![]() |
|
![]() |
#1 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Что делать?... работать с ними, как говаривал товарищ Сталин, благо соответствующие технологии имеются. Я же уже на пенсии и могу только по-стариковски ковыряться на таком интереснейшем и благодатном поле, каким является рак.
|
![]() |
![]() |
![]() |
#2 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Продолжим.
SUMO PTM представляет собой динамический биомаркер реакции на применяемые в настоящее время химиотерапевтические методы. Кроме того, исследование специфической роли SENP, которые в нормальных клетках жестко контролируют равновесие SUMOylation, может предоставить информацию для дополнительного фармакологического вмешательства в MYC / SUMO-активированный PDAC и другие виды рака. Впрочем, для более точного определения доли PDAC, чувствительной к ингибитору SAE, следует рассмотреть другие маркеры, помимо MYC. Клинические данные на примере рака толстой кишки указывают на ценность комбинации двух или более целевых методов лечения для лечения солидного рака. Кроме того, первый в своем классе ингибитор СУМО, ТАК-981, продемонстрировал иммуномодулирующие свойства. Каскад SUMOylation уравновешивает передачу сигналов врожденного иммунитета посредством регулирования ответов интерферона I типа (IFN) и активности NF-каппа-B (NF-k B). Так, СУМОилирование IFN-регуляторного фактора транскрипции IRF3 отрицательно регулирует транскрипцию IFNβ. Следовательно, десумоилирование IRF3 с помощью SENP2 индуцирует транскрипцию IFNβ. Еще одним эффектором нашего врожденного иммунитета является GMP-AMP-синтаза (cGAS), которая воспринимает вирусную ДНК и, следовательно, активирует стимулятор генов интерферона (STING). Впоследствии STING стимулирует IFN 1-го типа. Лигаза E3 TRIM38 SUMOилирует cGAS и STING, что приводит к их стабилизации на ранних стадиях после заражения. В позднем инфекционном состоянии SENP2 де-СУМОилирует cGAS и STING, что приводит к их деградации и, таким образом, снижает иммунный ответ. Напротив, также было обнаружено, что SUMOylation подавляет потенциал восприятия ДНК cGAS, который может быть снят с помощью SENP7, показывая в целом подавляющий эффект SUMOylation на активацию иммунной системы (см. выше). Фенотипическими характеристиками, иллюстрирующими потерю SUMOylation в клетках, являются анеуплоидия и образование хроматинового мостика. Оставшийся участок ДНК между двумя дочерними клетками в случае образования хроматинового мостика мешает клеткам должным образом делиться и запускать свой собственный независимый клеточный цикл. В целом аберрантная экспрессия протеаз SUMO останавливает пролиферацию клеток и приводит к дефектной морфологии ядра и двуядерным клеткам. Существует все больше исследований, связанных с SUMOylation, и основное внимание уделяется ингибиторам регуляторов SUMOylation. SUMO E1 представляет собой димер, состоящий из субъединиц SAE1 и UBA2 / SAE2 и нокдаун этих субъединиц блокирует пролиферативную способность раковых клеток. Так, ингибиторы лигазы SUMO E1 обладают преимуществами более высокой селективности и меньшего количества побочных эффектов. Первые зарегистрированные ингибиторы SAE1 / 2 представляют собой природные соединения, включая гинкголиновую кислоту, ее структурный аналог анакардиновую кислоту и керриамицин B. Эти соединения ингибируют образование промежуточного соединения SAE1 / 2-SUMO, следовательно, блокируя конъюгацию SUMO с белками-мишенями. Другим природным веществом, блокирующими SAE1 / 2, является дубильная кислота с аналогичный механизм действия. Ограничения этих натуральных продуктов состоят в том, что они в основном функциони -руют в микромолярном диапазоне и не нацелены только на сумоилирование. Известно, что гинкголевая кислота нацелена на провоспалительные молекулы, такие как простагландины и лейкотриены, и дубильная кислота может также вызывать гибель раковых клеток через активацию апоптоза, а не через ингибирование прогрессирования клеточного цикла, как ожидается для ингибитора SUMOylation. Полипептиды цистеиновых протеаз могут действовать как аналоги SENP и обладают способностью отщеплять SUMO от целевого белка и / или расщеплять форму предшественника SUMO с высвобождением его активной формы. Пять регуляторов SUMOylation (PIAS1, PIAS3, SENP8, SUMO4 и TRIM27), которые присутствовали в сигнатуре риска. Большинство этих регуляторов обладают значительным активационным эффектом в пути клеточного цикла, а в пути RAS / MAPK обладают значительным ингибирующим действием. Биологические эффекты этих регуляторов в онкогенезе и развитии разнообразны. Эти регуляторы могут быть потенциальным индикатором прогноза множественных опухолей. Эти регуляторы SUMOylation имеют более низкую общую среднюю частоту мутаций при 33 типах рака, хотя регуляторы SENP1, SENP5, SENP7 и PIAS3 имеют более высокие частоты мутаций. SENP2, SENP5, CBX4 и TRIM27 показали более обширную CNV амплификацию (сopy number variation - - это явление, при котором участки генома повторяются, а количество повторов в геноме варьируется от человека к человеку); напротив, SENP3 и SUMO4 имели более обширные CNV делеции. SENP1 высоко экспрессируется в образцах рака простаты человека и коррелирует с экспрессией индуцируемого гипоксией фактора 1α (HIF1α). SENP1 индуцирует транс -формацию здоровой простаты в предраковые поражения in vitro и in vivo. PIAS1 и PIAS4 необходимы в процессе репарации после повреждения ДНК. SENP1 может регулировать MMP-2 и MMP-9 через сигнальный путь HIF1α, тем самым способствуя прогрессированию клеточных линий рака простаты и метастазам в кости. Связанный с аутофагией белок 8 ( Atg8 ) представляет собой убиквитиноподобный белок, необходимый для образования мембран аутофагосом. Временная конъюгация Atg8 с аутофагосомной мембраной посредством ubiquitin-подобной системы конъюгации важна для аутофагии у эукариот. У высших эукариот Atg8 не кодируется одним геном, как у дрожжей, а происходит из мультигенного семейства. Четыре его гомолога уже идентифи -цированы в клетках млекопитающих. Одним из них является LC3 ( MAP1LC3A ), легкая цепь белка 1, связанного с микротрубоч -ками. Подобно Atg8, LC3 необходимо протеолитически расщеплять и липидировать, чтобы превратить в активную форму, которая может локализоваться на мембране аутофагосомы. Подобно ситуации с дрожжами, процесс активации LC3 запускается истощением питатель -ных веществ, а также в ответ на гормоны. Изоформы LC3 млекопитающих содержат консервативный Ser / Thr12, который фосфорилируется протеинкиназой А для подавления участия в аутофагии / митофагии. Другими гомологами являются транспортный фактор GATE-16 (усилитель АТФазы, ассоциированный с Гольджи, 16 кДа), который играет важную роль в везикулярном транспорте внутри Гольджи, стимулируя активность АТФазы NSF (N-этилмалеимид-чувствительный фактор) и GABARAP (белок, связанный с рецептором γ-аминомасляной кислоты типа A), который облегчает кластеризацию рецепторов GABAA в сочетании с микротрубочками. Все три белка характеризуются процессами протеолитической активации, в результате которых они липидируются и локализуются на плазматической мембране. Однако для GATE-16 и GABARAP мембранная ассоциация, по-видимому, возможна даже для нелипидированных форм. взаимодействия с одним из гомологов ATG4 млекопитающих, hATG4A. Еще одним убитиквиноподобным белком является ATG12 Autophagy related 12); аутофагия - это процесс разрушения большого количества белка, при котором компоненты цитоплазмы, включая органеллы, заключены в двухмембранные структуры, называемые аутофагосомами, и доставляются в лизосомы или вакуоли для деградации. Аутофагия требует ковалентного присоединения белка Atg12 к ATG5 через систему конъюгации, подобную убиквитину. Конъюгат Atg12-Atg5 затем способствует конъюгации ATG8 с липидным фосфатидилэтаноламином. Было также обнаружено, что Atg12 участвует в апоптозе. Этот белок способствует апоптозу за счет взаимодействия с антиапоптотическими членами семейства Bcl-2 . Отметим, что ATG5 является ключевым белком, участвующим в расширении фагофорной мембраны в аутофагических пузырьках. ATG5 также может действовать как проапоптотическая молекула, нацеленная на митохондрии . При низких уровнях повреждения ДНК ATG5 может перемещаться в ядро и взаимодействовать с сурвивином . |
![]() |
![]() |
![]() |
#3 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Вернемся к расширенной версии рака желудка.
Из трех основных типов злокачественных опухолей желудка, аденокарциномы желудка (GC), неходжкинской лимфомы и стромальных опухолей желудочно-кишечного тракта, приблизительно 95% составляют GC, который остается одним из наиболее часто диагностируемых видов рака в мире. Опухоли чаще возникают в антруме или нижней трети желудка, наиболее часто на малой кривизне. Некоторые из таких опухолей многоцентровые. Их локализация, видимо, меняется с возрастом, с увеличением проксимальных опухолей и снижением их в антруме. РЖ подразделяют на 2 основные категории: ранний (early carcinoma) и распространенный (advanced carcinoma). К раннему относят рак, поражающий слизистую оболочку желудка или подслизистый слой, независимо от наличия или отсутствия метастазов в лимфатических узлах, которые можно диагностировать лишь гистологически. При нем 5-летняя выживаемость находится в пределах 90-100 %. Процесс опухолевой трансформации клеток до первых клинических проявлений РЖ длительный, многоэтапный. Продолжительность «естественной эволюции» РЖ составляет 15-25 лет, что обусловливает возможность его диагностики на ранней стадии, которая может продолжаться с момента обнаружения заболевания от 6 мес до 10 лет и более. Лица с высокой степенью риска заболевания РЖ, у которых морфологически была диагностирована тяжелая интраэпителиальная неоплазия (дисплазия) эпителия, подлежат динамическому наблюдению с обязательным проведением рентгеноскопии и гастроскопии не менее чем 2 раза в год. РЖ - очень гетерогенное заболевание с морфологической и молекулярной точек зрения. Также гистологическое строение РЖ отличается многообразием форм аденокарциномы, происходящей из камбиальных эпителиальных клеток слизистой желудка, находящихся в области шейки желудочных желез. Размножаясь эти клетки как поднимаются в зону покровного эпителия, так и спускаются в главную часть желез; этим железы желудка напоминают крипты толстой кишки. Во многих случаях обнаруживаются сочетания различных гистологических форм РЖ. По мере инвазии карциномы в глубь стенки желудка комплексы опухолевых клеток зачастую утрачивают дифференцировку и предстают в виде мелких лимфоцитоподобных клеток, образуя тяжи и мелкие трубчатые структуры. Кардиальная GC делится на две различные этиологические сущности: GC кардии, подобной пищеводу, которая связана с гастроэзофагеальным рефлюксом, курением и диетой и часто встречается в регионах с низким риском GC, и дистальной желудочно-подобной GC кардии, связаной с наличием H. pylori и атрофией слизистой, и является наиболее частым вариантом GC кардии в регионах с высоким риском GC. GC некардиального типа в соответствии с классификацией Лорена подразделяются на два гистологических варианта, называемые GC кишечного и диффузного типов. Оба типа РЖ одинаково ассоциированы с H. pylori инфекцией, однако H. pylori инфекция может играть роль только на начальных этапах канцерогенеза. GC кишечного типа характеризуется образованием железистых структур, дистальной локализацией в желудке и обычно встречается у пожилых людей. Она также чаще встречается у мужчин (соотношение 2: 1) и у лиц с более низким социально-экономическим статусом. Этому типу GC часто предшествует предраковая фаза, которая начинается с перехода нормальной слизистой оболочки в мультифокальный атрофический гастрит. Это первоначальное гистологическое изменение сопровождается кишечной метаплазией, дисплазией и, наконец, аденокарциномой. Высокая пролиферативная активность клеток «кишечного» рака определяет высокую скорость их роста. Быстрое клиническое течение рака интестинального типа определяет его ранние клинические проявления, а тесная связь клеток ведет к меньшей инвазивности, чем обеспечивается возможность радикальной операции. Так, интестинальные опухоли, как правило, являются экзофитными, часто изъязвляются, ассоциированы с гастритом тела желудка, с атрофией и кишечной метаплазией. Кишечный тип рака состоит из клеток, формирующих железы. Четко формируемые железы определяются как высокодифференцированная аденокарцинома, плохо формируемые железы – как низкодифференцированная аденокарцинома. Диффузный тип рака обладает более низкой пролиферативной активностью, что определяет длительность латентного течения таких опухолей. Слабая связь клеток друг с другом ведет к высокой инвазивности диффузного рака, что определяет больший объем радикального оперативного вмешательства и объясняет более низкий процент 5-летней выживаемости. С другой стороны, GC диффузного типа плохо дифференцируется, поражает более молодых людей и тесно связана с генетической предрасположенностью (вариант наследственного диффузного GC, который связан с мутациями зародышевой линии в CDH1, гене, кодирующем E-кадгерин). Кроме того, она не связана с формированием предраковых поражений и, как было установлено, распостраняется на всю поверхность желудка. Этот тип GC одинаково присутствует у представителей обоих полов и связан с худшим прогнозом по сравнению с GC кишечного типа. Отметим, что гетерозиготные мутации зародышевой линии неоднократно обнаруживались в гене E-кадгерина ( CDH1 ) и гене α-E-катенина ( CTNNA1 ), что подчеркивает их инактивацию и, следовательно, снижение сцепления клеток. Мутации этих генов считаются главной причиной HDGC ( наследственный диффузный рак желудка - см.выше ). У людей с мутацией в гене CDH1 пожизненный риск диффузного рака желудка оценивается к 80 годам от 67% до 70% для мужчин и от 56% до 83% для женщин. Женщины с мутацией в гене CDH1 имеют также к 80 годам примерно от 39% до 52% риска развития дольчатого рака молочной железы. Если поподробней, то семейная или наследственная диффузный рак желудка является аутосомно доминирующей наследственной предрасположенностью к канцерогенезу клеток желудка в зародышевой линии на основе мутаций в гене CDH1. Опухоль проникает в стенку желудка и обычно приводит к утолщению стенки, не будучи видимым в виде язвы (как при кишечном раке желудка). Обычно каждая клетка имеет по 2 копии каждого гена: 1 унаследован от матери и 1 унаследован от отца. HDGC следует аутосомно-доминантному типу наследования, при котором мутация происходит только в 1 копии гена. Это называется мутацией зародышевой линии. Следовательно, ребенок, у которого есть родитель с мутацией, имеет 50% шанс унаследовать эту мутацию. Средний возраст начала HDGC у носителей мутации - 38 лет (диапазон от 14 до 69 лет), кумулятивный риск развития HDGC до 80 лет составляет 80% для мужчин и женщин. Если затронутые семьи соответствуют указанным ниже критериям показаний, частота обнаружения мутаций в CDH1 составляет 25-50%. Поэтому мутации в этом гене, вероятно, не единственная причина семейной диффузной карциномы желудка. В семьях с признаками мутаций риск заболевания низок до 20 лет, поэтому профилактическая гастрэктомия рекомендуется носителям в возрасте от 20 лет (исключения в особенно раннем возрасте появления в семье). В подвергшихся контролю семьях без признаков мутации результаты патологической биопсии (гастроскопия один раз в год, 30 биопсий) являются показанием для гастрэктомии. Смешанный РЖ, определяемый двойным паттерном дифференцировки - железистая / солидная (кишечная) и изолированно-клеточная карцинома (диффузная) демонстрирует двойную метастатическую картину (гематогенные метастазы и перитонеальное распространение с метастазами в лимфатические узлы), предполагая кумулятивный эффект н***агоприятного поведения кишечного и диффузного GC. |
![]() |
![]() |
![]() |
#4 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Продолжим.
В группу риска развития РЖ следует отнести лиц, с детского возраста имеющих высокие показатели обсемененности слизистой оболочки H. pylori или страдающих заболеваниями, ассоциированными с хеликобактериозом; пациентов, в течение значительного времени страдающих хроническим гастритом (как с пониженной, так и с нормальной или повышенной кислотностью), аденомами (аденоматозными полипами), язвенной болезнью желудка, пернициозной анемией, с резецированным желудком, болезнью Менетрие, а также в случае семейной предрасположенности к РЖ. Так как в здоровой слизистой оболочке рак практически не возникает, в последние годы сформировалось представление о предраковой патологии желудка, в спектре которой Н. pylori-ассоциированный хронический гастрит занимает центральное место. Впрочем, хотя инфекция H. pylori была признана наиболее важным фактором риска развития GC и классифицирована Всемирной организацией здравоохранения в 1994 году как канцероген класса 1, этиология GC также включает факторы хозяина и окружающей среды. Об этом свидетельствует тот факт, что только у 1–3% пациентов, инфицированных H. pylori, развивается GC, и что прогрессирование до GC у некоторых субъектов происходит даже после уничтожения бактерии. Имеются данные, что персистенция инфекции Н. pylori увеличивает риск развития рака желудка в 4-9 раз, особенно в случаях инфицирования в детском возрасте; в целом до 80% аденокарцином желудка связаны с Н. pilori-ассоциированным хроническим атрофическим пангастритом. Впрочем, современные представления состоят в том, что Н. pylori скорее действует в качестве промотора, чем инициатора желудочного канцерогенеза. При инфекции экспрессия эпителиальными клетками IL-8 запускает цитокиновый провоспалительный каскад. Мобилизованные моноциты и нейтрофилы экспрессируют, в свою очередь, IL-10, являющийся одним из мощнейших ингибиторов кислотообразования. Таким образом, IL-10 потенцирует воспалительные изменения в слизистой оболочке и вызывает достаточно выраженную гипохлоргидрию, облегчающую колонизацию Н. pylori в желудке. Helicobacter pylori - грамотрицательная бактерия, поражающая почти 50% населения человека. В слизистой оболочке желудка большая часть Helicobacter pylori находится в слое слизи, но они также могут прикрепляться к эпителиальным клеткам, что приводит к поддержанию, распространению и серьезности инфекции. Инфекция H. pylori была связана с развитием ряда заболеваний, включая язвенную болезнь (10%), некардиальную GC (1-3%) и лимфому, ассоциированную со слизистой оболочкой желудка (MALT) (<0,1 %). Более того, эта бактерия ассоциирована с тремя различными фенотипами у инфицированного хозяина: (1) гастрит с преобладанием поражения дна и тела желудка, который может привести к атрофическому гастриту, гипохлоргидрии и развитию GC; при фундальном и мультифокальном гастритах у 1% пациентов ежегодно развивается рак желудка и практически не встречаются дуоденальные язвы. (2) фенотип язвы двенадцатиперстной кишки, при котором гастрит с преобладанием антрального отдела желудка приводит к повышенной секреции кислоты желудочного сока. Впрочем отмирание париетальных клеток без последующей регенерации начинается в антральном отделе желудка. В нём обнаруживают первичные очаги атрофии. Со временем болезнь прогрессирует, функционирующие железы заменяются кишечным слоем эпителия. Атрофический антральный гастрит при длительном течении опасен перерождением изменённых участков в злокачественную опухоль. (3) доброкачественный фенотип, при котором бактериальная инфекция вызывает легкий смешанный гастрит, который оказывает незначительное влияние на выработку кислоты желудочного сока. Отметим, что на фенотип Н. pylori-accoцииpoванного гастрита влияет секреция соляной кислоты. Если ее уровень низкий, Н. pylori может колонизировать любой отдел желудка, при сохранной (повышенной) кислотности единственным местом, где может выжить микроорганизм, является антральный отдел, для которого характерны более низкие значения рН. В этом случае ведущую роль в развитии конкретного фенотипа будет играть возраст, в котором произошло заражение, поскольку для детей более характерно состояние гипоацидности, а для взрослых - нормацидности. Поверхностный гастрит с фундальной или мультифокальный локализацией приводит к потере желудочных желез с замещением их фиброзной тканью или (что более типично) метаплазированным эпителием. Именно этот вариант гастрита создаст фон для карциномы кишечного типа. Динамическое наблюдение за больными, инфицированными Н. pylori, позволило выделить две формы хронического гастрита - хронический поверхностный и хронический атрофический, являющиеся, по сути, последовательными этапами развития хронического геликобактерного гастрита. С другой стороны, большинством специалистов, занимающихся вопросами геликобактерноза, выделяются два фенотипа геликобактерного гастрита - классический антральный и фундальный (мультифокальный). Именно топографические особенности гастрита, а не выраженность воспаления определяют клинические последствия инфицирования Н. pylori. Необходимо отметить, что именно Cag-A-позитивные штаммы Н. pylori инициируют более высокий уровень пролиферации эпителиоцитов. При этом уровень апоптоза не соответствует ускоренной пролиферативной активности эпителия, возникает дисбаланс между гибелью клеток и их размножением, что увеличивает возможность "выживания" мутаций, имеющих канцерогенный потенциал. Отчасти это объясняется более активной экспрессией IL-8 Cag-А-позитивными штаммами Н. pylori, а следовательно, и более выраженным воспалением. H. пилори приобретается в начале жизни, большинство людей заражается в возрасте до 10 лет при контакте с близкими, которые являются общим источником инфекции. Было высказано предположение, что раннее заражение может быть связано с широким спектром патологий, связанных с инфекцией H. pylori, и с очень устойчивыми уровнями заболеваемости GC в генетически восприимчивых популяциях, которые мигрировали в развитые страны. При отсутствии антибактериальной терапии H. pylori инфекция обычно сохраняется на всю жизнь. Способность H. pylori выживать и колонизировать желудок связана с рядом механизмов. Самое главное: H. pylori в отличие от других бактерий вырабатывает большое количество фермента уреазы, гидролизующего мочевину до аммиака, который впоследствии взаимодействует с ионами водорода в желудке с образованием аммония. Можно еще отметить "недоступность" бактерии для антител в слое желудочной слизи, невозможность выделения IgG в просвет желудка при относительном дефиците секреторных IgA, а также "антигенную мимикрию" Н. pylori. Кроме того, H. pylori экспрессирует несколько белков внешней мембраны, включая антигенсвязывающий адгезин группы крови (BabA), адгезин, связывающий сиаловую кислоту (SabA) и внешний воспалительный белок (OipA), которые, по-видимому, связываются с рецепторами на поверхности эпителиальных клеток желудка, что снижает скорость выведения бактерий в результате перистальтики. Тот факт, что более одного штамма H. pylori могут колонизировать слизистую оболочку желудка, дает H. pylori возможность приобретать новые генетические последовательности и подвергаться событиям рекомбинации. |
![]() |
![]() |
![]() |
#5 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Продолжим.
Хронический гастрит (некоторые исследователи его рассматривают как гастропатию, так как атрофические и пролиферативные процессы превалируют над воспалительными) предшествует возникновению рака желудка в 73,5-85 % случаев. Установлено, например, что у 1% больных антральным хроническим гастритом ежегодно возникают дуоденальные язвы, но у них не развивается рак желудка; при фундальном и мультифокальном гастритах ежегодно у 1% пациентов развивается рак желудка и практически не встречаются дуоденальные язвы ("язвенный" и "раковый" фенотипы хронического гастрита по P. Sipponen). Возможное объяснение этому кроется в том, что фенотип Н. pylori-accoцииpoванного гастрита влияет на секрецию соляной кислоты. Если ее уровень низкий, Н. pylori может колонизировать любой отдел желудка, при сохранной (повышенной) кислотности единственным местом, где может выжить микроорганизм, является антральный отдел, для которого характерны более низкие значения рН. В этом случае ведущую роль в развитии конкретного фенотипа будет играть возраст, в котором произошло заражение, поскольку для детей более характерно состояние гипоацидности, а для взрослых - нормацидности. Участки атрофии чередуются с участками разрастания соединительной ткани. Уплотнения появляются в случаях, когда острая фаза заболевания прошла без лечения. Такой процесс называют гиперплазией. Клетки в утолщённых участках активно делятся, что может привести к образованию полипов. Аденоматозные полипы (аденомы) представляют собой аналог аденом толстой кишки. Эти новообразования имеют вид узла на широком основании. Микроскопически представляют собой тубулярные и тубулопапиллярные хаотические эпителиальные разрастания, выстланные высоким цилиндрическим эпителием, с вытянутыми и расположенными на различных уровнях ядрами и высоким ядерно-цитоплазматическим отношением. Частота малигнизации аденом чрезвычайно высока и кол***ется, по данным большинства исследователей, в пределах 30-40 %. Для обозначения предраковой эпителиальной пролиферации слизистой оболочки желудка, промежуточной между гиперплазией и раком, предложен термин «желудочная интраэпителиальная неинвазивная неоплазия» (синоним «дисплазия»). Для нее характерны нарушение дифференциации клеток с клеточной атипией, а также дезорганизация структуры слизистой оболочки. Под кишечной метаплазией в слизистой оболочке желудка принято понимать замещение желудочного эпителия кишечным (см. выше). Метаплазия с наличием клеточных элементов тонкой или толстой кишки расценивается соответственно как тонко- и толстокишечная. Раньше тонкокишечную метаплазию отождествляли с полной метаплазией (метаплазия эпителия с наличием всех клеток, свойственных тонкой кишке), а толстокишечную - с неполной. Но даже при полной метаплазии не обнаруживается весь спектр клеток, характерных для тонкой кишки, а также нередкой встречаемостью смешанного типа кишечной метаплазии. С позиций современного понимания процесса метаплазии как адаптивной перестройки на иной клеточный фенотип - более приспособленный к изменившимся условиям окружения, полную метаплазию можно рассматривать в качестве начального этапа такой перестройки, а неполную - как нарушение процессов дифференцировки. Так, при неполной метаплазии выявляются полиморфизм ядер, увеличение ядерно-цитоплазматических соотношений; поверхностные отделы желез практически не отличаются от глубоких, что говорит о нарушении созревания и аберрантной дифференциации. Все эти картины показывают сходство неполной кишечной метаплазии с дисплазией. Важную роль в канцерогенезе GC принадлежит нарушениям процессов апоптоза и, соответственно, нарушениям в сигнальных путях, его регулирующих, прежде всего пути AKT, который наиболее часто подвержен гиперактивации. Для атрофического гастрита без хеликобактерного инфицирования характерен средний уровень ИА (индекса апоптоза) и низкий уровень экспрессии mTOR, при метаплазии слизистой отмечалось как повышение ИА, так и уровня экспрессии mTOR, а при раке желудка ИА значительно снижался, а экспрессия mTOR оставалась на высоком уровне. Учитывая высокмй уровень биосинтетических процессов в раковых клетках это не удивительно. Регуляция пролиферации и апоптоза в эпителиоцитах при неполной кишечной метаплазии сильно нарушена, в некоторых из них выявляется мутация гена р53, что позволяет данным клеткам подвергнуться дальнейшему перерождению под влиянием различных мутагенов, вплоть до злокачественного, поскольку они защищены от апоптоза. Все эти явления не отмечаются при полной метаплазии, что позволяет утверждать - полная кишечная метаплазия не может быть предраком биологически. Выявление неполной кишечной метаплазии показало высокую специфичность этого признака (98%) для рака желудка, однако чувствительность оказалась достаточно низкой - всего 38%, что свидетельствует об ограниченном значении неполной кишечной метаплазии как показателя прогноза развития рака кишечного типа. Высказывается мнение, что маркером повышенного риска возникновения последнего является не столько тип кишечной метаплазии, сколько площадь замещения желудочного эпителия. Для выявления подтипов кишечной метаплазии имеет значение присутствие цилиндрических клеток с различными вариантами образования муцинов. При полной кишечной метаплазии муцины не обнаруживаются, типичным же является наличие выраженной щеточной каймы. В целом замещение одного типа ткани на другой происходит в несколько ступеней. На начальном этапе хронический антральный атрофический гастрит характеризуется тонкокишечной метаплазией. Со временем железы трансформируются в незрелый и позже в зрелый толстокишечный эпителий. Процесс замещения одного вида ткани на другой длится 5–6 лет. В гистологической классификации опухолей желудка ВОЗ (2000) выделены 2 степени выраженности интраэпителиальной неоплазии: слабая (low-grade) и тяжелая (high-grade). Слабо выраженную интраэпителиальную неинвазивную неоплазию очень трудно отличить от регенерирующего эпителия. Появление высокой степени интраэпителиальной неоплазии - маркер повышенного риска развития и этап морфогенеза РЖ. Последнее поражение рассматривается как внутрислизистая неинвазивная карцинома, которая может выглядеть как плоское (дисплазия) или возвышающееся (аденома) поражение. Следует отметить, что у пациентов с кишечной метаплазией в зоне пищеводно-желудочного перехода и в пищеводе риск развития рака существенно выше, чем у пациентов с кишечной метаплазией в «некардиальном» отделе желудка. |
![]() |
![]() |
![]() |
#6 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Продолжим.
На основе комплексного анализа молекулярной информации команда TCGA предложила систему классификации, в которой GC разделен на четыре подтипа: EBV (вирус Эпштейна–Барр)-положительный, микросателлитно-нестабильный, геномно стабильный и хромосомная нестабильность (CIN). Азиатская группа по исследованию рака (ACRG) в свою очередь описала четыре молекулярных подтипа с различными прогностическими эффектами: (1) опухоли с высоким MSI, морфологией кишечника и наилучшим прогнозом; (2) MSS / EMT GC с диффузной морфологией и худшим прогнозом; (3 и 4) аденокарциномы MSS без сигнатуры EMT, либо TP53-активные (MSS / TP53 +), либо неактивные (MSS / TP53-), и с промежуточным прогнозом. Подтип MSS / TP53- (который примерно соответствует подтипу пролиферации и CIN) встречается часто (36-50% GC) и содержит геномные амплификации TKR (Tyrosine Kinase Receptor), которые представляют собой трансмембранные белки, обладающие сайтами связывания в своих внеклеточных доменах для полипептидных гормонов и факторов роста (лигандов)) и / или RAS, которые используются или являются потенциальными терапевтическими мишенями. Нарушения эпигенетической регуляции могут способствовать злокачественной трансформации клеток желудка. Инактивация транскрипции метилированием цитозина на промоторных CpG-островках генов репарации несоответствия ДНК (MMR) или генах-супрессорах опухолей является важным механизмом, способствующим развитию нескольких видов рака у человека. Например, гиперметилирование промоторной области hMLH ( гена репарации ошибочного спаривания гомолога ДНК) нарушает регуляцию механизмов репарации ДНК, что приводит к фенотипу микросателлитной нестабильности (MSI), что можно наблюдать, сравнивая микросателлитные локусы в опухолевой и нормальной ДНК. Нестабильность генома - ключевой клеточный процесс, при котором клетки приобретают мутации с повышенной скоростью, что способствует накоплению мутаций, что в конечном итоге приводит к онкогенезу. Нестабильность генома может быть вызвана мутациями в генах, обеспечивающих уход за ДНК, которые участвуют в обнаружении и восстановлении повреждений ДНК. Например, TP53 и BRCA2 - два ключевых гена-драйвера, которые часто мутируют в GC: TP53 представляет собой ген- супрессор опухоли, кодирующий фактор транскрипции p53, который регулирует гены остановки роста. Мутации в p53 отменяют обнаружение клетками повреждения ДНК, что приводит к аберрантному росту клеток. Точно так же BRCA2 участвует в репарации двухцепочечных разрывов ДНК. Два фенотипа для геномной нестабильности являются общепринятыми при GC : фенотип, ассоциированный с микросателлитной нестабильностью (МSI), и фенотип, связанный с хромосомной нестабильностью (CIN). Эти фенотипы не являются независимыми и в некоторых случаях могут накладываться друг на друга. Анеуплоидия ДНК наблюдалась уже во внутрислизистых GC диаметром менее 5 мм, а также в ранних GC. Сходным образом, изменения числа копий были обнаружены в предшественниках GC, a MSI был идентифицирован при кишечной метаплазии, аденоме желудка и ранней GC. Изменения числа соматических копий (SCNA) включают структурные вариации в ДНК, которые возникают из-за изменений числа копий ДНК; SCNA могут включать фокальные области генома или широкие хромосомные области ДНК. В GC специфические SCNA связаны с гистологическим типом. Увеличение числа копий на 8q, 17q и 20q связано с кишечным GC, тогда как прирост на 12q и 13q связано с диффузным GC; так, увеличение 1q, и потеря 18q связаны с плохим прогнозом. GC демонстрируют частые амплификации в генах сигнального пути RTK / RAS / MAPK , и амплификации генов ERBB2 , EGFR , MET , FGFR2 и KRAS используются для классификации GC на пять подгрупп, что позволяет индивидуализировать лечение каждой подгруппы различными препаратами. Например, на ERBB2 , EGFR , MET и FGFR2 могут быть нацелены лекарства трастузумаб, нимотузумаб, онартузумаб и AZD4547 соответственно. По сути, 37% популяции GC потенциально можно лечить препаратами, нацеленными на этот путь. Гены PD-L1 и PD-L2 (ингибиторы иммунных контрольных точек), часто амплифицируются в подгруппе EBV-положительных форм рака. Также сообщается о ко-амплификации генов, связанных с клеточным циклом, с другими онкогенами. Например, CCNE1 (Cyclin E1) часто коамплифицируется с HER2 и пациенты с GC с коамплификацией CCNE1 / HER2 обычно развивали устойчивость к лапатинибу, низкомолекулярному ингибитору HER2. KLF5 , GATA4 и GATA6 существуют в одном комплексе и действуют совместно как онкогены «выживания клонов», способствуя пролиферации клеток; 30% пациентов с ГК показали их амплификацию. При этом KLF5 физически взаимодействует с факторами GATA, поддерживая кооперативную регуляцию KLF5 / GATA4 / GATA6 на совместно оккупированных генах; истощение и сверхэкспрессия этих факторов, по отдельности или в комбинации, уменьшали и способствовали пролиферации рака, соответственно. Отметим, что Krüppel-подобные факторы (Klf) 4 и 5 являются двумя близкородственными членами семейства Klf, которые, как известно, играют ключевую роль в регуляции клеточного цикла, репрограммировании соматических клеток и плюрипотентности. HNF4α (Hepatocyte Nuclear Factor 4 alpha) совместно регулируется этими тремя факторами транскрипции, и на него может действовать антидиабетический препарат метформин. HNF4α может негативно регулировать «метаболический переключатель», характерный для общего злокачественного фенотипа. Этот метаболический переключатель делает упор на производство промежуточных продуктов для роста и деления клеток, и он регулируется как онкогенами, так и генами-супрессорами опухолей в ряде ключевых путей образования рака. Путь AMPKα-HNF4α-WNT5A активируется в тканях ранней стадии GC. HNF4α подавляется сигнальной передачей AMPKα и агонистом AMPK метформином; блокада активности HNF4α приводит к подавлению регуляции циклина, остановке клеточного цикла и ингибированию роста опухоли. HNF4α регулирует передачу сигналов WNT через свой целевой ген WNT5A, потенциальный прогностический маркер опухолей желудка диффузного типа. Потеря гетерозиготности (LOH) или делеция генома - еще один маркер CIN, который часто наблюдается при GC. Геномные делеции могут вызывать потерю генов-супрессоров опухолей, и степень потери генома может иметь прогностическое значение. Например, исследования LOH классифицировали GC на два подтипа: LOH высокого уровня (LOH-H) коррелирует с GC кишечного или смешанного типа, тогда как низкий уровень LOH (LOH-L) коррелирует с GC диффузного типа. Изменение с LOH-L на LOH-H указывает на увеличение CIN во время развития GC на более поздней стадии. Транслокации, амплификации и перестройка хромосом также могут приводить к образованию химерных генов или генов слияния. Выявлен ген слияния CD44 - SLC1A2 , который возникает из-за хромосомной точки разрыва в SLC1A2, возникающей в результате геномной инверсии. Этот химерный белок может способствовать развитию GC за счет изменения метаболических путей. Также сеть TCGA сообщила об открытии слитого гена CLDN18-ARHGAP26 , возникающего в результате межхромосомной транслокации и в основном встречающегося в геном-стабильных / диффузных GC. Экспрессия CLDN18-ARHGAP26 в эпителиальных клетках желудка приводит к эпителиально-мезенхимальному переходу (EMT). |
![]() |
![]() |
![]() |
#7 |
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
![]() Продолжим.
MSI ( микросателлитная нестабильность ) выявляется до 44% случаев при раке желудка, чаще при кишечной форме и связана с гиперметилированием. Наиболее ее заметным эффектом является мутация рецептора TGF-β ( трансформирующего фактора роста ), снижающая его росттормозящие и проапоптические эффекты. Впрочем, на поздних стадиях он вносит существенный вклад в формирование инвазивного фенотипа. У пациентов с фенотипом MSI определяется высокая частота ошибок репликации (replication errors) в результате вставок/делеции нуклеотидов в микросателлитных повторах, которые возникают вследствие дефектов системы репарации неспаренных оснований (mismatch repair, MMR). Инактивация или дефицит одного или нескольких генов MMR (вследствие мутаций или эпигенетических изменений), в частности, MLH1 или MSH2, индуцирует развитие MSI-фенотипа, что приводит к дополнительным мутациям, или нарастанию генетической нестабильности и развитию опухоли. В целом в случаях с высоким уровнем MSI мутациям подвергается одновременно множество генов-мишеней, отвечающих за клеточный цикл и апоптоз, при этом микросателлитные нестабильные (MSI) GC демонстрируют меньше хромосомных аберраций, чем микросателлитно-стабильные (MSS) раки. Помимо нестабильности генома, ремоделирование хроматина также становится важным клеточным путем в развитии рака. Изменения в структуре хроматина клетки могут повлиять на доступность ДНК для регуляторов транскрипции, которые существенно влияют на экспрессию генов. Так, ARID1A кодирует субъединицу комплекса ремоделирования хроматина SWI-SNF и был идентифицирован как часто мутирующий ген ремоделирования хроматина в GC. SWI-SNF участвует в ремоделировании нуклеосом АТФ-зависимым образом, чтобы либо активировать, либо репрессировать транскрипцию генов. Было высказано предположение, что ARID1A действует как супрессор опухолей и подавляет гены клеточного цикла, такие как CCNE1 и E2F1. В соответствии с его функцией супрессора опухолей, мутации ARID1A в GC распределены по всей кодирующей области и обычно инактивируют его, включая усекающие мутации и вставки / делеции, приводящие к изменениям рамки считывания. Кроме ARID1A , другие сложные члены SWI-SNF ( ARID1B , PBRM1 и SMARCC1 ), что также было установлено, мутировали в GC. Кроме того, обнаружены мутации других комплексов ремоделирования хроматина, таких как комплекс MLL ( MLL2 и MLL3 ), комплекс ISW1 ( SMARCA1 ) и комплекс NuRD ( CHD3 , CHD4 и MBD2 ), а также генов, кодирующих гистон-модифицирующие белки ( SIRT1 и SETD2 ). Гены клеточной адгезии, цитоскелета и клеточной подвижности (например, FAT4 , CDH1 , CTNNA1 и RHOA ) также мутируют в GC, особенно GC диффузного типа Такие гены функционируют, чтобы регулировать межклеточные и внутриклеточные взаимодействия, и нарушения функции этих генов могут играть ключевую роль в развитии и прогрессии GC. Например, FAT4 является опухолевым супрессором, принадлежащим к семейству кадгеринов, и было показано, что мутации FAT4 нарушают прикрепление клеток к матриксу. CIMP ( фенотип метилирования островков CpG c глобальным гиперметилированием генома, приводящий к отключению генов-супрессоров опухоли ) присутствует в 15% кишечной метаплазии и 50% аденом. Вообще, метилирование CpG островков может считаться третьим молекулярным фенотипом GC, и гены, имеющие отношение к развитию опухоли, такие как APC ( (аденоматозного полипоза толстой кишки), CDH1, MHL1, CDKN2A, CDKN2B и RUNX3, часто подвергаются метилированию. Причиной инактивации генов CDKN2A, CDH1 и MLH1 чаще является именно метилирование промотора, а не мутации. RUNX3 – это ген, кодирующий белок, относящийся к семейству транскрипционных факторов, содержащих Runt-домен. Гетеродимер этого домена и бета-субъединицы образуют комплекс, который связывается с основной последовательностью ДНК 5'-PYGPYGGT-3', обнаруженной в ряде энхансеров и промоторов, и может активировать или подавлять транскрипцию. При GC часто наблюдается потеря экспрессии этого гена, в основном из-за гемизиготной делеции (при анэуплоидиях) или гиперметилирования. Этот ген экспрессирован только у 45–50 % пациентов с GC, позитивно регулирует экспрессию BIM и p21 и негативно – сосудистый эндотелиальный фактор роста (VEGF), что сказывается на апоптозе, задержке роста клеток и ангиогенезе. Потеря или существенное снижение экспрессии RUNX3 протеина при РЖ значимо ассоциировано с низкой выживаемостью. При раке желудка гиперактивированы онкогены EGF, Erb-B2, Erb-В3. Все 3 онкогена – эпидермальные факторы роста – полипептиды, функционирующие как сигналы, стимулирующие пролиферацию опухолевых клеток. Выраженная гиперэкспрессия этих онкогенов, отмечаемая при кишечной форме рака желудка, является индикатором плохого прогноза даже при высокой дифференцировке опухолей. Показано, что антитела к гену Егb-В2 тормозят рост опухолевых клеток. RHOA принадлежит к семейству Rho, которое функционирует в регуляции актинового цитоскелета, и было показано, что мутации в этом гене придают большую устойчивость к аноикису (разновидность апоптоза) после отслоения от субстрата. Остатки Tyr42, Arg5 и Gly17 являются горячими точками мутации RhoA, обнаруженными в GC. Мутация супрессорных генов Р53, МСС (мутантный белок колоректального рака, как полагают, отрицательно регулирует развитие клеточного цикла, ингибируя переход в S-фазу), АРС регистрируется у 30-65% больных раком желудка, обычно при кишечной форме. G-17 гастрин – фактор роста, продуцируемый слизистой желудка; как оказалось, он является транскрипционным активатором гепарин связанного эпидермального фактора роста (Heparin binding epidermal growth factor HB-EGF), который усиливает опухолевую пролиферацию. COX-2 является ключевым ферментом, участвующим в образовании простагландинов из арахидоновой кислоты, а также вовлечен в процесс канцерогенеза. В ткани опухоли простагландины усиливают пролиферативную активность, способствуют ангиогенезу и метастазированию. Показана корреляция между экспрессией COX-2 и VEGF, что говорит об усилении процессов ангиогенеза в этой группе опухолей. Выявлено двукратное ускорение прогрессирования GC при наличии гомозиготного генотипа 1195AA гена COX-2 в сравнении с гетерозиготным генотипом или гомозиготным по G аллелю, а у носителей АА генотипа экспрессия COX-2 выше, чем у носителей GG генотипа: при этом ткани, инфицированные H. pylori могут стимулировать активность COX-2 промотора, особенно в присутствии А аллеля. В целом отмечена экспрессия COX-2 в высоко- и умеренно дифференцированных карциномах интестинального типа, а также в предшествующих раку изменениях, таких как дисплазия эпителия и кишечная метаплазия Последний раз редактировалось albert52; 11.09.2021 в 21:11.. |
![]() |
![]() |