых остатков серина. Фосфорилирование Thr18 также может быть регуляторным механизмом, который разрушает комплекс p53-MDM2, таким образом активируя p53 в ответ на повреждение ДНК.Общий эффект этих модификаций может заключаться в снижении аффинности комплексов p53-MDM2.

Напротив, как УФ-излучение, так и гипоксия снижают уровни транскриптов и белка MDM2, тем самым снижая деградацию p53. Более того, УФ-повреждение блокирует убиквитинирование и вместо этого способствует сумоилированию p53 на Lys386, что способствует его транскрипционной активности. Впрочем, сам белок MDM2 стал центром внимания и теперь также признан основной мишенью сигналов, которые приводят к стабилизации p53. MDM2 подвергается многосайтовому фосфорилированию in vivo, при этом большинство сайтов модификации сгруппированы в пределах p53-связывающего домена и центрального кислотного домена, необходимого для деградации p53.

Последний раз редактировалось albert52; 10.04.2021 в 21:16..
albert52 вне форума   Ответить с цитированием
 

Социальные закладки


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Текущее время: 20:53. Часовой пояс GMT.


Powered by vBulletin® Version 3.8.6
Copyright ©2000 - 2011, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум общения и взаимопомощи больных людей. Советы для выздоровления.