Форум общения  больных людей. Неизлечимых  болезней  нет!


Вернуться   Форум общения больных людей. Неизлечимых болезней нет! > Болезни и методы лечения > Рак, онкологические больные

Ответ
 
Опции темы Опции просмотра
Старый Сегодня, 04:49   #41
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Ген р53. При раке поджелудочной железы инактивация этого гена-супрессора опухолей определяется в 50-70% наблюдений. р53 — это ядерный ДНК-связывающий белок, который влияет на старение клетки и контролирует клеточный цикл, запускает процесс клеточной гибели (апоптоз). Мутации в гене TP53 отменяют его функцию, приводя к генетической нестабильности и прогрессированию опухоли. р53 ингибирует клеточный цикл путем прямой инактивации CDK4 и косвенной инактивации p21, то есть функционирует на переходе G1 / S, блокируя вход в S-фазу, вызванный повреждением ДНК. Функции p53 также поддерживают геномную стабильность.
Потеря p53 связана с анеуплоидией, выдающейся особенностью карциномы поджелудочной железы; вообще на сегодняшний день большинство генов, которые считаются супрессорами метастазирования, демонстрируют признаки гаплоиндуцированности. Инактивация TP53 при SMAD4 дикого типа сильно обогащена нулевыми мутациями (нонсенс, делеция или сдвиг рамки), а при сопутствующей потере SMAD4 - миссенс-мутациями. При этом потеря SMAD4 частично устраняет остаточные цитостатические или апоптотические функции миссенс-мутантных белков TP53

Специфические ингибиторы COX2 (СОХ — группа ферментов, участвующие в синтезе простаноидов, таких как простагландины, простациклины и тромбоксаны) могут предотвращать канцерогенез и вызывать апоптоз опухолевых клеток. Также путь липооксигеназы (LOX) превращает арахидоновую кислоту в мощные сигнальные медиаторы, такие как лейкотриен B4 (LTB4), способствующий развитию и прогрессированию рака человека. Сверхэкспрессия рецепторов LOX и LTB4 при раке поджелудочной железы человека образует аутокринную петлю, которая стимулирует пролиферацию клеток.

Активированные гены подтипа предшественников поджелудочной железы в основном участвуют в развитии поджелудочной железы (например, GATA6, BMP2, PDX1 и SHH) и передаче сигналов Ras (например, KITLG и RASA3). Плоскоклеточный (сквамозный) подтип демонстрирует обогащение путей с сильным онкогенным потенциалом (например, PI3K-AKT, Hippo и WNT), способствующим EMT (например, передача сигналов TGFβ) и дерегулирование генов, участвующих в пролиферации, дифференцировке и апоптозе клеток (например, YAP1, CD44 , MYC и E2F7). Отметим, что устранение Kras приводит к переключению в сторону плоскоклеточного подтипа.
Впрочем подтипы опухолей лучше определяются специфическими эпигенетическими, транскрипционными и стромальными ландшафтами, чем генными мутациями (см. выше). А если эпигеном является основным фактором, ответственным за фенотипы PDAC, главное заключается в том, что это обратимое явление, а генетические мутации - нет.

К эпигенетическим регуляторам, обнаруженным в PDAC, относятся H3K4-метилтрансферазы MLL2 и SETD3 и H3K-ацетилтрансфераза KAT2A, которые активируют транскрипцию. Другим регулятором, сверхэкспрессированным во всех образцах PDAC, является энхансер Zeste Homolog 2 (EZH2). Этот фермент является функциональным компонентом субъединицы 2-го репрессивного комплекса ремоделяции хроматина (PRC2) и катализирует триметилирование H3K27, в результате чего хроматин плотнее окутывает ДНК и мешает транскрипции.

Поликомб-репрессированные комплексы подавляют гены-супрессоры опухолей и гены пути Hedgehog (см. выше). Первый в своем классе пероральный селективный ингибитор EZH2, таземетостат показал благоприятные результаты у пациентов с рефрактерной В-клеточной неходжкинской лимфомой и запущенными солидными опухолями. NUPR1 является белком, который сверхэкспрессируется во время острого панкреатита, и участвует в ремоделировании хроматина посредством его взаимодействия с белками группы поликомб. Спиральные пептиды, предназначенные для нацеливания на NUPR1, оказывают кратковременный лечебный эффект.

Метилирование ДНК таким образом является эпигенетической меткой, которая вызывает молчание генов, удерживая ДНК в транскрипционно спокойном состоянии. Зебуларин, известный ингибитор метилирования ДНК, подталкивает стволовые клетки PDAC к более пролиферативному фенотипу с повышенной чувствительностью к современным химиотерапиям. Существует также подгруппа опухолей PDAC, которые были чувствительны к хорошо изученному децитабину.

Гистондеацетилаза 1 (HDAC1) является еще одним эпигенетическим модификатором, который сверхэкспрессируется в PDAC и может нарушать регуляцию паттерна ацетилирования гистона, что в целом активирует транскрипцию. В частности, более высокие уровни экспрессии HDAC 1, 7 или 8 связаны с худшей общей выживаемостью. Ингибирование HDAC может привести к активации генов-супрессоров опухоли.
Некодирующие РНК (нкРНК) транскрипты играют роль эпигенетических модификаторов, взаимодействуя с гистоновыми модифицирующими комплексами или с DNMT (DNA methyltransferase). Среди нкРНК лучше всего изучены микроРНК (миРНК), которые действуют как посттранскрипционные репрессоры, а в предраковых поражениях PDAC подавление miR-148, наряду с miR-217 и miR-375, является мета-сигнатурой PDAC. Различные стратегии доставки могут быть выполнены для восстановления уровней экспрессии miRNA. Одним из них является использование «нановекторов», которые состоят из липидных наночастиц. Они были успешно использованы для доставки miR-34a из транскрипционной сети p53 и кластера miR-143/145, который подавляет экспрессию KRAS2 в раковыклетках.

В целом, развитие эпигенетических лечебных препаратов сталкивается с несколькими проблемами, одной из наиболее важных из которых является отсутствие специфичности: все эпигенетические методы лечения влияют на общий геном. Кроме того, следует учитывать гетерогенность, поскольку маловероятно, что одно эпигенетическое лекарственное средство, отдельно или в сочетании с современными методами лечения, будет эффективным для всех опухолей.
albert52 вне форума   Ответить с цитированием
Старый Сегодня, 17:16   #42
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 195
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вставка

Генный профиль развития ПЖ

Морфологические изменения, которые происходят при дифференциации поджелудочной железы от энтодермы кишечника, зависят от последовательных изменений в экспрессии генов. Внеклеточные сигналы, обеспечиваемые тканевыми взаимодействиями между развивающейся энтодермой поджелудочной железы и соседними тканями, в конечном итоге влияют на фенотип клетки, изменяя экспрессию генов в ядре.

Самыми ранними генами, избирательно экспрессируемыми в препанкреатической энтодерме, являются два фактора транскрипции, фактор гомеодомена парахокс PDX1 и фактор транскрипции основной спирали-петля-спираль (bHLH) PTF1A. Экспрессия PDX1 впервые появляется в препанкреатической энтодерме более чем за 1 день до начального формирования дорсального зачатка поджелудочной железы, и ей непосредственно предшествует появление другого парахокс-фактора, MNX1 (также известного как HB9), который в передней энтодерме экспрессируется более широко, чем PDX1. Экспрессия как MNX1, так и PDX1 сохраняется в начальных зачатках поджелудочной железы, хотя экспрессия MNX1 быстро гасится, в то время как экспрессия PDX1 еще какое-то время продолжается. В зрелых β-клетках реактивируется экспрессия обоих факторов.

Есть несколько дополнительных факторов энтодермальной транскрипции как потенциальных внутренних регуляторов экспрессии PDX1. К ним относятся такие члены семейств факторов транскрипции как HNF1 и Foxa, Onecut1, парный гомеодоменный фактор PAX6, ну и сам PDX1. HNF1a и PAX6 экспрессируются недостаточно рано или широко, чтобы инициировать раннюю экспрессию PDX1 в эмбриональном кишечнике и зачатках поджелудочной железы, но паттерны экспрессии Onecut1, HNF1b, Foxa1 и Foxa2 предполагают, что они в совокупности могут играть эту роль.
PDX1 необходим для роста зачатков поджелудочной железы; делецмя гена, кодирующего PDX1 человека, была идентифицирована у людей с агенезом поджелудочной железы. Экспрессия PTF1A следует вскоре после PDX1 и хотя он первоначально был описан как экзокринно-специфический фактор транскрипции, фактически он играет важную роль в определении судьбы всех клеток поджелудочной железы.

Поджелудочная железа состоит из трех основных типов клеток: эндокринных клеток, ацинарных клеток и протоковых клеток. Их развитие строго контролируется регуляторной сетью факторов транскрипции, которые модулируют экспрессию генов. В эту сеть включены факторы транскрипции гомеобокса (PDX1, Pbx1, HB9), факторы транскрипции гомеопротеинов парного бокса (Pax4, Pax6), факторы транскрипции Forkhead Вох (Foxa1, Foxa2) и факторы транскрипции основной спирали-петли-спирали (bHLH) (ptf1a / p48, Mist1, нейрогенин3, NeuroD).

Факторы транскрипции bHLH особенно важны для событий развития и дифференцировки из-за комбинаторной природы этих белков. Факторы bHLH подразделяются на две основные группы - белки класса A, которые включают широко экспрессируемые белки E12 / E47 / HEB, и белки класса B, которые демонстрируют ограниченный тканью паттерн экспрессии.
В большинстве случаев предпочтительный комплекс bHLH представляет собой гетеродимер, состоящий из члена класса A и члена класса B. Эти гетеродимеры связываются с сайтами E-box, обнаруженными в промоторных и энхансерных областях генов-мишеней, чтобы регулировать их транскрипцию. Из класса В ген Neurogenin3 является нижестоящей мишенью передачи сигналов Notch и необходим для развития всех клонов эндокринных клеток поджелудочной железы. NeuroD , нижестоящий ген-мишень Neurogenin3, служит ключевым регулятором транскрипции гена инсулина в β-клетках.

Ptf1a предпочтительно собирается в тримерный комплекс транскрипции PTF1 с белком E и Rbpj (или Rbpjl). Регулятор транскрипции RBPJ, иначе известный как CSL ("CBF-1, супрессор Hairless, Lag-2"), представляет собой высококонсервативный ДНК-связывающий белок, который играет центральную роль в решении судьбы клеток метазоа. RBPJ обеспечивает каноническую передачу сигналов Notch. В развитии поджелудочной железы Ptf1a незаменим для контроля роста мультипотентных клеток-предшественников, а также для спецификации и поддержания ацинарных клеток.

Как только идентичность поджелудочной железы установлена, морфогенез ветвления в MPCs (мультипотентных стволовых клетках) ведет к разделению на верхушечные и клетки ствола, предшественники ацинарных и протоковых структур соответственно. Первоначально коэкспрессируясь, Nkx6-1 становится ограниченным стволом, а Ptf1a - концевыми клетками. Последние показывают экспрессию Myc (c-Myc), тогда как клетки ствола определяются активностями генов Hnf1b, Sox9, Hnf6 и Hes1. Кроме того, расширение и поддержание экзокринного компартмента дополнительно поддерживается ингибированием пути Hippo для репрессии специфичных для эндокринной системы генов TF, включая Pax6, Ngn3, Isl1 и Nkx6-1, а также Gcg и Ins1 / 2. Активные сигналы Hippo, кстати, противодействуют активности Yap, способствуя эндокринной судьбе.

В концевых клетках Ptf1α индуцирует Nr5a2, который имеет решающее значение для ацинарной идентичности, поскольку Nr5a2 напрямую регулирует Ptf1a в петле обратной связи, а также Gata4 и Rbpjl. Эндокринный компартмент появляется в нескольких отдельных клетках внутри ствола, которые активируют Ngn3, предположительно за счет латерального ингибирования генов экзокринной дифференциации, организованного путем Notch.

Zeb1, известный EMT-TF, экспрессируется на низких уровнях в эпителиальном компартменте развивающейся поджелудочной железы. В отличие от роли Snail и Slug во время расслоения эндокринных клеток островков Лангерганса, Zeb1 является критическим для спецификации в правильных соотношениях клонов клеток в эмбриональном периоде и для тканевого гомеостаза в поджелудочной железе взрослых.
Временные волны экспрессии TF инициируют созревание эндокринных клеток, чтобы гарантировать однонаправленную спецификацию уникальных типов клеток, включая Neurod1, Insm1 и Rfx6, потеря которых ставит под угрозу идентичность и функцию островковых клеток.

Идентичность ацинарных клеток поддерживается несколькими взаимодействующими ТФ, такими как Ptf1α (см. выше) и Mist1. Подавление этих TF приводит к приобретению характеристик клеток-предшественников и увеличению образования ADM и PanIN, что подчеркивает важность поддержания экспрессии этих факторов идентичности для предотвращения инициации опухоли.

MIST1 представляет собой мастер TF, принадлежащий к семейству В белков с основной конфигурацией (доменом) спираль-петля-спираль (bHLH). MIST1 экспрессируется в серозных экзокринных клетках, включая ацинарные клетки поджелудочной железы. Вне поджелудочной железы MIST1 экспрессируется в ацинарных клетках слезных, околоушных и поднижнечелюстных слюнных желез, главных клетках желудка, альвеолярных клетках лактирующих молочных желез и секретирующих клетках, выстилающих простату и семенные пузырьки.
В поджелудочной железе MIST1 локализуется в ядрах ацинарных клеток; не наблюдается его экспрессии в протоковых или центроацинарных клетках. MIST1 является мишенью транскрипционного фактора XBP1, который также играет физиологическую роль в ацинусах поджелудочной железы. Белок MIST1 может также образовывать гетеродимеры с другими факторами транскрипции bHLH, что типично для этих белков. Однако, в отличие от других белков bHLH, MIST1, по-видимому, преимущественно работает как гомодимер.

Экзокринные клетки с выпадением гена Mist1 имеют дефект митохондриальной локализации и движения кальция, что, вероятно, является основной причиной снижения базального и регулируемого экзоцитоза, проявляемого этими клетками. При этом репрессируется Atp2c2 (ген, кодирующего секреторный путь Ca 2+АТФаза 2 (SPCA2), который участвует в поступлении кальция из клеточного депо. MIST1 также нацелен на p21 pCIP / WAF, вызывая задержку роста ацинарных клеток, что позволяет предположить, что в отсутствие MIST1 фенотип зрелых ацинарных клеток более пластичен (см. рак желудка). Также может наблюдаться спонтанный панкреатит и большая чувствительность к разным повреждающим факторам.

MIST1 также снижает способность онкогенного Kras вызывать PanIN. В эксперименте при делеции гена MIST1 KrasG12D значительно ускоряет образование PanIN, и мыши становятся нежизнеспособными из-за почти полного отсутствия ацинарной ткани, замещенной протоковым эпителием. Эти аффекты отменяются принудительным выражением MIST1. Mist1 также активирует экспрессию p21 CIP1 / WAF1 посредством уникального пути Sp1.

Последний раз редактировалось albert52; Сегодня в 17:21..
albert52 вне форума   Ответить с цитированием
Ответ

Социальные закладки

Опции темы
Опции просмотра

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Текущее время: 22:17. Часовой пояс GMT.


Powered by vBulletin® Version 3.8.6
Copyright ©2000 - 2011, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум общения и взаимопомощи больных людей. Советы для выздоровления.